Newcastle
University

ePrints @

Tarawneh G, Mokhov A.
Formal Verification of Mixed Synchronous Asynchronous Systems using

Industrial Tools.

In: IEEE International Symposium on Asynchronous Circuits and Systems. 2018,
IEEE.

Copyright:

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Date deposited:

17/05/2018

Newcastle University ePrints - eprint.ncl.ac.uk

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=245896
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=245896

Formal Verification of Mixed Synchronous
Asynchronous Systems using Industrial Tools

Ghaith Tarawneh and Andrey Mokhov
School of Engineering, Newcastle University, UK
ghaith.tarawneh@ncl.ac.uk — andrey.mokhov@ncl.ac.uk

Abstract—Asynchronous circuits are pervasive in modern
synchronous systems, but they are still designed and verified in
isolation, using dedicated asynchronous design flows, formalisms
and tools. We describe a method to verify gate-level asynchronous
circuit implementations using formal verification tools and prop-
erty languages for synchronous logic. We report observations and
findings from applying this method to use case designs using
an industrial and an open source formal verification tools for
synchronous logic (Cadence Incisive Formal and Xprova), and
compare performance and verification capabilities against two
verification tools for asynchronous circuits. Finally, we discuss the
advantages and practical considerations of bridging synchronous
logic verification tools to the domain of asynchronous circuits.
Our main conclusion is that, while there are performance
penalties, there is still significant value in enabling users to verify
asynchronous circuits using tools that may be more familiar,
trusted or more widely adopted.

I. INTRODUCTION

Software tool support is generally recognized as one of the
main reasons hindering the wider adoption of asynchronous
design by the industry [1][2]. Even though asynchronous
design is based on rigorous theoretical foundations and has
clear advantages, its isolated ecosystem of flows, tools and
formalisms presents a formidable entry barrier to industrial
users. It also introduces complexities in designing modern
multi-clock and Globally Asynchronous Locally Synchronous
Systems where pipelines, handshake circuits and other forms
of asynchronous “glue logic” are used everywhere and ex-
pected to operate correctly with their synchronous neighbors.

One of the challenges with integrating synchronous and
asynchronous (further referred to as “sync” and “async”)
components is performing system-level verification. While the
independent sync and async verification flows and tools are
mature and capable of verifying (sync or async) modules
independently, verifying a mixed-timing sync-async system
as a whole is non-trivial. Due to the separation of the two
flows, compatible behavioral models of the sync/async parts
of the system must be created and used to verify each other
(Figure 1a). For example, the sync part can be coded as
a Signal Transition Graph (STG) to be made compatible
with STG-based asynchronous verification tools. This way, the
sync/async implementations will be verified against the envi-
ronmental models of their counter-parts, but the faithfulness
of the models themselves will not be verified.

Based on the aforementioned, we argue that there is much
value to be gained from being able to verify asynchronous
circuits using synchronous design tools. First, this would

Synchronous Tools
and Formalisms

Asynchronous Tools
and Formalisms

Component 1 (sync) Component 2 (async)

A
' \

Behavioral Model
of Component 2

A

Behavioral Model of
Component 1

(A) Component-level verification

Y

Component 1 (sync) Component 2 (async)

<
%

(B) System-level verification

Fig. 1. Two approaches for verifying a mixed-timing system composed of a
synchronous and asynchronous components. (A) The sync/async components
are verified independently using behavioral models of their counterparts.
(B) Both implementations are verified against each other directly.

enable designers to verify a mixed sync-async system as
a whole, overcoming the need for environmental models.
Second, it will simplify the verification process by unifying
two independent flows. Third, it will address the wider issue of
EDA tool support for asynchronous circuit by giving designers,
particularly in industrial contexts, the option to use more famil-
iar or trusted tools. While we know there are no fundamental
reasons preventing the co-simulation (and consequently the
verification) of mixed sync-async systems [3], [4], how and to
what degree does this work in practice remain open questions.

