SAS: Source Asynchronous Signaling Protocol for Asynchronous Handshake
Communication Free From Wire Delay Overhead

Shomit Das

Vikas Vij

Kenneth S. Stevens

University of Utah

Abstract— Asynchronous handshake protocol communication
is accomplished by sending data down a communication link
coupled with data validity information. Flow control is estab-
lished by acknowledging the receipt of data, thereby enabling
transmission of new data down the link. Handshake protocols
operate at target cycle times based on system operational
requirements. When the communication delay down wires
increases beyond a certain point, the latency in sending the
request and acknowledge signals across the link becomes longer
than the target cycle time. This reduces the communication
bandwidth below the desired value. This deleterious effect is
particularly conspicuous on long links and network-on-chip
communication. A method of enabling full communication
bandwidth on wires with arbitrary delay when employing
handshake communication is provided. This method supports
end-to-end communication across links with arbitrarily large
but finite latency without limiting the bandwidth, so long as
line variation can be reliably controlled. This paper introduces
the new SAS protocol, provides an efficient implementation,
and reports the resultant significant energy and bandwidth
improvements over conventional handshaking methods.

I. INTRODUCTION

Latency down a communication link on an integrated
circuit is dependent upon the resistance, capacitance, and
current carrying capabilities of the wires. Each new process
generation scales the technology down by reducing the cross
sections of the wires while simultaneously placing them
closer together. This increases the number of communication
links in a fixed millimeter squared area of an integrated cir-
cuit. However it also modifies the signal carrying properties
of the wire. In a scaled wire, capacitance remains about the
same but resistance substantially increases due to the reduced
cross sectional area. The increased resistance produces a
relative increase in the communication latency down a fixed
length of wire [1]. Increasing delay and energy properties on
interconnect pose design challenges, particularly with global
wires or network-on-chip interconnect.

Communication employing asynchronous handshake pro-
tocols is accomplished by sending data accompanied with
validity information down a communication channel. Flow
control is established by acknowledging the receipt of the
data, thereby enabling the transmission of new data. The
handshake signals are generated using pipelined control logic
that implements the protocol and synchronize two adjacent
channels. The frequency of communication is determined
by the delay of the control logic plus the latency down
the communication wires. Maximum operating frequency
for any specific controller design is established when the
pipelined controllers are physically adjacent to each other,
as in a first-in first-out buffer (FIFO). Increasing distance

between pipeline stages increases wire delay, and decreases
the operating frequency of the system.

The direct consequence of wire latency is easily observed
when employing asynchronous request acknowledge hand-
shake based communication. Every additional picosecond
of wire delay due to controllers being placed farther apart
directly results in at least two picoseconds of degradation
in the cycle time (1ps each for request and acknowledge).
As the communication distance between control elements
increases, the communication overhead increases, with a
commensurate decrease in operating frequency and commu-
nication bandwidth. At some wire length, the communication
delay eventually exceeds the desired performance target.

Traditional solutions to this problem reduce the impact
of wire overhead. This is accomplished by employing two-
cycle communication, which reduces the number of transient
communications down the channel in half compared to four
cycle protocols, and placing pipeline stages closer together,
which reduces communication latency [2], [3], [4].

A new protocol called source asynchronous signaling
(SAS) is provided for asynchronous handshake based com-
munication. Rather than mitigate the wire overhead, this
protocol is completely independent of wire delays. Thus the
SAS link can achieve the same bandwidth as a traditional
pipelined link shown in Fig. 1. The SAS protocol therefore
allows for high throughput asynchronous communication for
channels with large wire latency. A method of implementing
SAS is provided, and results are evaluated and compared
against traditional protocols.

The SAS protocol decouples the request and acknowledge
handshaking signals in such a way that multiple request
operations may occur without an acknowledgment operation,
and multiple acknowledgment operations may occur without
an intervening request operation. Such communication by
definition can not be delay insensitive as handshake events
are not directly acknowledged. This results in a necessary set
of relative timing constraints that must hold for the circuit to
be functional as well as to perform at the desired bandwidth
without stalling [5].

