Synthesis from Waveform Transition Graphs

Alberto Moreno*, Danil Sokolov*, Jordi Cortadella’
*School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom, NE1 7RU
TDepaItment of Computer Science, Universitat Politécnica de Catalunya, 08034 Barcelona, Spain

Abstract—Asynchronous circuits are a promising class of digi-
tal circuits that has numerous advantages over their synchronous
counterparts. Nonetheless, adoption has not been widespread,
which in part is attributed to the difficulty of entry into complex
models like Signal Transition Graphs (STGs) by electronic
designers. This work formally introduces Waveform Transition
Graphs (WTGs) which resembles the timing diagrams, that are
very familiar to circuit designers, and defines their behaviour
semantics. This formalization enables translation of the WTGs
into equivalent STGs in order to reuse the existing body of
research and tools for verification and logic synthesis of speed-
independent circuits. The development of WTGs has been au-
tomated in the WORKCRAFT toolkit, allowing their conversion
into STGs, verification and synthesis.

I. INTRODUCTION

Asynchronous circuits forfeit the use of a global clock signal
in favor of local synchronization between components [1].
This gives important advantages in terms of power consump-
tion and electromagnetic emissions, as well as avoiding clock-
related problems, such as clock skew. Moreover, for newer
technology nodes, asynchronous circuits are fundamentally
more tolerant to voltage, temperature and process variabil-
ity [2]. New application domains, such as analogue and
mixed-signal (AMS) systems, also benefit from asynchronous
controllers and demonstrate clear advantages over synchronous
solutions beyond the classical examples. For instance, asyn-
chronously controlled power converters significantly improve
the response time to power demand — from the order of several
clock cycles to just few gate delays. This helps to reduce the
voltage ripple and peak current, which can be efficiently traded
off for smaller inductor size [3].

Yet, considering all the benefits and technical advantages,
asynchronous controllers have a relatively modest use in
commercially produced systems. Arguably, one of the main
reasons for this lack of success lays in the challenging
adoption path by the electronic engineers. While there is a
wide availability of powerful synthesis and verification tools,
such as PETRIFY [4], ATACS [5] and MPSAT [6], they are
based on Signal Transition Graphs (STGs) or other rather
powerful, yet complex, formal models. Indeed, STGs is a
very expressive model, however, this expressiveness is doubled
edged. In essence, the underlying model for STGs is Petri
nets, for which most electronic engineers are not familiar with.
The use of STGs necessitates a deep understanding of such
modelling aspects as the token game, encoding conflicts, and
output persistency, which are better suited for scientists than
engineers.

In an attempt to improve this situation, a new model for
asynchronous design, the Waveform Transition Graph (WTG),
was proposed [7]. WTGs model is designed from its incep-
tion to be simple and familiar to electronic engineers, yet
expressive enough to specify a wide class of asynchronous
controllers. In particular, the concurrency and choice are
explicitly differentiated in WTGs. The concurrency is localized
within waveforms, which are notationally identical to Timing
Diagrams (TDs) and specify partial order of signals in each
distinctive mode of a circuit operation. The choice between
the modes of operation is restricted to the nodal states, which
are strongly related to the notion of states in Finite State
Machines (FSMs). In essence, a WTG is an FSM whose arcs
are associated with TDs. As both TDs and FSMs are common
tools for electronic engineers the adoption of WTGs becomes
very intuitive to them.

Development of WTG model was influenced by several
previous works, e.g the Waves model and the synthesis method
implemented in JANUS tool [8]. The model makes use of
waveform diagrams to describe behavior of signals and, similar
to WTG, leverage the familiarity of TDs with designers.
However, it lacked a path towards generating a complete
synthesizable model of the control circuit behavior. Waves was
targeted at synchronous implementation through the syntax-
direct translation, and hence lacked efficiency compared to
what is possible via explicit logic synthesis.

Comparisons can also be made with Burst Mode and
eXtended Burst Mode (XBM) automata, supported by the
synthesis tools MINIMALIST and 3D [9]. These models have a
limited expressiveness when compared to WTGs. A WTG can
be seen as an XBM automaton in which each arc represents
a waveform rather than an input/output burst. While the
input/output bursts are necessarily sequential in XBM, with an
output burst always following an input burst, the waveforms
in WTG allow concurrency between inputs and outputs, thus
increasing the expressive power of WTGs.

Another relevant model, that inspired the explicit support of
undefined signal behavior and guarded selection of waveforms
in WTGs, is the Generalized STGs (GSTGs) [10]. The primary
goal of GSTGs was to enable specification of mixed mode
asynchronous/synchronous systems and arbitration. This was
achieved by extending conventional STGs with several new
modelling primitives, such as level transitions and Boolean
guard functions. These new features, however, negatively
impact on accessibility of already rather complicated STGs
model. Synthesis of GSTGs is supported by PETRIFY, but
often relies on an experienced designer to provide the timing

assumptions that make the specification implementable.

Some similarity to WTGs can also be found in binary
expansion of Symbolic STGs (SSTGs) [11]. Here the change
of symbolic variables between two high-level states is rep-
resented by a partial order STG fragment (resembles WTG
waveforms) which is inserted between a pair of Petri net
places that correspond to the high-level states (similar to nodal
states). There is, however, no explicit separation of choice and
concurrency and inherent complexity of SSTGs makes them
hardly accessible by the circuit designers, which is the primary
goal of WTGs.