A. Main Idea

We propose a simple transformation to convert gate-level
asynchronous circuits into clocked (synchronous) correspon-
dents that can be verified using synchronous design tools.!
Briefly, we insert flip-flops at asynchronous gate outputs and
enable them one at a time to simulate transition firing. The
created synchronous model is then used by a formal tool to
explore the circuit’s state space and verify its behavior.

ISee Section IV-B for related work that exploits the same idea.

ao =

re

g2

(A) Asynchronous Circuit

Fig. 2.

en[0]

ao

ri

k2

(B) Transformed Synchronous Circuit

Proposed transformation to create a synchronous model of an asynchronous circuit. Flip-flops are inserted at inputs and gate outputs to capture net

states, and corresponding signals (en) simulate transitions by enabling (up to) one flip-flop at a time.

B. Contributions

The contributions of this paper are as follows. (i) We
propose a transformation to convert asynchronous circuits into
synchronous models, and describe methods to encode and
check correctness properties using these models with synchro-
nous verification tools. (ii) We report the results of using
this methodology with two verification tool for synchronous
logic; Cadence Incisive Formal (commercial) and Xprova [5]
(academic), cross-validating the results with MPSAT [6] and
a custom tool (ESSET) which we developed for this purpose.
(iii) We present a verification flow and use case example of
mixed sync-async verification. Finally, (iv) we compare veri-
fication performance across three of the tools using a number
of benchmark circuits.

II. PROPOSED TRANSFORMATION
A. Overview

We demonstrate the proposed transformation using the
circuit in Figure 2A as a working example. The circuit is
a handshake decoupling element (an S-element [7]) and its
state is given by nets ao, ri, ai, ro and the output of gate go.
In a conventional synchronous simulator, the circuit is treated
as combinational logic and all of its nets are evaluated on each
cycle. This does not allow individual transitions, their possible
orderings or their timings with respect to the environment to
be simulated. To capture these behavioral mechanics, we insert
flip-flops at the outputs of all non-zero delay gates and use a
vector of enable signals (en) to select which net is updated on
each cycle. We prevent multiple transitions from firing during
the same cycle by constraining en such that no more than
a single bit is active at time. However, we allow all en bits
to be inactive to simulate stall cycles in which no transitions
occur (this is necessary for deadlock freeness checking, and
is discussed in more details in Subsection III-B).

To use the created synchronous model in a simulation,
inputs must be provided in accordance with circuit’s specifi-

cation (or better yet, generated by an actual implementation of
the circuit’s environment), and a sequence of en vectors must
be supplied to determine transition ordering. While there could
be more than a single valid en sequence (and supplying these
by hand may be laborious) the model is primarily intended
for formal verification and so our focus is to enable it to
capture all possible forms of behavior. The task of generating
en sequences and exploring the resulting circuit behavior will
be left to formal tools.

Some gates such as C-elements are capable of retaining
their own state and are therefore handled differently by the
transformation. They are replaced with clocked equivalents
and no flip-flops are inserted at their outputs. The clocked
equivalents have an enable input which is connected to the
corresponding bit from the enable vector en. An example of
this special case handling is gate g@ in Figure 2.

B. Applying the Transformation

We created a tool that applies the described transformation
to asynchronous circuits netlists such as the ones synthesized
by Petrify [8]. While there are no reasons preventing the
transformation from being performed by hand correctly, the
ability to automate it has two important practical implications.
First, it avoids manual translation errors that may introduce
differences between circuit and model behavior (essentially the
same risk with model faithfulness that system-level verification
is intended to avoid). Second, it enables the transformation to
be integrated seamlessly into existing design flows, remaining
transparent to the designer and not affecting other tools in the
flow (we present a use case verification flow demonstrating
this practically in Section III-E). Another important practical
consideration is that the vector en can be declared as an
internal unbound register instead of being added to the circuit
as an input. This way the original circuit and the generated
model will have identical interfaces, allowing the model to be
used as a drop-in replacement for the circuit.

hl = - —> whl
go
a0 = _D—D ro
g1
Fig. 3.

III. APPLICATIONS

We discuss different types of verification checks enabled
by the proposed transformation. Subsections III-A through
III-D describe checks supported by asynchronous tools, which
we here perform using synchronous tools, and Section III-E
presents a use case verification of a mixed sync-async system.