II. BACKGROUND
A. Related Work

This work is similar to clocked ‘“source synchronous”
signaling [6]. The authors are aware of unpublished work as
far back as the mid 1980s when Hewlett Packard began trans-
mitting the clock along with data between memory chips and
microprocessor chips. This solved the problem of distributing
low skew clocks in systems where data is transmitted over

data —»|

Traditional Traditional

Ir —» Pipeline Pipeline

Traditional
Pipeline

— data

Traditional Traditional

Pipeline Pipeline [IT

la < Controller @ Controller @ Controller @ Controller @ Controller ra

data —»] SAS €3 > sas data
Ir —»| Sender G D »| Receiver |—» IT
la Controller < @ Controller a

Fig. 1: Traditional and SAS communication pipelines with large wire delay of x.

long distances. Similar properties exist today on a single die
due to increasing wire delays and transistor counts. Thus
source synchronous signaling is relevant for today’s system-
on-chip and network-on-chip designs [7], [8], [9].

Clocked source synchronous signaling is challenging for
two reasons: it creates timing relationships between the
sender and receiver nodes, and it necessitates detailed evalu-
ation of the signal carrying properties of the wires. Applying
source synchronous concepts to asynchronous handshake
protocols is no different; timing relationships and signal
integrity become central issues. This work defines all timing
constraints necessary for the SAS protocol as applied to the
design presented in this work.

The topic of signal integrity is largely left as related
work. However, due to its fundamental importance we briefly
touch on key aspects related to SAS. A Robust method
of repeater deployment on long wires must be used to
maintain linear wire delay, reduce variation, and maintain
signal fidelity. The critical repeater distance is the maximum
distance between line drivers that must be maintained to
ensure linear delay and signal fidelity. In several 65nm
technologies this distance is approximately 555 um. First
order equations for communication latency and variation
have been developed and validated against SPICE showing
approximately 15% maximum error [4]. These models can be
used to quickly estimate long communication link robustness
to variation, energy, and latencies for any particular physical
design configuration.

Since the SAS protocol is independent of wire delay,
one can theoretically set channel frequencies to arbitrarily
high values. Wave pipelining can result for very long wires
and/or very high frequencies. In such cases multiple signals
are concurrently in flight down a communication channel.
Wave pipelining requires more care in physical design of the
communication channel. However, multiple researchers have
shown that high speed wave pipelined signaling is possible
with proper engineering [10], [11], [12].

In order to put wave pipelining and signal integrity issues
in perspective, consider our highest frequency network-on-
chip design operating at 2.6 GHz in a 65nm process [13].
The delay in picoseconds of well managed interconnect for
this process is modeled with the linear regression equation
len/10+ 16, were len is the wire length in microns [14],

[15]. This equates in the the network-on-chip router to the
time-of-flight down a 3.69mm link. At that distance a skew
of 150ps (a 39% variation) in either a delay-insensitive or
bundled data protocol on a SAS channel still provides a very
robust margin of 85ps.

Previous work defining a method for asynchronous hand-
shake based source synchronous signaling has been per-
formed [16]. That work contains two channels, one for for-
ward communication and one for backward communication,
each with a FIFO. The design from [16] requires interface
logic in order to connect traditional handshake protocols
to the dual-channel internal protocol. The specifics of the
internal channel protocol are not defined. In contrast, this
work only contains a single channel, and no interface logic is
required. The SAS channel protocol is formally defined. One
FIFO is placed at each end of the channel. FIFO sizes can
be reduced to zero when cycle times are sufficiently large or
wire delays sufficiently small. In such a condition the SAS
protocol and provided implementation becomes equivalent
to a traditional handshake channel. This base case is directly
represented in our timing models when no SAS buffers are
required.

B. Channel Properties

A channel consists of data, validity information identifying
when the data are stable and may be sampled, backward flow
control, and the controllers that implement the communica-
tion. Traditional handshake communication performance de-
pends on the wire delays in the communication channel and
the performance of the pipelined controllers. Data validity is
provided by a separate req signal for bundled data channels
or encoded in the data for delay insensitive channels. Back-
ward flow control is normally provided with an ack signal.
Handshake communication channels are characterized by (i)
the channel protocol, (ii) the data encoding employed by the
channel, (iii) how and when data are stored, (iv) the amount
of concurrency implemented between adjacent channels, (v)
the design of the controller that implements concurrency
between channels and clocking of the local storage elements.

Asynchronous channel protocols are very simple. Delay-
insensitive channels forever repeat the sequence of a valid
data encoding, ack, null data encoding, ack. Bundled data
channels consist of a forever repeating req and ack events

with the associated data relationship [17]. Channel protocols
can take the form of a “return-to-zero” (RZ) or “four-phase”
communication, or reduce the number of transitions by using
“non-return-to-zero” (NRZ) or “two-phase” communication.
There are many examples of different pipelined communica-
tion channels and their associated controllers in the literature.
Any such controller that can be used to build FIFOs is a
candidate and thus can be used in this design.

