

Newcastle University ePrints - eprint.ncl.ac.uk

Fernandes J, Sokolov D, Yakovlev A.

Elastic Bundles: Modelling and Synthesis of Asynchronous Circuits with

Granular Rigidity.

In: 23rd IEEE International Symposium on Asynchronous Circuits and Systems

(ASYNC). 2017, San Diego, California, USA: IEEE.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/ASYNC.2017.14

Date deposited:

08/12/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=243609
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=243609
https://doi.org/10.1109/ASYNC.2017.14

1

Elastic Bundles: Modelling and Synthesis of
Asynchronous Circuits with Granular Rigidity

Johnson Fernandes, Danil Sokolov, Alex Yakovlev
School of Electrical and Electronic Engineering, Newcastle University, UK

{johnson.fernandes, danil.sokolov, alex.yakovlev}@ncl.ac.uk

Abstract—Elastic circuit design is a revolutionary step in VLSI
design paving the way for commercial adoption of asynchron-
ous design techniques. With a growing trend of synchronous-
asynchronous CAD tool flow integration, this paradigm shows
promise to survive market forces of the semiconductor industry
mainly due to scope for reuse of synchronous functional blocks
and IP cores, and co-existence of synchronous and asynchronous
design styles in a common EDA framework. In this paper, we
introduce ‘Elastic Bundles’, a novel class of elastic circuits, and
propose a method for modelling, designing and synthesising these
circuits. Starting with a high-level dataflow model of a system,
which is natively asynchronous, the key idea is to introduce
rigidity of chosen granularity levels without changing functional
behaviour. The resulting model is then partitioned into functional
blocks of fine-grained and coarse-grained asynchronous elements
that would finally be transformed to equivalent circuit descrip-
tions for system logic synthesis using standard EDA tools. The
methodology is illustrated using a case study of a 16-point FFT
circuit design, which clearly demonstrates a spectrum of solutions
that can be achieved in different levels of bundling granularity.

I. INTRODUCTION

Elastic circuit design can be viewed as a revolutionary step
in VLSI design paving the way for commercial adoption of
asynchronous design techniques in digital circuits. With a
growing trend of synchronous-asynchronous CAD tool flow
integration [1], [2], [3], this paradigm is showing promise
to survive the market forces of the semiconductor industry
mainly due to the scope for reuse of synchronous functional
blocks and IP cores, and the co-existence of synchronous and
asynchronous design styles in a common EDA framework.

We classify the elastic circuits paradigm to encapsulate a
range of design practices starting from synchronous handshake
circuits [4], which are synchronous circuits embracing prin-
ciples of asynchronous elasticity, to bundled-data circuits [5],
which are asynchronous circuits embracing principles of syn-
chronous rigidity, all the way to delay-insensitive circuits [5],
which are the most elastic and robust class of asynchronous
circuits. Figure 1, an extension to the illustration of ‘Elastic
Circuits’ classification made in [3], clearly depicts this. As
observed, each design technique has distinct consequences to
system behaviour and design implementation.

In this paper, our focus is on elastic circuits that provide
elasticity with small overhead, specifically the group of circuits
encapsulating bundled-data circuits and synchronous hand-
shake circuits, as highlighted in the shaded area of Figure 1.
Bundled-data circuits are a class of asynchronous circuits that
resemble synchronous behaviour due to its nature of fine-
grained local clocking scheme. They can be implemented

elasticity

area overhead

rigid

delay
insensitive

circuits

synchronous
handshake circuits

bundled-data
circuits

mixed
synchronous-asynchronous

synchronous asynchronous

Figure 1: Scope of elastic digital circuits

with the same data path used in synchronous circuits and
only differ in the implementation of clock. Several authors
have proposed schemes to implement bundled-data circuits
using the clocked CAD flow such as [6], [7]. Synchronous
handshake circuits fall in the class of synchronous elastic
circuits where asynchronous-like elasticity is implemented in
a globally clocked domain. Synchronous handshake circuits
have been formalised and investigated by several authors
in [4], [8], [9], [10].