The results reported below were obtained using two formal
verification tools for synchronous logic: Cadence Incisive For-
mal (commercial) and Xprova (academic). We cross-validated
the results against MPSAT and an Exhaustive State Space Ex-
ploration Tool (ESSET) which we developed for this purpose.

A. Spec Compliance

In compliance checking [9], circuit behavior is checked
against a provided specification and differences are reported as
compliance violations. For this check, we assume the input cir-
cuit is provided as a gate-level netlist alongside a State Graph
(SG) representing its behavior and that of its environment.
As an example, we use the High Load Handshake (HLH)
circuit and its specification from [10], shown in Figure 3. To
check for compliance, we transform the circuit as discussed in
Section II and translate its SG into a synchronous Finite State
Machine (FSM) in behavioral form, as follows:

s \

always @(posedge clk or posedge rst) begin

if (rst) begin
state <= 0;

end else begin
if (state == 0 &&
if (state ==7 &&

whl_p && en[0@]) state <=
hl_p && en[1]) state <=
if (state == 5 && ~hl_p & en[1]) state <=
if (state == 3 && ~ao_p && en[2]) state <=
// remaining transitions omitted for brevity
end

(S SN BN |

end

L J

This behavioral spec model is instantiated as a sub-
component within the circuit, gaining access to its internal
scope of signals.> Here, Verilog nets whl_p, hl_p and ao_p

2This is done using the binding feature supported by many verification tools

Example asynchronous circuit (left) and its specification as a state graph (right)

are inputs to the flip-flops holding the states of signals whl, hl
and ao (respectively), en is the transition firing enable vector
and state is an integer representing spec state.

During verification, the model is simulated in tandem with
the circuit, acting as a reference for checking its behavior.
To bind and compare circuit behavior to this reference, we
generate properties that describe when circuit transitions may
fire. For example, the following SVA property asserts that
transition whl- occurs only when the spec model is in one
of the states 1, 4 or 8 (see Figure 3, right panel):

wire whl_can_fall = (state == 1) | (state == 4) | (state == 8)

p1: assert property (@(posedge clk) disable iff (rst)
$fell(whl) |-> $past(whl_can_fall)
D8

where the built-in SVA function $fell is high iff the input
expression was just de-asserted, and $past holds the value of
the input expression in the previous cycle.

We generate similar properties for all output transitions.
In addition, since the circuit is expected to behave correctly
only with respect to a certain environment (i.e. when input
transitions follow the spec), the formal tool must also be
told about input behavior. This is done by generating similar
properties to describe input transitions, such as:

wire ao_can_fall = (state == 1) | (state == 2) | (state == 3);

p2: assume property (@(posedge clk) disable iff (rst)
$fell(ao) |-> $past(ao_can_fall)
)i

Even though the two properties above are syntactically
similar, p1 is an assertion while p2 is an assumption. During
verification, the formal tool will explore all states in which
assumptions are valid (valid circuit inputs) and report any
assertion violations (invalid circuit outputs).

This workflow is summarized in Figure 4. Briefly, the
asynchronous circuit and its SG are translated into a veri-
fication model consisting of (1) a clocked implementation of
the circuit, (2) a clocked behavioral FSM representing the SG
and (3) properties that describe allowed transitions. The model
is a self-contained unit with the same interface as the input
asynchronous circuit, and can be passed to a conventional
(synchronous) formal verification tool to prove or disprove
compliance (as well as other correctness properties which we
discuss in following subsections).

In our example (Figure 3), there are in total 4 compliance
assertions (corresponding to the rise and fall transitions of
outputs whl and ro). All four assertions received a pass state
in both Incisive Formal and Xprova, consistent with the results
reported by MPSAT and ESSET. We modified the circuit by
changing g1 into a NAND gate and re-checked; all tools now
reported compliance violations for signal ro.