The SAS protocol introduces a new channel protocol,
but otherwise supports all data encodings, data and con-
trol relationships, and concurrency between channels. The
general design of the controller which interfaces between
SAS channels and traditional handshake channels is provided
herein. The design is based on FIFO structures with specific
signal integrity and timing relationships that must hold. This
paper demonstrates the SAS protocol using bundled data
encoding. This encoding requires w+ 1 wires to encode w
bits of data as well as a communication wire labeled ack to
engineer the acknowledge handshaking. The SAS channel is
described in this section using a two phase protocol.

C. Channel bandwidth

Eqn. 1 to 3 represent the maximum communication band-
width for clocked and traditional asynchronous handshake
protocols. Variable w is the width of the data-path in terms
of the number of data bits it carries, and delays are converted
into frequencies by putting them in the denominator. The
maximum bandwidth of a clocked design B, is proportional
to the wire latency down a communication channel (L.) plus
the setup time to the flip-flop (SU). B; is the maximum
bandwidth of a two phase communication protocol. It is pro-
portional to the sum of Cy,, the request to acknowledgment
responds time of the output channel, plus twice L.. This is
because in the two phase protocol, there is one transition
each on the req and ack handshake signals. The maximum
bandwidth of the four phase protocol B4 is proportional
to twice the response time of the output channel Cp, plus
four times the channel latency L. due to the four required
transitions on the handshake control signals.

Bejx =w/(Lc+SU) (1)
By =w/(2x Lc+Cor) 2)
By =w/(4xLc+2xCoy) 3)
Bsas =w/Cy “)

Assume delays L. > (SU = Co,), so that L. is the domi-
nant delay in the above equations, and that the clocked and
asynchronous overheads (SU and Cop,) are effectively iden-
tical. In such a case, the clocked design has approximately
twice the maximum bandwidth of a two-cycle asynchronous
design, and the two-cycle asynchronous design has approx-
imately twice the bandwidth of a four-cycle asynchronous
design. This two to four penalty factor for handshake com-
munication can seriously hamper competitiveness in terms of
performance, area, or power. SAS bandwidth (Eqn. 4) is only
dependent on the input channel frequency and number of data

data ack-
|

req+ data
|

data ack+ req+
| |

reg- ack+
| ! |

data ack- data
| |

req+ req-
| } |

data ack+ ack-
|

req-

Fig. 2: NRZ SAS with n =2, and traditional channel protocol

bits. Now if C; ~ L. then the SAS channel operates at the
same frequency as the clocked design. Thus the SAS protocol
overcomes the communication disadvantage, but comes at the
cost of adding timing constraints to the design.

III. SOURCE ASYNCHRONOUS SIGNALING
A. Protocol Specification

Fig. 2 shows the formal representations of a bundled
data NRZ SAS channel protocol with a buffer depth of
two (n =2) and a traditional bundled data NRZ handshake
channel protocol. Each protocol is represented as a petri-net
and can be used as a specification for the traditional and SAS
communication channels.

Fig. 3 shows an example simulation of a two phase
NRZ SAS communication channel where n = 2. Rather than
requiring that acknowledgment signal arrives before the next
request signal, data transfer stalling is delayed by three ack
transactions. This allows up to n+ 1 request transactions to
occur before an acknowledgment transaction. As a result,
the third data value becomes valid and the third req signal
asserts indicating data validity, but flow control of the SAS
Channel Protocol requires that the data remain valid and
the third data transfer transaction does not complete until
after the first acknowledge transaction (ack) occurs. Thus for
the SAS channel communication protocol, the acknowledge
flow control is shifted based on the number of data items
n that can be buffered in the SAS sender and SAS receiver
elements.

B. Implementation of SAS Channel and Interfaces

SAS sender controllers interface a traditional channel
protocol to the SAS Channel Protocol; SAS receiver con-
trollers perform the dual operation. One can write a petri-net
specification to synchronize a SAS channel and a traditional
channel protocol in order to build SAS sender and receiver
controllers. Our experiments synthesizing such specifications
resulted in complex and slow designs. We then realized that

data
—
ack | —| | | |
Fig. 3: SAS two-phase handshaking protocol with n =2
data > data data —> data
|—> din dout —l_
It n-deep o
data FIFO
req > Ir r — > Teq req _K la ata ra 4__|__> req
n-deep FIFO
ack la ra |« ack ack <——| ack

Fig. 4: SAS Sender Block

the concurrency between the channels very closely mimics
the behavior of a FIFO.