This work introduces ‘Elastic Bundles’, a novel class of
asynchronous circuits with varying levels of rigidity. Elastic-
bundle circuits exhibit granular rigidity through a combin-
ation of coarse-grained locally clocked elements and fine-
grained locally clocked elements. Modelling these circuits
starts from a high-level dataflow model of a system which is
natively asynchronous. The key idea is to introduce rigidity of
chosen granularity levels across the model, without changing
functional behaviour, for achieving the design simplicity of
synchronous principles. In this manner, the system is par-
titioned into functional blocks of fine-grained and coarse-
grained asynchronous elements based on functional criteria.

The main contributions of this paper are as follows:

• Design flow for development of asynchronous circuits
with varying levels of rigidity.

• Novel method for high-level modelling and partitioning
of digital systems using Petri nets (PNs). Systems are
represented as PN models by adopting a control data flow
graph (CDFG) format. Partitioning is introduced in these
models based on a theory of step persistent bundling.

• Direct mapping of PN models to register-transfer

2

CLOCK

L1
DoutDin CL

L2
d dq q CL

L3
d q

(a) Synchronous pipeline

L1

HC1

ck
lr

la

rr

ra

Dout

req1
delay

Din CL
L2

HC2

ck
lr

la

rr

ra

d dq

ack1

req2

ack2

q

delay

CL
L3

HC3

ck
lr

la

rr

ra

d

req3

ack3

q

req4

ack4

(b) Bundled-data asynchronous pipeline

Figure 2: Synchronous versus asynchronous pipelines

level (RTL) circuit specifications. PN-based circuit mod-
els are translated to RTL circuit descriptions that can be
synthesised using EDA tool flows.

• Evaluation of the modelling method and synthesis flow
by case study of a 16-point FFT digital architecture. A
spectrum of solutions achieved with different levels of
bundling granularity is demonstrated in this study.

II. BACKGROUND

Bundled-data circuits emerged as a design simplification
practice for asynchronous circuits by bundling control logic
with datapath. In this research, such circuits are optimised
further by identifying groups of circuit elements that can be
bundled in succession without changing functional behaviour.
Such bundling, named as Elastic Bundles, is implemented by
performing coarse-grain local clocking on bundled-data circuit
models. We chose bundled-data circuits as a starting point,
as this circuit classification displays the finest granularity
of elasticity in the class of elastic circuits that have low
overhead. Furthermore, bundled-data asynchronous circuits
can share the same data path used for synchronous design
as opposed to other asynchronous circuit classes [11]. This
is a very strong feature because it enables reuse of exist-
ing synchronous functional blocks which improves designer
productivity. A bundled-data circuit can be synthesised using
traditional clocked CAD flows by replacing the global clock
of the synchronous design flow with multiple number of local
handshake clocks from the asynchronous control logic [12].
Elastic-bundle circuits can be synthesised in a similar manner
using such methods of synchronous-asynchronous CAD tool
flow integration. In this paper, we have adopted the relative
timing (RT) based CAD flow [13] for the synthesis of elastic
circuits. Our method, however, is not limited to this tool flow;
any other synchronous-asynchronous CAD tool flows can be
applied to synthesise elastic-bundle circuits.

A. Bundled-data Asynchronous Pipelines

Pipelining is a principle element of high-performance digital
design catering both synchronous as well as asynchronous
systems. The fundamental difference between synchronous
and asynchronous pipelines lies in the communication channel
that enables data items to move from one pipeline stage to the
next. Figure 2 illustrates this with a simple example showing

a traditional synchronous linear pipeline and an asynchronous
linear pipeline. Traditional synchronous systems feature a rigid
communication scheme where all pipeline stages operate at a
fixed clock frequency. In contrast, a bundled-data asynchron-
ous pipeline achieves communication between pipeline stages
by handshake control (HC) logic blocks which implement fine-
grained local locking at registers.