B. Deadlock Freeness

Deadlocks are states with no enabled transitions. We express
deadlock freeness as the following SVA property:

wire ao_may_fall = (state == 1) | (state == 2) | (state == 3);
wire hl_may_fall = (state == 2) | (state ==5) | (state ==9);

wire ao_may_rise
wire hl_may_rise

(state == 10);
(state == 7);

wire ao_may_trans = ao_may_rise | ao_may_fall;
wire hl_may_trans = hl_may_rise | hl_may_fall;
wire ro_may_trans = ro_p * ro;

wire whl_may_trans = whl_p * whl;

wire exist_enabled_transition = ao_may_trans | hl_may_trans
| ro_may_trans | whl_may_trans;

deadlock_free: assert property (
@(posedge clk) disable iff (rst) exist_enabled_transition
)5

L J

In the above, we declare and define four Verilog wires (in
the form x_may_trans) to indicate whether the corresponding
signals can transition during the current state. We assert that
at least one transition is enabled on each simulation cycle.

Note that we define x_may_trans differently for input and
non-input (internal + output) signals. In this example, we ver-
ify the circuit against its spec and so enabled input transitions
are defined with respect to the spec’s state variable. For
internal and output signals (in this case only ao and hl),
transitions are enabled if their corresponding flip-flops have
different input and output values (i.e. pending transitions that
await firing). Another important detail is that the model must
be allowed to stall (to not fire any transition) by allowing all
en bits to be low. If stall cycles are not allowed then the formal
tool will not reach or detect any deadlock states, by definition.

We ran the deadlock check described above on the HLH
circuit (Figure 3) and the assertion received a pass state in
all four tools. Afterwards, we changed g1 into a NAND gate
and observed that all tools reported a deadlock violation in the
modified circuit.

Asynchronous Circuit Specification
(Netlist) (State Graph)
Translator (Python)

v

Verification Model:

= Translated Circuit (Clocked Netlist)
= Specification (Clocked FSM)
= Properties

Formal Verification Tool
(e.g. Cadence Incisive Formal)

v v

Verification Results

Counter-examples

Fig. 4. Verification flow showing how the proposed tranformation enables
asynchronous circuits to be verified using formal tools for synchronous logic

C. Output Persistency

An internal or output signal is persistent iff, once its
transition is enabled, the transition either fires or continues
to be enabled [9]. This property is encoded as follows:

wire ro_may_trans = ro_p * ro;
wire whl_may_trans = whl_p * whl;

persistency_ro: assert property (
@(posedge clk) disable iff (rst)
$fell(ro_may_trans) |-> $changed(ro)
Y5

persistency_whl: assert property (
@(posedge clk) disable iff (rst)
$fell(whl_may_trans) |-> $changed(whl)
)5

\ J

In the above, we re-use the definitions ro_may_trans and
whl_may_trans (used in the deadlock freeness property),
alongside SVA’s internal functions $fell and $changed, to
assert that, on each cycle where a transition of x has just been
disabled ($fell(x_may_trans) is high), the transition fired on
the same cycle ($changed(x) is high). In other words, firing
is the only allowed mechanism to disable transitions.

The HLH circuit (Figure 3) passed output persistency
checks in all tools, and replacing g@ to with a non-inverted
variant caused all tools to report persistency violations for
output whl.

as as

. = x
b= ce
Circuit c1 Circuit c2

Circuit c3

Fig. 5. Specification with non-determinstic choice (two a+ transitions at state s@) (left) and three possible implementations (right). The transitions undergone

by all three circuits are within the spec, but only c3 captures the spec fully.

D. Non-deterministic Choice

Asynchronous circuit specifications may include non-
deterministic choice; cases in which identical input transitions
diverge from the same source to different destination states.
These cases represent an additional complexity to formal
verification tools. Now it is insufficient to just check that all
circuit transitions are captured by the spec; we must also check
that all spec transitions are captured by the circuit.

To illustrate this, consider the spec and possible implemen-
tations c1 - ¢3 shown in Figure 5. The transitions of circuits
c1 and c2 are within spec but neither captures the full spec
(circuit c1 captures states s1 through s5 but not s6é through
s10, and the converse is true for c2). Circuit c3 is the only
correct implementation since it captures the entire spec. The
core of the problem here is that the environment does a non-
deterministic choice in state s@ with two outgoing transitions
labeled by the same event a+. Both of these transitions must
be explored during verification.