Fig. 4 shows the block diagram representation of the
bundled data SAS sender controller. The controller consists
of an n-deep first-in first out (FIFO) that interfaces between
a traditional handshake communication channel as an input
and a SAS communication channel as the output. SAS con-
trollers may use bundled data or delay-insensitive channels;
however this design does not work for GasP or single track
communication.

The function of the FIFO is to record how many data
transfers have occurred, and to not complete any transactions
on the input channel that would exceed »n transactions on
the SAS communication channel. This is accomplished by
implementing an n-deep FIFO to communicate between
the traditional communication channel and the SAS com-
munication channel. If n = 2, then two complete request
acknowledge transactions can occur unimpeded on the input
channel, and the corresponding data are sent down the SAS
output channel. A third transaction may begin and the data
transfer down the SAS communication channel would be
initiated. However, the transaction would not complete until
an acknowledge transaction occurs on the SAS communi-
cation channel. Since the depth of the FIFO is two, and
two tokens have been placed in the FIFO, the third request
transaction on the input port will not be acknowledged until
an acknowledgment is received on the SAS channel.

Note that the data and the data validity information (req)
on the traditional input channel are the same as the data
and data validity information on the SAS communication
channel. Other logic may be placed on these signals for
various reasons such as to improve signal fidelity, delay the
timing reference, change the data and timing encoding, or
other standard modifications. The output request (rr) from the
FIFO is left unconnected. This results in timing assumptions
that must hold for the circuit to operate correctly. All

Fig. 5: SAS Receiver Block

transitions on the rr output of FIFO must occur before an
associated response occurs on the acknowledge signal on
the SAS channel that connects to the ra signal on the FIFO.
This requires that the delay between edges on the ack signal
is greater than the response time of FIFO.

The SAS sender element is not limited to bundled data pro-
tocols. Dual-rail, m-of-n, LEDR, or any other data encoding
may be used in the channels and FIFOs. Likewise any type
of asynchronous handshake controller that can implement a
FIFO may be used so long as the design meets the SAS
timing requirements imposed upon the design.

The SAS receiver controller is represented in Fig. 5.
This circuit is in many ways the dual of the SAS sender
controller. This element contains a data FIFO that interfaces
an input SAS communication channel with a traditional
output asynchronous handshake channel. The input SAS
channel and traditional output channel may use any data
encoding, data transfer protocol, or protocol concurrency.

The function of the FIFO is to buffer and output the data
received on the input SAS channel to the output channel.
The size of the FIFO will be n, and this will be the same
depth as the sender FIFO.

The acknowledge signal (ack) on the output handshake
channel and the SAS communication channel are the same
signal. The input acknowledgment (la) from the FIFO is left
unconnected. This results in timing assumptions that must
hold for the circuit to operate correctly. All transitions on
the acknowledge signal la on the FIFO input must occur
before the next transition on the req signal from the SAS
communication channel. This requires that the delay between
edges on the SAS Channel req signal is greater than the
response time of the FIFO.

Fig. 6 shows the block diagram of a complete SAS
communication system with interfaces to traditional com-
munication channels. The wires across the SAS Channel
may be very long with substantial delay. Both the request

data
data > data
l—» din dout —l_
Ir n-deep
data FIFO
. req | @
req I deep FIFO ™ . —{la i |——’ req
ack la raj ac | ack

Fig. 6: Complete SAS channel with sender and receiver blocks

and acknowledge timing signals across this channel are not
directly acknowledged. Therefore care must be taken to
ensure that the fidelity of the signals and the relationship
between the data and the timing signals hold across this
channel. Repeaters will be inserted on the wires if they are
longer than the critical repeater distance to ensure signal
fidelity. Wave pipelining may occur on the SAS channel.

IV. SAS MODELS

For a correctly designed SAS communication system, the
maximum bandwidth Bgus is expressed in Eqn. 4 where C;
is the cycle time of the channel. Note that this equation is
strictly dependent upon the target data frequency to be sent
down the channel, not upon wire delays as is the case with
traditional communication channels as defined by Eqn. 2
and 3. Thus the SAS channel provided can achieve wire
overhead free communication down a long communication
channel. However, for the SAS communication system to
operate properly, a number of constraints must hold, which
are now defined.