B. RT-based CAD tool flow

Relative timing is a method of modelling and controlling
the firing order of two events based on logic path delays. This
method can accurately capture, model and validate heterogen-
eous timing behaviour of synchronous as well as asynchronous
circuits [12]. Path-based RT constraints are enforced during
circuit synthesis to ensure correct circuit timing and filter out
hazardous states. For example, taking the case of the bundled-
data linear pipeline in Figure 2b, the following RT constraint:
req1 ↑ 7→ L2/d + margin ≺ L2/ck ↑ enforces the order
that latch L2 is clocked only after new data is stable at pin d
of L2. This constraint is also responsible for sizing the delay
element between stages L1 and L2.

The RT-based design flow enables rapid development of
asynchronous designs by providing a set of characterised
asynchronous templates that can be easily integrated with
synchronous CAD tools [12]. These templates can be inserted
in designs with supporting clocked CAD tool constraints for
synthesis, place and route, timing driven sizing, optimisation
and validation. The tool flow enables the adoption of bundled-
data asynchronous circuits in the traditional synchronous
design flow with little expertise in asynchronous design. First,
the bundled-data design is partitioned into data path logic
and control logic. The data path is synthesisable using nor-
mal synchronous CAD synthesis procedures. Next, handshake
clocking is implemented by replacing the global clock with
sets of HC logic blocks. Characterised asynchronous design
elements of the HC block, provided by the RT tool flow, are
used to implement the control logic. Finally, RT constraints
are specified to guarantee correct circuit timing. This process
is done either by hand [12] or using the automated tool
flow [14]. The constraints are integrated into clocked CAD
tool flow by specifying them as design constraints that are
supported by commercial tools. For example, RT constraints
expressed by set_max_delay and set_min_delay commands are
used to perform timing driven synthesis. The RT constrained
architecture is now ready to pass through usual clocked CAD
tools and flows.

III. MODELLING DIGITAL SYSTEMS

In our design flow, the Petri net (PN) modelling tool is
the chosen mathematical language to describe digital systems.
The language offered us a convenient tool to capture essential
properties of a system from theory formulation to synthesis of
control circuits. The WORKCRAFT framework [15] has been
used in this research for graphical interpretation and simulation
of Petri nets, and for verification of important properties of
Petri nets.

3

(a) Enabled Transition (b) Fork (c) Join (d) Choice (e) Merge

Figure 3: Basic PN elements

(a) Computation (b) Multiplexer (c) Demultiplexer

Figure 4: PN building blocks for digital systems

(a) Two-stage pipeline (b) Multiple inputs and outputs

(c) Wagging [17]

Figure 5: Example of PN model designs

A. PN building blocks

Petri nets can capture system behaviour by means of token
game semantics where flow of tokens describe net behaviour
according to enabling and firing rules. In this paper, we employ
the 1-safe labelled PN class of Petri nets. Assuming their
familiarity within the asynchronous community, we invite the
reader to refer to [16] for the notations, definitions and basic
properties of PNs. Figure 3 shows some of the fundamental
elements of PNs that are widely used in modelling systems.

With regards to a sufficient abstract model to describe digital
systems, we wanted to use the most compact form of PNs for
both asynchronous and synchronous implementations. Digital
systems were hence modelled to represent system behaviour
on a high-level abstraction of dataflows and flow control, rather
than RTL description. Data structures and timing information
are excluded in the language description. Such information is
labelled on the graph for designer reference. Based on this, we
have extracted a set of elements shown in Figure 4 that form
the building blocks for digital systems in our framework. The
basic PN block shown in Figure 3a is used to describe a buffer
which would represent data storage and channel decoupling.
Computation blocks are used to denote digital logic from
basic gates to complex calculations. The multiplexer and
demultiplexer provide capability to route multiple data streams

Fn
A

B

X

Y

(a) System specification

A

B

X

Y

(b) Data flow graph

Figure 6: Conceptual design

and computations to a single stream, or split a single stream to
multiple streams. Since firing of transitions in PNs is instant
and atomic, we have annotated logic blocks in grey so that
differentiation can be made during design optimisation. We
also annotate input places and transitions with colour red
and output places and transitions with colour blue. Figure 5
provides a feel of how these building blocks can be used
to describe a range of digital architectures and interaction
patterns using PNs [18].