We can force formal tools to investigate all possible spec
branches by adding unbound variables to the verification
model and using them to decide between identical spec transi-
tions. Since these variables are unbound, the formal tool will
explore all their possible values, amounting to checking the
circuit against all possible spec regions emanating from non-
deterministic choice forks. For example, the spec in Figure 5
is translated to the following FSM behavioral code:

s N

reg nondd; // unbound variable
always @(posedge clk or posedge rst) begin

if (rst) begin
state <= 0;
end else begin
if (state == 0 &% a_p && en[@] & nond@) state <= 1;
if (state == 0 && a_p && en[0@] && ~nond®) state <= 6;
// remaining transitions omitted for brevity
end

end

Here we add and use an unbound variable nond to decide, at
state s@, between transitioning to s1 or s6. The tool will then
check the circuit for compliance, deadlock freeness and per-
sistency across all spec branches. We have used this approach
to check the three circuits c1, c2 and c3 against the spec in
Figure 5 and confirmed that only c3 is correct with respect to
the spec. This result was consistent across all tools. Without
the support for non-deterministic choice, the tool could have
erroneously accepted one of the incorrect implementations c1
or c2 (depending on which branch happened to be explored).

E. Mixed Sync-Async Verification

In addition to verifying asynchronous circuits indepen-
dently, the proposed transformation also enables us to verify
systems composed of both sync and async components. We do
this by translating asynchronous modules and combining them
with the remaining (synchronous) parts of the system. The
generated system netlist can then be passed to a synchronous
formal verification tool, alongside a system-level specification
provided by the designer (Figure 6).

As a use case example, we consider the system shown in
Figure 7, where three CPUs use a shared bus to communicate
with a memory module. The CPUs are optimized for either
high performance or low power each, and are enabled in
different combinations, no more than two at a time, depending
on workload and battery level. A power management unit is
used to control which CPUs are active at any time.

In this example, the CPUs run on independent clocks so
an asynchronous 3-way arbiter is used to mediate bus access.
A CPU can access the bus only when its request has been
granted by the arbiter. We wanted to use system-level formal
verification to prove the following two properties:

1) no more than a single CPU can be granted bus access

at any time, and

2) the system is deadlock free.

Following the verification flow in Figure 6, we first trans-
lated the arbiter into a clocked netlist and combined it with
the remaining modules to create a synchronous system netlist.

Async Circuit
(Verilog)

Sync Circuit
(Verilog)

System-level
Properties (SVA)

Translator

(Python)

Synchronous System (Verilog)

* y

Formal Verification Tool
(e.g. Cadence Incisive Formal)

! !

Counter-examples

Verification Results

Fig. 6. Verification flow for a mixed sync-async system

Next, we expressed the two properties above in SVA. Deadlock
freeness was encoded as described in Section III-B while the
absence of bus access conflicts was encoded as follows:

wire b1 = r1 & gl; // cpu 1 using bus
wire b2 = r2 & g2; // cpu 2 using bus
wire b3 = r3 & g3; // cpu 3 using bus

no_bus_access_conflict: assert property (
@(posedge clkl or
posedge clk2 or
posedge clk3 or
posedge clk4) disable iff (reset)
$onehoto({b1, b2, b3})
)5

\ J

where the function $onehot® returns true if at most one bit
of the input expression is high.?

The system uses a flat arbiter implementation from [11]
(Figure 8). This implementation has the advantage of being
simpler than its alternatives but suffers from a hidden caveat.
It may enter a deadlock state if all three requests arrive at
the same time (one transition sequence leading to this is ri+,
r2+, r3+, Mla+, M2b+, M3a+). However, since the system’s
power management unit is designed to prevent all CPUs from
being active simultaneously, we expect this to never happen
in this environment. We wanted to prove this formally.