Lgas Latency of a repeated wire down SAS Channel (®)]

n Depth of sender/receiver FIFOs (6)

Ly, (n) Forward latency of sender FIFO as a func. of n (7)
Ly, (n) Backward latency of sender FIFO as a func. of n (8)
L, (n) Forward latency of receiver FIFO as a func. of n (9)
Ly, (n) Backward latency of receiver FIFO as a func. of n (10)
C; Minimum cycle time of the input channel an

Co Minimum cycle time of the output channel (12)
Cor Output channel req-to-ack response time (13)
Csy Maximum cycle time of SAS sender FIFO (14)
Cryr Maximum cycle time of SAS receiver FIFO (15)

The forward and backward latency (Eqn. 7-10) of all
FIFO designs are a function of the depth n of the FIFO.
For linear FIFOs, the latency is n times the latency of
each stage in the FIFO. Many designs exist that reduce the
forward and backward latencies, such as parallel, tree and
square configurations [18]. In these designs the latency is not
calculated as n times latency per stage; rather there is a more
complicated function to determine latency. For example, in
an asynchronous tree FIFO, the latency is to the first order

log, n times the latency per stage [19]. For the latency values
used in this document, the forward and backward latency
values Ly¢(n), Ly (n), and Ly, (n) for each FIFO calculate
the first order approximation of the latency based on the
FIFO design and structure which is a function of n.

Overhead free communication only occurs when the chan-
nel operates at frequency 1/C; without stalling. A few
fundamental conditions must hold for this to be the case
based on the above variables.

C; > Co > Csyr,Cry (16)

The cycle time of the input and output channels must be
greater than or equal to the FIFO cycle times. Otherwise
the FIFO will stall the input or output channel(s). Likewise,
the cycle time of the input channel may not be less than the
cycle time of the output channel, otherwise the input channel
will eventually stall under full bandwidth traffic. Since the
input channel request drives the SAS receiver FIFO, and the
request transaction is not acknowledged by the FIFO, this
FIFO must operate faster than the input channel. Likewise,
the SAS sender FIFO handshake with the output channel is
not acknowledged and the similar condition holds.

The cycle time of input channel C; is the base factor
all equations depend upon, as it dictates the frequency of
operation of the SAS communication system. It represents
the desired operational frequency for the design. This cycle
time is based on the input stage controller and SAS receiver
FIFO delays, input channel wire delays, and the rate at which
other pipeline stages limit data to that channel. Every other
component must operate at least that fast.

The following two values are necessary to define the
remaining constraints of a SAS communication system. They
are based on the fundamental delays and properties of the
links and FIFOs defined above.

Ts, Time to fill the sender FIFO with n tokens (17)

Tg,s Response time of the SAS system (18)

The response time T, is the time from when one data
transaction is asserted on the input channel until the entire
SAS communication system becomes idle and the sender
FIFO is empty when no new tokens are added to the system
and none of the channels stall.

Variables Ts, and Tk, can be represented using values
from Eqn. 5 to 15. The SAS receiver FIFO will stall the input
channel on transaction n+ 1 if no acknowledge transaction
occurs on the SAS channel. The response time across a SAS
communication system is approximated by the latency down
the SAS channel Lg4s, the forward latency of the receiver
FIFO Lg,(n), the response time of the output channel Co,,
the latency back down the SAS channel, and the backward
latency down the sender FIFO L;(n).

TS,, :(n—|—1)><C1 (19)

TRsss = 2 % Lsas + Ly (n) + Lig(n) + Cor (20)

If Ts, < TRy, the input channel will stall because FIFO
in the SAS sender element is full and cannot accept more
transactions until the response time Tg,,; occurs allowing a
new transaction to be stored in FIFO. Thus the following
equation must hold for SAS system to operate without
stalling.

Ts, > TR, 2D

Substituting in the values for the above equations results
in the following fundamental inequality for SAS systems.
The minimum buffer size n for any SAS system design can
be calculated from Eqn. 22 when a valid solution exists. A
valid SAS solution will exist if the left side of the inequality
increases as n grows. This occurs when the cycle time of the
input channel is greater than the sum of the forward latency
of the receiver FIFO and the backward latency of the sender
FIFO when one more stage is added to each.

(n+1) x Cr — (L (n) + Lpg(n)) > 2 x Lsas +Cor (22)

This inequality shows that the depth of the FIFOs n
is critically dependent on channel cycle time and FIFO
latencies. The most efficient designs will select a FIFO in
the SAS sender element that has a small backward latency
Ly, and a FIFO in the SAS receiver element that has a
small forward latency Lg,. Another key parameter for SAS
communication system designs is the input channel cycle
time C;. As the data frequency increases (cycle time Cj
decreases) the depth n of the FIFOs increase substantially.
The challenge of building a robust system also increases
as the input channel frequency increases due to issues of
signal fidelity down the SAS channel as well as the tighter
constraints on the FIFOs. Area also increases due to the
larger FIFO depths .