B. Modelling a Conceptual Design

In this section, we move on to a specific design example
to explain the research concepts of this paper. Let us try to
represent a digital system designed to executed a function Fn
depicted in Figure 6a. The system processes two input signals,
A and B, to produce outputs X and Y that are defined as:
X = (A+B) , Y = (A−B)

The design is first modelled as a data flow graph (DFG) and
subsequently, as a PN to illustrate the significance of modelling
flow control. DFGs [19] have been widely used to describe
digital systems but they are limited as they can not model
control. A basic DFG of the system is shown in Figure 6b.
PN models represent what is known as a control data flow
graph (CDFG). Figure 7a shows the CDFG of the conceptual
design modelled as a PN. The functional behaviour of the
design is depicted in Figure 7b based on scoping of reachable
states. It can be visualised that the PN model describes the
digital system in its native form featuring highest level of
concurrency. Hence, we also treat this model as an elastic
or asynchronous description of the design.

C. Partitioning with Bundles

In this section, we implement the principles of bundles with
step persistence [20] satisfaction to partition the conceptual
design based on functional criteria whilst ensuring hazard-
free step execution circuit behaviour. Bundles are identified
by pruning a concurrent reachability graph (CRG) of a system
into a set of persistent steps [20]. The CRG of the design
example is shown in Figure 7c. By observing the CRG, it

4

(a) CDFG

A

ADD

A

B

B

SUB

X
SUB ADD Y

Y ADD
SUB

Y X

X

(b) Reachability graph

A

ADD

A

B

B

SUB

X
SUB ADD Y

Y ADDSUB

Y X

{ADD,SUB}

{X,SUB} {ADD,Y}

{X,Y}

X

{A,B}

(c) Concurrent reachability graph

Figure 7: PN models of conceptual design

makes intuitive sense that the steps ADD and SUB should
be bundled because 1) they are enabled together and 2) their
concurrent execution can be restricted to parallel execution
because they can be synchronised to complete at a worst-
case delay without reducing circuit performance. The choice
of bundling the inputs and outputs depends purely on where
the signals arrive from and go to. For instance, if the inputs
arrive from different timing domains, it is not possible to
bundle the inputs. Similarly, bundling of outputs depends on
the nature of block receiving them. We have considered two
pruning behaviours as shown in Figure 8a and Figure 8c to
study the impact of bundling on digital circuit realisation. Step
persistence property was checked to avoid hazardous bundling.
This verification is essential in filtering out incompatible
bundling that would result in undesirable circuit switching
activity. Furthermore, step persistent bundling also ensures that
system functional behaviour is not changed after bundling by
pruning within the limits of the CRG. The implication of the
two variations of bundle sets on the PN model is shown in
Figure 8b and Figure 8d. Different partitioning scenarios of
the design example can be visualised now. By bundling, the
transitions of a partition would only fire in a step now, i.e.,
they would only execute together in a lock-step manner. In this
paper, we have used a novel extension to PNs, called Policy
nets, to describe partitioning and step firing behaviour. Policy
nets are, basically, Petri nets with step firing policies. This net
classification has been introduced lately in the WORKCRAFT
framework.

{ADD,SUB}

{X,Y}

A

A

B

B

(a) Bundle 1 (b) Policy net for Bundle 1

{ADD,SUB}

{X,Y}

{A,B}

(c) Bundle 2 (d) Policy net for Bundle 2

Figure 8: Modelling bundles by pruning reachability graphs

IV. DIGITAL CIRCUIT SYNTHESIS FROM PN MODELS

In this section, we describe our method for synthesising
elastic digital circuits from PN models. The key idea here is
to introduce synchronous-like rigidity into the asynchronous
PN models by functional partitioning with bundles without
changing functional behaviour. Granularity of these partitions
can be varied according to level of elasticity and rigidity
required by the designer. By starting with a pure asynchronous
model of a design, we can enforce varying levels of granular
rigidity which could eventually transcend to a pure synchron-
ous specification.

A. Model Transformation to Asynchronous Pipeline Models

The first step in circuit synthesis is to transform the PN
specification into asynchronous pipeline models. We inten-
tionally did not include asynchronous handshaking in the
PN models in Section III so that a designer can focus on
functional elements and not worry about the aspects of circuit
timing implementation. In this section, we introduce hardware
description language (HDL) elements into the PN model such
as registers, combinatorial logic, control logic and clocking
information.