Our results from running this example were as follows.
Both Incisive Formal and Xprova proved that (1) no more
than a single CPU can access the bus simultaneously and (2)
the system does not enter a deadlock state, consistent with

3In this system, CPUs relinquish bus access before de-asserting their request
signals, allowing the arbiter to grant access to other pending requests without
delay (early release protocol [11]). We therefore define bus access as the
conjunction of a CPU’s request and grant signals.

Power Management Unit
iy
r1
CPU
(sync, clk1) |
g1
(2]
@ T3
-~ 'y]
o
2 r2
Memory @ CPU »| 3-way Arbiter
(sync, clk4) (sync, clk2) | (async)
g2
H A
3
CPU < g
(sync, clk3)
r3

Fig. 7. Use case example for mixed sync-async verification: a multi-clock
domain system with an asynchronous arbiter.

M1a

(= Q r1 g1
ME
r2 g2

r1 g1
r2 ME
r2 g2
r1 g1
ME
3= L r2 g2
Fig. 8. Implementation of the 3-way arbiter in Figure 7

our expectation. We modified the power management unit to
introduce a fault and allow all three CPUs to be active at the
same time. This was discovered by both tools — both generated
counter-example waveforms showing deadlock occurrences.

This example demonstrates two points. First, we are able to
perform system-level verification of a mixed sync-async sys-
tem using formal tools for synchronous logic. Second, system-
level verification can be used to prove or disprove properties
that cannot be verified at the component-level without making
unverified environmental assumptions. In our case, we proved
that the arbiter does not enter a deadlock state by verifying
it against other modules directly. If we verified the sync and
async parts separately instead (as shown in Figure 1A), we
would need to create an accurate formal model of the power
management unit — a very non-trivial task.

TABLE I
BENCHMARK RESULTS

Verification Time (sec)

Circuit N States Incisive Formal MPSAT ESSET
Deadlock Compliance Persistency Deadlock Compliance Persistency Deadlock Compliance Persistency
8 3570 11.4 25 141 8.7 8.8 10.1 0.68 0.69 0.68
Async Counter 9 7154 12 27 272 30 30 37 1.9 1.9 1.9
10 14322 27 56 672 133 133 159 5.6 5.6 5.6
8 512 19 63 28 0 0 0 0.2 0.2 0.2
C-element 9 1024 46 73 72.8 0 0 0 0.26 0.26 0.26
10 2048 204 245 239 0 0 0 0.48 0.48 048
21 42 5.7 9.3 4.66 0 0 0 0 0 0
31 62 6 25.8 11.2 0 0 0 0 0 0
Ring Oscillator
41 82 6.75 55.7 17.3 0 0 0 0 0 0
51 102 7 108 25.6 0 0 0 0 0 0

IV. DISCUSSION

A. Performance

The proposed approach provides a workaround solution to
verify asynchronous circuits using tools that were not built
for this purpose. It is therefore expected that verification per-
formance will be lower compared to dedicated asynchronous
verification tools. In this section we attempt to answer two
questions: (1) what is the magnitude of performance loss? and
(2) what can we still verify in feasible time?

One difficulty with answering these questions is that the
four verification tools available to us (that were used in this
work) use different verification approaches that perform better
with different types of circuits. For example, MPSAT uses
the unfolding technique [12] which makes it faster when
processing highly-concurrent circuits, at the expense of an
overhead for sequential circuits. These differences confound
attempts to establish the overhead of our approach by com-
paring performance across tools. Since performance is likely
to depend on circuit type, we have selected three types of
benchmark circuits with different scaling characteristics for
our comparison:

1) N-bit counters (O(N) signals, O(2V) states, fully se-
quential),

2) N-way C-elements (O(N) signals, O(2V) states, fully
concurrent), and

3) N-stage ring oscillators (O(N) signals, O(N) states,
fully sequential).