As the input channel cycle time C; increases, the inequality
demands fewer stages in the FIFOs. When the cycle time C;
becomes sufficiently large in relation to the channel delay
Lsas, the solution for n becomes zero in SAS Eqn. 22.
In this case, there are no SAS FIFOs in the design and
Eqn. 2 and 22 are equivalent if C; = B>. The SAS circuit
also becomes identical to a traditional 2-phase bundled data
pipeline. This makes perfect sense, because the SAS timing
constraints ensure that the unconnected FIFO signals obey a

proper traditional handshake protocol, but they are no longer
necessary once the FIFOs are no longer needed.

Based on Eqn. 22, some SAS communication system
designs will not produce valid solutions. In practice this
has been shown to be the case for SAS systems that use
simple linear FIFOs. Assume simple linear FIFOs are used
in the SAS sender and receiver blocks. These FIFOs have the
property where the latency grows linearly with the number
of stages and where the sum of the forward and backward
latencies equals the FIFO cycle time. Therefore one can
let LfR (l’l) =nxX Lf and th(n) =nx L, and C[f = Lf + Ly,
where Ly and L, are the latencies of a single pipeline
stage respectively and Cjy is the cycle time of the FIFOs.
Assume input channel frequency Cj is equal to the FIFO
cycle times and C;y = Csy = Cgy, which is valid according
to Eqn. 16. Substituting these values into Eqn. 22 yields
C; > 2 x Lgas + Cor. Thus when using linear FIFOs, correct
operation can be independent of the FIFO size and the design
will not correctly implement the SAS channel protocol. We
have validated this with design and simulation examples.

Lpp 42X Lsas > Ly (23)

Ly +2 X Lsas > Ly, (24)

Two additional timing constraints for SAS communication
system are shown in Eqn. 23 and 24. This ensures that
on initiation the forward latency when coming out of a
stalled state, the empty token can propagate to the input
of the sender FIFO by the time the receiver observes the
acknowledgment and a new token arrives at the sender FIFO
mput.

V. EVALUATION

Performance of the SAS communication system is evalu-
ated and compared against a traditional channel employing a
common burst-mode four-phase handshaking protocol. The
analysis is done for 5,000um and 10,000um channels in a
65nm process with a critical repeater distance of 555um.
This corresponds to 18 repeaters over the length of the
wire. Data width of both links is 64 bits. The same four-
phase linear controller is used for the SAS FIFOs and in
the traditional communication channel. The circuits were
designed in behavioral Verilog, synthesized using Synopsys
Design Compiler, and placed and routed using SoC En-
counter. Circuits were simulated for timing and functional
correctness using Modelsim with postlayout parasitics back-
annotated. Testing was performed using pre-defined input
vectors. Various performance parameters including forward
latency, cycle time, and throughput were also generated from
the simulation along with VCD (Value Change Dump). The
simulation VCD file along with the parasitics of the place
and routed design was used to calculate the power numbers
for each design by PrimeTime PX.

A. Bandwidth

According to simulation results the unpipelined wire of
length 10,000um can support a bandwidth of 222 Mbps. This

@ I:' Traditional -

kel

§ [[]sas

— 40

19}

o

>

)

e

2

m 20

9}

60

<

et

g ﬁl_| H_‘

0 Smm 10mm Smm 10mm Smm 10mm

1.2GHz 1.5GHz 1.8 GHz

Fig. 7: Energy comparison: traditional vs SAS links

TABLE I: Bandwidth and energy comparison

[Channel [n [Energy (pJ) [Bandwidth (Gbps) |

Traditional | 18 16.66 88.03
SAS 10 13.51 116.36

bandwidth is far too low to be practical for the evaluation of
the conventional handshake channel in actual communication
link of that distance. Pipelining has to be included to obtain
a fair appraisal of handshake communication in a real world
system-on-chip. One example is to consider the case where
all repeaters have been replaced with pipeline latches giving
a pipeline link length of 555 um. The corresponding band-
width of a 64-bit link is provided in Tab. I where n refers to
the number of pipeline latches along the link and depth of
the SAS FIFOs. Note that the bandwidth can be improved by
changing the pipeline granularity. However, this comes at a
cost of energy and area. We shall investigate these scenarios
later in the section.