The first step in transformation is to introduce pipelining
into the PN models. Pipelining is conducted without changing
the behaviour of the system based on the principles of slack
elasticity [21]. Handshaking happens between neighbouring
pipeline stages and so, distinction between registers and
combinatorial logic is made. The bundled-data asynchronous
control elements of handshake control and matched delay are
incorporated next. Handshake control signals signifying the
HC block are indicated in the model. Finally, the forks and join
in the CDFG are now mapped to control paths. In this manner,

5

Figure 9: Transformation to bundled-data pipeline

a PN-based CDFG model of design can be transformed into
a PN-based HDL-like description of a digital.

Figure 9 depicts the transformation of the conceptual design
from a CDFG to its HDL specification. Pipeline registers
A, B, X and Y have been introduced. HC control signals
manage the handshake clocking of these registers. Distinction
between data path and control logic can now be visualised
more clearly. Here, the transformation and design verification
is done manually at this moment. This would be automated in
the future for design productivity.

B. Partitioning into Elastic Bundles

In this section, the implication of bundle transformation
to digital circuits is shown. The transformations of bundle
set partitions 1 and 2 are shown in Figures 10a and 10b,
respectively. It can be seen that partitioning into bundles results
in lower control overhead. Registers can be controlled by fewer
handshake signals by bundling the requests and acknowledge
signals. The transformed PN model can thus be viewed as a
mixture of coarse-grained locally clocked elements and fine-
grained locally clocked elements. Our outlook is that the
coarse-grained locally clocked elements are synchronous to
a degree of rigidity by nature of sharing a common clock
signal, and the fine-grained locally clocked elements are
asynchronous and elastic. The transformed circuits exhibit
mixed synchronous-asynchronous nature but still remain asyn-
chronous. We introduce such sets of re-partitioned bundles
exhibiting granular rigidity in bundled-data pipelines as Elastic
Bundles (EB).

C. From PN Models to Digital Circuits

In this section, we discuss the method employed to synthes-
ise the PN-based HDL description into digital circuits using
standard clocked CAD tools. The RT-based synchronous-
asynchronous EDA tool flow, summarised in Section II-B, is
used for synthesising the elastic-bundle circuit.

(a) Elastic-bundle 1

(b) Elastic-bundle 2

Figure 10: Elastic-bundle pipeline transformation

The first step is to introduce the asynchronous control
elements, specifically the HC blocks and fork/join elements.
Pre-built HC blocks borrowed from the RT tool flow is utilised.
Fork/join elements are required for implementing the control
of non-linear pipelines. These elements are introduced with
the rule that every fork in the data path is associated with
a join, and every join in a data path be associated with a
fork [12]. The join elements employ Muller’s C-elements [22]
for synchronising request signals as well as synchronising
acknowledgement signals. Next, the PN-based HDL model is
direct-mapped to a behavioural HDL language such as Verilog.
Active high latches are used for register implementation. In the
case of our conceptual design, Figure 9 was thus manually
mapped into the following behavioural Verilog description:

module Fn (A_in, A_lr, A_la, B_in, B_lr, B_la,
. X_out, X_rr, X_ra, Y_out, Y_rr, Y_ra, rst);
. input [31:0] A_in, B_in;
. output [31:0] X_out, Y_out;
. input A_lr, B_lr, X_ra, Y_ra, rst;
. output A_la, B_la, X_rr, Y_rr;
. wire [31:0] A, B, X, Y, ADD1_in1, ADD1_in2, SUB1_in1, SUB1_in2;
.
. // Datapath Logic
. reg32_async R1 (.D(A_in), .Q(A), .ck(A_ck), .rst(rst));
. reg32_async R2 (.D(B_in), .Q(B), .ck(B_ck), .rst(rst));
. assign ADD1_in1 = A; assign ADD1_in2 = B;
. assign SUB1_in1 = A; assign SUB1_in2 = B;
. assign X = ADD1_in1 + ADD1_in2;
. assign Y = SUB1_in1 - SUB1_in2;
. reg32_async R3 (.D(X), .Q(X_out), .ck(X_ck), .rst(rst));
. reg32_async R4 (.D(Y), .Q(Y_out), .ck(Y_ck), .rst(rst));
.
. // Control Logic
. handshake_ctl HC1 (.lr(A_lr), .la(A_la), .rr(lr1), .ra(la1), .ck(A_ck), .rst(~rst));
. handshake_ctl HC2 (.lr(B_lr), .la(B_la), .rr(lr2), .ra(la2), .ck(B_ck), .rst(~rst));
. // Control Stage 1 (Fork - Join)
. assign r11 = lr1; assign r12 = lr1;
. assign r21 = lr2; assign r22 = lr2;