Table I compares verification times for three of the tools
we used (we excluded Xprova from benchmarking since it
cannot verify designs with more than 64 state bits). Based on
these results, our conclusions are as follows. First, for circuits
with low degrees of concurrency (e.g. async counters), Incisive

Formal (with the proposed conversion) has comparable/faster
performance compared to MPSAT in deadlock and compli-
ance checks, likely because MPSAT is constructing unfoldings
for these purely sequential circuits. Verification time is still
larger for output persistency checks, and larger in general
when comparing with ESSET (which relies on explicit state
space enumeration). Second, for circuits with high degrees
of concurrency, MPSAT performs much better than Incisive
Formal (< 0.1 second vs. up to 239 seconds). ESSET performs
much better too (< 1 second), although still noticeably lower
than MPSAT. Third, Incisive Formal performs poorly when the
number of circuit components/signals is large, even though
when there are few states. In ring oscillator benchmarks,
verification time was 5.7+ seconds for circuits with as few as
42 states. This is likely because Incisive Formal explores all
possible values of a considerably large en vector, as opposed
to MPSAT and ESSET which maintain internal lists of enabled
transitions and do not have to re-compute them on each cycle.

In general, benchmark results indicate that there is a con-
siderable performance overhead when using synchronous tools
to verify highly concurrent asynchronous circuits, compared
to asynchronous tools. Even though asynchronous circuits
are often highly concurrent, many mixed systems consisting
of relatively small-sized asynchronous circuits are still well
within the scope of what can be feasibly verified using
synchronous tools and the proposed approach. For example,
the mixed system discussed in Section III-E was verified
by Incisive Formal in less than a minute, despite containing
several sync modules (in addition to the async arbiter). We
observed similar results from verifying similar systems [10]
where the number and size of asynchronous handshake circuits
and pipeline controllers was relatively small. For such systems,
we argue that the increase in verification time is offset by the
advantage of being able to verify asynchronous circuits in-sifu.

B. Related Work

Our approach is inspired by prior research by the asyn-
chronous circuits community, in particular:

« Roncken et al. [13] use go signals to control progress
in asynchonrous circuits in a fine-grained manner for the
purpose of silicon test and debug. The idea is further
developed in [14], where go signals are used to model
non-determinism in asynchonrous circuits in the context
of formal verification of link-joint models using the
theorem proving system ACL2. In this paper, the enable
vector en plays the same role as go signals but at the level
of individual gates instead of link-joint components.

o Dobkin et al. [15] present an algorithm for converting
STGs into sets of assertions written in the Property Spec-
ification Language (PSL), which can be used by stan-
dard assertion-based verification tools for synchronous
designs. This approach allows the designer to verify the
correct behaviour of synchronous circuits against a model
of the asynchonrous part of the system. Our proposal
involves a similar conversion of STGs into assertions,
but our end-goal is to verify an asynchronous circuit.

In general, the idea of clocking an asynchonrous circuit is
not new. [16] presents a synchronous back-end for the Tangram
compiler with two aims: (i) providing a fast approach for
prototyping asynchronous circuits using synchronous FPGAs,
and (ii) reducing the risk of adoption of asynchonrous de-
sign methodology in industry by supporting the synchronous
mode of execution as a fall-back scenario. [17] introduced a
systematic approach for testing and debugging of asynchon-
rous circuits by incorporating conventional synchronous scan-
chains. Elastic circuits [18] provide a way to achieve many
of the benefits of asynchonrous circuits through conventional
synchronous design flow. This paper follows this direction of
research but in the context of formal verification.

There are existing industrial design flows relying on conven-
tional EDA tools for mixed sync-async systems. For example,
[19] describes the design flow developed by Tiempo, but with-
out providing implementation details of the underlying formal
verification methodology. Proteus [20] is another example of
an industrial design flow developed by TimeLess Design Au-
tomation, which uses CSP as the specification language [21].
As described in [20], Proteus has no support for formal veri-
fication of asynchonrous circuits, but uses cosimulation and
proprietary coverage tools to ensure that an implementation-
environment pair matches the CSP specification.

V. CONCLUSION

We describe a set of transformations and property encod-
ings to verify asynchronous circuits using formal tools for
synchronous logic. The transformation gives designers the
option to use conventional synchronous tools, an important
consideration for industrial users, and enables them to verify
mixed sync-async systems using a unified verification flow, set
of tools and formalisms. We demonstrate the method practi-
cally by verifying a use-case multi-clock system consisting of

three synchronous CPUs, a shared bus and an asynchronous
arbiter. Even though dedicated asynchronous tools are much
faster at verifying asynchronous circuits that have high degrees
of concurrency, the method remains a feasible and attractive
solution for many realistic mixed sync-async systems in which
the asynchronous parts are relatively small.