The bandwidth of the SAS communication channel is
independent of the wire latency, and therefore the link
length. The rate of data transmission across the channel is
determined only by how fast the sender and receiver FIFOs
operate. Tree FIFOs at the sending and receiving ends with a
capacity n = 10 are utilized to obtain a successfully operating
SAS channel at high bandwidths. Care was taken to ensure
that the design met with the constraints outlined in Sec. IV.
The bandwidth of the bus is calculated based on the cycle
time of these FIFOs and represented in Table I. The energy
for transmitting data across each wire in the traditional and
SAS cases is also compared. We observe that the SAS
communication channel allows data to be transmitted over
30% faster at nearly 20% less energy.

B. Energy

As discussed earlier, conventional asynchronous hand-
shaking can achieve higher bandwidths if a higher degree
of pipelining is applied. Higher bandwidth targets results in
a finer pipeline granularity which ultimately leads to a higher
energy cost. We compare the energy expended in transferring
data to meet different bandwidth targets over wires of length

40K —
I:' Traditional
— SAS
a0k
3
<
220K
e
2
S 10K
0K Smm 10mm Smm 10mm Smm 10mm
1.2GHz 1.5GHz 1.8 GHz

Fig. 8: Area comparison

5,000pum and 10,000um. The wire latency per pipeline stage
that meets the bandwidth target is calculated for a four phase
asynchronous handshaking channel. The corresponding link
length per pipeline stage is derived from that value, which
eventually provides the total number of latches required for
the entire link. This number is multiplied by the energy
consumed by a single pipeline latch, and the product is added
to the wire energy across the entire link. Note that at higher
bandwidths, the pipeline controllers need to be spaced closer
than the repeaters.

In case of the SAS channel, the choice of appropriate FIFO
structures were determined using Eqn. 22. The rule of thumb
in this case was to choose a FIFO with cycle times less than
the target frequency. The sender FIFO was chosen to have
a low backward latency, and the receiver FIFO had lower
forward latency. In most cases, these criteria were satisfied
by a linear FIFO at the sending end and a parallel FIFO at the
receiving end. The capacity of the FIFOs, n, was calculated
based on the SAS equations. The total energy of the entire
setup, including the wire energy is depicted in the figures
below.

It can be seen that the energy benefit of using a SAS chan-
nel is more prominent in longer wires at higher bandwidths.
For a 10,000pum wire, operating at a bandwidth of 1.8 Gbps,
the SAS channel consumes 74% less energy per data transfer
when compared to the traditional channel.

C. Area

The same experiment as the one used for energy analysis
is used to determine the area benefits of employing the SAS
protocol. The added silicon used for extra pipeline stages
manifests itself in the added area numbers. On the other
hand, SAS has a lumped distribution of silicon along the
length of the wire, with major logic cells only at the sending
and receiving ends and repeaters spaced at regular intervals.
Note that the wire area remains the same; the added benefit
is in the silicon area metric. The SAS channel will have
fewer pipeline controllers than the traditional channel, but
will require more wire repeaters.

Fig. 8 shows the comparison of area cost of the traditional

and SAS communication systems. The 1.8GHz SAS solution
for a Smm and 10mm communication channel required the
same number of SAS buffers, and hence these solutions
have identical area. It can be seen that the SAS channel
implementation results in a reduction of 66% of the silicon
area as compared to a traditional four phase protocol for a
10,000um wire operating at 1.8 GHz.

D. Latency

Latency down a communication channel is the sum of
the wire latency and the control logic overhead. The use
of a large number of pipeline controllers adds a significant
delay to data communication over a long wire, especially for
high bandwidth requirements. The SAS channel only has a
FIFO at the receiving end in the forward path, along with
repeaters at regular intervals. This allows for a very low
latency transfer of data over the channel. Fig. 9 shows the
comparison of forward latency values for the traditional and
SAS communication links.

VI. SUMMARY

A novel high throughput asynchronous handshake signal-
ing protocol that is unhindered by wire latency is introduced.
Some simple relative timing constraints must hold for the
design to operate correctly. The new technique also results
in lower latency and area as well as energy savings when
compared to traditional handshaking methods that achieve
the same bandwidth. For the examples provided in the paper,
energy, area, and latency are reduced by 75%, 66%, 77%
respectively for a 1.8GHz channel down a 10mm line. The
key feature of this protocol is that it allows the bandwidth
of data transfer to be independent of the link length. The
added latency of longer wires is simply compensated by
increasing the capacity of the sender and receiver FIFOs.
The SAS channel protocol and design elements provided
in this paper apply equally well to two phase or four
phase signaling. A SAS communication system also works
equally well for bundled data or delay insensitive protocols.
Likewise, the design can be automated due to the ability
to define timing requirements and communication require-
ments and to characterize asynchronous FIFOs based on
these requirements. Also, any channel protocol, be it more
or less concurrent, may be used to implement the FIFOs
and SAS communication channels and traditional channels.
When channel delays become sufficiently large and signal
fidelity can be sufficiently controlled, wave pipelining can
be implemented with the SAS channel protocol by allowing
multiple transactions to be concurrently in flight down the
SAS channel.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,”
Proceedings of the IEEE, vol. 89, no. 4, pp. 490-504, April 2001.