6

R1

HC1

ck
lr

la

rr

ra

R2

HC2

R3

HC3

R4

HC4

+

_

A

B

X

Y

C

C

C

C

delay

delay
ck

lr

la

rr

ra

ck
lr

la

rr

ra

ck
lr

la

rr

ra

Figure 11: Bundled-data circuit of conceptual design

. Celement j1 (.in1(a11), .in2(a21), .out(la1));

. Celement j2 (.in1(a12), .in2(a22), .out(la2));

. // Control Stage 2 (Join - Fork)

. Celement j1 (.in1(r11), .in2(r21), .out(lr3_pre));

. Celement j2 (.in1(r12), .in2(r22), .out(lr4_pre));

. assign a11 = la3; assign a12 = la3;

. assign a21 = la4; assign a22 = la4;

. // Delay elements for 32 bit adder pipeline

. DelayElement d1 (.in(lr3_pre), .out(lr3));

. DelayElement d2 (.in(lr4_pre), .out(lr4));

.

. handshake_ctl HC3 (.lr(lr3), .la(la3), .rr(X_rr), .ra(X_ra), .ck(X_ck), .rst(~rst));

. handshake_ctl HC4 (.lr(lr4), .la(la4), .rr(Y_rr), .ra(Y_ra), .ck(Y_ck), .rst(~rst));
endmodule

This design can now be synthesised using the RT-based
EDA tool flow which would result in the circuit shown in
Figure 11.

Similarly, Elastic Bundle sets 1 and 2 modelled in Sec-
tion IV-B would result in circuits depicted in Figures 12a
and 12b respectively, after synthesis. Figure 12a is partitioned
into three asynchronous domains with HC3 block introducing
a level of rigidity on registers R3 and R4. The partitioning
in Figure 12b results in two asynchronous domains both
exhibiting the same degree of granular rigidity. This particular
implementation behaves in the manner of a linear pipeline.

V. 16-POINT FFT CASE STUDY

In this section, we consider an asynchronous 16-point
FFT architecture as a case study to implement and test the
methodology presented in this paper. Detailed description of
the architecture and implementation are outside the scope
of this paper. The FFT architecture is based on the design
presented by the authors in [23], [13]. In this architecture,
the FFT algorithm is described in a multirate format which
is highly concurrent and heterogeneous by nature. This very
nature of the architecture proved to be an ideal case study
for us because it allowed for modelling of the algorithm in
its native asynchronous/elastic form. Figure 13a provides a
snapshot of the 16-point FFT architecture described in PNs.
Four-way wagging structure captures the behaviour of high
frequency input stream being decimated to lower frequency
data streams and then expanded back to high frequency output
stream. Distributed pipelining manages parallel operation of
data streams at different frequencies. Furthermore, the 16-
point FFT architecture is hierarchically decomposed of eight

R1

HC1

R2

HC2

R3

HC3

R4

+

_

A

B

X

Y

C
ck

lr

la

rr

ra

ck
lr

la

rr

ra

ck
lr

la

rr

ra

delay

(a) Bundle set 1

R1

HC1

R2

R3

HC2

R4

+

_

A

B

X

Y

delay
ck

lr

la

rr

ra

ck
lr

la

rr

ra

(b) Bundle set 2

Figure 12: Elastic-bundle circuits

identical 4-point FFT blocks, denoted as dotted boxes in
the top-level PN model. The PN model for the 4-point FFT
datapath is shown in Figure 13b.