REFERENCES

[11 A. Kondratyev and K. Lwin, “Design of asynchronous circuits using
synchronous CAD tools,” IEEE Design & Test of Computers, vol. 19,
no. 4, pp. 107-117, 2002.

[2] S. M. Nowick and M. Singh, “Asynchronous design — Part 2: Systems
and methodologies,” IEEE Design & Test, vol. 32, no. 3, pp. 19-28,
2015.

[3] R. Milner, On relating synchrony and asynchrony.
Edinburgh. Department of Computer Science, 1980.

[4] ——, “Calculi for synchrony and asynchrony,” Theoretical computer
science, vol. 25, no. 3, pp. 267-310, 1983.

[5] G. Tarawneh and A. Mokhov, “Xprova: Formal Verification Tool with
Built-in Metastability Modeling,” in 2017 17th International Conference
on Application of Concurrency to System Design (ACSD), June 2017,
pp. 74-79.

[6] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for
asynchronous circuits based on STG unfoldings and incremental SAT,”
Fundamenta Informaticae, vol. 70, no. 1, 2, pp. 49-73, 2006.

[7]1 A. Bardsley, Implementing Balsa handshake circuits. ~ University of
Manchester, 2000.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” [EICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315-325, 1997.

[9] 1. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov, and A. Yakovlev,
“Automated verification of asynchronous circuits using circuit Petri
nets,” in Asynchronous Circuits and Systems, 2008. ASYNC’08. 14th
IEEE International Symposium on. 1EEE, 2008, pp. 161-170.

[10] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd,
“Design and verification of speed-independent multiphase buck con-
troller,” in Asynchronous Circuits and Systems (ASYNC), 2015 21st IEEE
International Symposium on. 1EEE, 2015, pp. 29-36.

[11] A. Mokhov, V. Khomenko, and A. Yakovlev, “Flat arbiters,” Fundamenta
Informaticae, vol. 108, no. 1-2, pp. 63-90, 2011.

[12] V. Khomenko, “Model checking based on prefixes of petri net unfold-
ings,” 2003.

[13] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and
I. Sutherland, “Naturalized communication and testing,” in Asyn-
chronous Circuits and Systems (ASYNC), 2015 21st IEEE International
Symposium on. 1EEE, 2015, pp. 77-84.

[14] C. Chau, W. A. Hunt, M. Roncken, and 1. Sutherland, “A Framework
for Asynchronous Circuit Modeling and Verification in ACL2,” in Haifa
Verification Conference. Springer, 2017, pp. 3—18.

[15] R. Dobkin, T. Kapshitz, S. Flur, and R. Ginosar, “Assertion based
verification of multiple-clock gals systems,” in Proc. IFIP/IEEE Int.
Conference on Very Large Scale Integration (VLSI-SoC), 2008.

[16] A. Peeters and K. Van Berkel, “Synchronous handshake circuits,”
in Asynchronus Circuits and Systems, 2001. ASYNC 2001. Seventh
International Symposium on. 1EEE, 2001, pp. 86-95.

[17] K. van Berkel, A. Peeters, and F. te Beest, “Adding synchronous and
LSSD modes to asynchronous circuits,” Microprocessors and Microsys-
tems, vol. 27, no. 9, pp. 461471, 2003.

[18] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 10, pp. 1437-1455, 2009.

[19] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in asynchronous
logic: From principles to GALS & NoC, recent industry applications,
and commercial cad tools,” in Proceedings of the Conference on Design,
Automation and Test in Europe. EDA Consortium, 2013, pp. 1715—
1724.

[20] P. A. Beerel, G. D. Dimou, and A. M. Lines, ‘“Proteus: An ASIC flow
for GHz asynchronous designs,” IEEE Design & Test of Computers,
vol. 28, no. 5, pp. 36-51, 2011.

[21] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

University of