[2] K. S. Stevens, “Energy and performance models for clocked and
asynchronous communication,” in International Symposium on Asyn-
chronous Circuits and Systems. 1EEE, May 2003, pp. 56-66.

[3] R. Ho, J. Gainsley, and R. Drost, “Long wires and asynchronous
control,” in International Symposium on Asynchronous Circuits and
Systems, Apr 2004, pp. 240-249.

[4]

[5]

[7]

[8]

[9

[10

(11]

[12]

[13

[t

[14]

[15]

[16]

[17]

(18]

[19]

‘@
=
N~
58
2
<
—
4
o I LI J‘\ |]
Smm 10mm Smm 10mm Smm 10mm
1.2GHz 1.5GHz 1.8 GHz

Fig. 9: Latency comparison

K. S. Stevens, P. Golani, and P. A. Beerel, “Energy and Performance
Models for Synchronous and Asynchronous Communication,” /IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
no. 3, pp. 369-392, March 2011.

K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 1,
no. 11, pp. 129-140, Feb. 2003.

R. E. Nikel, “Low cost 400 MHz source synchronous data links,” in
Electrical Performance of Electronic Packaging, 1995, pp. 146—148.
A. T. Tran, D. N. Truong, and B. M. Baas, “A Reconfigurable Source-
Synchronous On-Chip Network for GALS Many-Core Platforms,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 6, pp. 897-910, 2010.

T. N. K. Jain, M. Ramakrishna, P. V. Gratz, A. Sprintson, and G. Choi,
“Asynchronous Bypass Channels for Multi-Synchronous NoCs: A
Router Microarchitecture, Topology, and Routing Algorithm,” /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 11, pp. 1663-1676, 2011.

A. Mandal, S. P. Khatri, and R. N. Mahapatra, “A fast, source-
synchronous ring-based network-on-chip design,” in Design, Automa-
tion & Test in Europe (DATE), 2012, pp. 1489-1494.

A.J. Joshi, G. G. Lopez, and J. A. Davis, “Design and Optimization of
On-Chip Interconnects Using Wave-Pipelined Multiplexed Routing,”
IEEE Transactions on Very Large Scale Integration, vol. 15, no. 9, pp.
990-1002, 2007.

P. Teehan, G. G. F. Lemieux, and M. R. Greenstreet, “Estimating relia-
bility and throughput of source-synchronous wave-pipelined intercon-
nect,” in International Symposiun on Networks-on-Chip. ACM/IEEE,
2009, pp. 234-243.

R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar, “Parallel vs.
serial on-chip communication,” in International Workshop on System
Level Interconnect Prediction. ACM, 2008, pp. 43-50.

D. Gebhardt, J. You, and K. S. Stevens, “Link Pipelining Strategies
for an Application-Specific Asynchronous NoC,” in International
Symposium on Network-on-Chip (NOCS). 1EEE/ACM, May 2011,
pp. 185-192.

L. P. Carloni, A. B. Kang, S. V. Muddu, A. Pinto, K. Samadi, and
P. Sharma, “Accurate Predictive Interconnect Modeling for System-
Level Design,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 4, pp. 679-684, April 2010.

J. You, “Asynchronous Network-on-Chip Design and Evaluation,”
Ph.D. dissertation, University of Utah, Salt Lake City, UT, USA,
December 2011.

J. C. Ebergen, I. E. Sutherland, and R. J. Drost, “Apparatus and
method for high-throughput asynchronous communication,” US Patent
7417993, Aug 26, 2008.

A. Peeters and K. van Berkel, “Single-Rail Handshake Circuits,” in
Asynchronous Design Methodologies, 1995, pp. 53-62.

E. Brunvand, “Low Latency Self-Timed Flow Through FIFOs,” in 16th
Conference on Advanced Research in VLSI, UC Santa Cruz, March
1995, pp. 76-90.

H. Han and K. S. Stevens, “Clocked and Asynchronous FIFO Char-
acterization and Comparision,” in 17th International Conference on
Very Large Scale Integration. IFIP/IEEE, Oct. 2009.