The case study was subjected to the proposed design flow,
starting from PN description to EB functional partitioning, and
HDL direct mapping to circuit synthesis using the RT design
flow. For comparative analysis, five implementations of the
16-point FFT architecture were conducted: one bundled-data
asynchronous and four EB implementations. The circuits were
described in Verilog and synthesised using Design Compiler
in the 90nm Faraday library. The circuits were tested using
pre-defined input stream of 1024 random numbers. Circuit
simulations were conducted using VCS simulator. The output
data stream was verified for each partitioning scheme by com-
paring with MATLAB 16-point FFT computation. The SAIF
(Switching Activity Interchange Format) file from the VCS
simulations was used to calculate the power for each design by
PrimeTime-PX. The EB implementations are compared against
the bundled-data 16-point implementation. Table I summarises
the pre-layout synthesis results of the case study.

The bundled-data implementation represents a fully elastic
or asynchronous implementation of the 16-point FFT architec-
ture. EB Temporal is the first elastic-bundle implementation of
the architecture. Here, the adders and subtractors within the 4-
point FFT datapath blocks are bundled according to their nat-
ural order of arrival of data tokens. In this case, the circuit area
overhead of asynchronous control got reduced by nearly 60%
compared to the bundled-data implementation, with a 34%
improvement in control power consumption. Opt EB Temporal
implementation optimised the previous implementation by
restricting concurrency further whilst maintaining the natural

7

(a) Top-level PN model

(b) PN model for Datapath block

Figure 13: PN model for 16-point FFT

8

Table I: Synthesis results for several 16-point FFT designs

Design Total Area Control Area Control Logic Power Energy/Point Energy Control Area
(gates) (gates) (mW) (pJ) Benefit Benefit

EB Temporal 58,533 3,015 1.34 17.107 1.069 2.45
Opt EB Temporal 58,185 2,667 1.28 17.089 1.071 2.77
EB Maximal 57,921 2,403 1.24 17.105 1.069 3.08
EB Reuse 58,753 3,235 1.38 17.194 1.064 2.29
Bundled Data 62,993 7,399 2.03 18.294 1.000 1.00

order of data token arrival. EB Maximal implementation re-
stricted concurrency further with less regard to natural order of
data arrival and more focus on reducing control area overhead.
This case is described in Figure 13 where a maximal case
of bundling adders and subtractors with reduced concurrency
can be visualised. Finally, the Reuse implementations focussed
on reducing datapath computation logic by exploiting natural
order of data arrival tokens to reuse adders and subtractors.
The savings in area, as evident from the results, were due to
reduction of 50% of adders and subtractor logic. The range
of circuit area overheads demonstrated in this case study is
clearly in line with the illustration of low-overhead elastic
circuits presented earlier in Figure 1 (shadowed). Amongst
the implementations, EB Maximal proves the most optimum
demonstrating lowest control logic power consumption and
an improvement of 3.08× in terms of control area over
its bundled-data counterpart. All of the EB implementations
demonstrate ~7% improvement in energy per data point. Con-
sidering that all FFT implementations share the same datapath,
the energy improvement was due to reduction in power of
switching activity in the EB control logic.

VI. CONCLUSION

In this paper, we proposed a novel method for synthesising
asynchronous circuits with varying levels of rigidity. The
hypothesis was that bundles would reduce the area overheads
of asynchronous design by relaxing granularity of handshake
control. A PN-based dataflow modelling technique was de-
veloped to model digital systems on a higher level of abstrac-
tion than RTL. Functional partitioning was then introduced in
these dataflow models by identifying sets of bundles that could
restrict elasticity whilst retaining functional behaviour. Taking
the case of asynchronous bundled-data circuits, these sets of
bundles were extended to a novel notion of Elastic Bundles
which basically re-partitioned the design into coarse-grained
locally clocked elements and fine-grained locally clocked
elements. This net transformation enabled synthesis of the
elastic-bundle circuits under standard EDA tool flow. The
method was tested on a 16-point FFT algorithm. The elastic-
bundle FFT designs reduced control area overhead by a margin
> 2× whilst demonstrating ~30% reduction in control power
consumption when compared against the bundled-data design.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for
their critiques and valuable suggestions on how to further de-
velop this work. This research was supported by EPSRC grant
EP/I038551/1 Globally Asynchronous Elastic Logic Synthesis
(GAELS).

REFERENCES

[1] A. Kondratyev and K. Lwin, “Design of asynchronous circuits by syn-
chronous CAD tools,” in Proc. Design Automation Conference (DAC),
2002, pp. 411–414.

[2] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “De-
synchronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 1904–1921, 2006.

[3] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic
circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 10, pp. 1437–1455, 2009.

[4] A. Peeters and K. Van Berkel, “Synchronous handshake circuits,” in Int.
Symp. on Asynchronus Circuits and Systems (ASYNC), 2001, pp. 86–95.

[5] J. Sparso and S. Furber, Principles of asynchronous circuit design: a
systems perspective. Kluwer Academic Publishers, 2001.

[6] I. Blunno and L. Lavagno, “Automated synthesis of micro-pipelines
from behavioral verilog hdl,” in Int. Symp. on Asynchronus Circuits and
Systems (ASYNC), 2000, pp. 84–92.

[7] F. Te Beest, A. Peeters, K. Van Berkel, and H. Kerkhoff, “Synchronous
full-scan for asynchronous handshake circuits,” Journal of Electronic
Testing, vol. 19, no. 4, pp. 397–406, 2003.

[8] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.
Mercer, and C. J. Myers, “Synchronous interlocked pipelines,” in Int.
Symp. on Asynchronus Circuits and Systems (ASYNC), 2002, pp. 3–12.

[9] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “A methodology for correct-by-construction latency insens-
itive design,” in The Best of ICCAD, 2003, pp. 143–158.

[10] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proc. Design Automation Conference
(DAC), 2006, pp. 657–662.

[11] S. M. Nowick and M. Singh, “High-performance asynchronous
pipelines: an overview,” IEEE Design & Test of Computers, vol. 28,
no. 5, pp. 8–22, 2011.

[12] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of asynchronous tem-
plates for integration into clocked CAD flows,” in Proc. Asynchronous
Circuits and Systems (ASYNC), 2009, pp. 151–161.

[13] W. Lee, V. Vij et al., “Design of Low Energy, High Performance Syn-
chronous and Asynchronous 64-Point FFT,” Proc. Design, Automation
& Test in Europe (DATE), pp. 242–247, 2013.

[14] Y. Xu and K. S. Stevens, “Automatic synthesis of computation interfer-
ence constraints for relative timing verification,” in IEEE Int. Conf. on
Computer Design, 2009, pp. 16–22.

[15] “WORKCRAFT homepage, URL: http://www.workcraft.org.”
[16] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. of

the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[17] C. Brej, “Wagging logic: Implicit parallelism extraction using asyn-

chronous methodologies,” in Int. Conf. on Application of Concurrency
to System Design (ACSD), 2010, pp. 35–44.

[18] D. Sokolov and A. Yakovlev, “GALS Partitioning by Behavioural
Decoupling Expressed in Petri Nets,” Proc. Asynchronous Circuits and
Systems (ASYNC), pp. 17–26, 2014.

[19] D. Culler, “Dataflow architectures,” Annual Review of Computer Science,
vol. 1, no. 1, pp. 225–253, 1986.

[20] J. Fernandes, M. Koutny, L. Mikulski, M. Pietkiewicz-Koutny, D. Soko-
lov, and A. Yakovlev, “Persistent and nonviolent steps and the design of
gals systems,” Fundamenta Informaticae, vol. 137, pp. 143–170, 2015.

[21] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Mathematics of Program Construction, 1998, pp. 272–285.

[22] D. Muller and W. Bartky, “A theory of asynchronous circuits,” Proc.
Int. Symp. on the Theory of Switching, pp. 204–243, 1959.

[23] D. J. Barnhart, “An improved asynchronous implementation of a fast
fourier transform architecture for space applications,” Air Force Institute
of Technology, United States Air Force, Tech. Rep., 1999.