The above issues are addressed in the design flow for
development and synthesis of WTGs. WTGs can only express
a subset of behaviors that can be specified with STGs. This
restriction of expressiveness allows to significantly reduce the
chance for design errors when specifying the circuit behaviour
and also streamline the circuit synthesis. Note that WTGs can
be mechanically translated into STGs, which enables the reuse
of all the infrastructure for synthesis and verification that is
already built around STGs.

The main contributions of the paper are as follows:

e Formal definition of WTGs model and its behavioural

semantics (see Section II).
o Introduction of implementability
WTGs (see Section III).

o Translation of WTGs into STGs for reuse of verification

and synthesis methods (see Section 1V).

o Design automation strategies for synthesis of WTGs (see

Section V).

constraints for

II. WTG DEFINITION AND SEMANTICS

A Waveform Transition Graph (WTG) is a bipartite con-
nected and directed graph in which vertices are nodal states
and waveforms. Arcs connect waveforms with nodal states and
vice versa. Before going into details, it is important to first
define what a waveform is.

A. Waveform

In essence, a Waveform (WF) is a formal model for Timing
Diagrams (TDs) represented as an acyclic graph in which
vertices are transitions. Transitions represent events for the
signals, while arcs define the causality among events.

Formally, a WF is the tuple w = {T, F, 0, \} where:

o T is a finite set of transitions.

e F C T x T is the flow relation that defines a strict partial

order (irreflexive, transitive and antisymmetric).

e 0 ={InUOutUlnt} is the set of input, output and

internal signals (pairwise disjoint).

e M:T o x{+,—}Ulnx {,7,@0,Q1} is the la-

belling function.

The minimal elements of F' (transitions without prede-
cessors) are the initial transitions of the WE, whereas the
maximal elements (transitions without successors) are the final
transitions. When a WF is activated, transitions can fire in any
order that honors the precedence defined by F. We say that a
WF has been executed when all its transitions have fired. When

0

—_
*
~

@0 @] ?

%

o R = O
%

TABLE I: Valid signal transitions from one state (left column)
to another state (top row). The empty cells represent invalid
transitions.

* ? a
C C
b
at > b —> @1 C

(a) As a directed graph. (b) As a timing diagram.

Fig. 1: Visual representation of a Waveform.

a WF has been executed, it becomes inactive. An active WF
cannot be re-activated until it has been executed. At any given
moment, the state of a WF is defined by the set of transitions
that have fired.

The set of signals o is the union of input (In), output (Out)
and internal (Inf) signals. The labeling function A assigns a
signal event to every transition. Every signal can be associated
to a +/— event, while only inputs can be labelled with *, ?, @0
or @1. The firing of transitions in a WF implicitly induces
a state for every signal, called signal state. The signal state
induced by firing a transition depends on the specific transition
label:

e Rise (Fall): A rise (fall) event is denoted by + (—) and

indicates that a signal changes its state from 0 to 1
(1 to 0).

o Destabilize: A destabilize event (x), indicates that a signal

becomes unstable.

o Stabilize: A stabilize event (?7) indicates that a signal

becomes stable at an unknown value.

o Stabilize-at-0 (1): A stabilize-at-0 (1) event is denoted

by @0 (@1) and indicates that a unstable signal becomes
0 (1).

Table I summarizes all the valid signal transitions induced
by the events.

Intuitively, the destabilize transition * indicates that a signal
may arbitrarily change its value. Alternatively, it is a way
of saying that the state of a signal can be ignored, hence
why this transition is sometimes referred to as don’t care.
Conversely, the stabilize transition 7 indicates that a signal
will not change value. Yet, the value of a signal in stable state
remains irrelevant.

Fig. 1a shows the representation of a WF as a graph. Shad-
owed transitions indicate that they have already fired, defining
the state as {at,b™,e®"}. In this WF, only a™ belongs to the
initial transitions, while the set of final transitions is composed

by {c’,d®!,e%}.

Note that the representation of a WF in Fig. 1a, while strictly
matching the definition, is not very intuitive. A more user-
friendly way to visualize WFs is by means of conventional
TDs, e.g. as shown in Fig. 1b generated in WORKCRAFT [12].
Here every transition is represented as a vertical arrow, while
connections between transitions appear as curved arrows. To
further match the appearance of a TD, horizontal lines are
used to represent the state of a signal after a transition. The
state of a signal can be identified by an upper/lower horizontal
line (high/low) and a slashed/straight middle line (unsta-
ble/stable). The current state of the WF is indicated by the
dotted vertical line across the waveform — all the events to its
left have fired. For convenience the type of signals is color-
codded: input are red, outputs are blue and internal signals are
green.

The waveform from Fig. 1b includes every possible type of
transition. In particular, rise and fall transitions are shown as
upward and downward arrows (signals a and b). Destabilize
and stabilize transitions (signal c) are represented by two
arrows pointing inwards and outwards respectively. Finally,
stabilize at 0 and 1 can be seen as upward and downward
arrows in signals d and e respectively.

B. Waveform Transition Graph

In a simplistic way, a WTG can be seen as a Finite-State
Machine in which the arcs are waveforms. Formally, a WTG
is defined as the tuple G = {S, W, P,., P,, so, X, v} where:

o S is a finite set of nodal states.

o W is a finite set of waveforms.

e P.: W — S is the waveform pre-set function.

e P,: W — S is the waveform post-set function.

e 5Sg is the initial nodal state.

e ¥ ={U,,} is the set of signals of the WTG, composed

by the union of signals of the waveforms w; € W, with
w; = {Ti,Fi,O'i, /\z }

o v: W xIn— {0,1,x} is the waveform guard function.

The behavior of a WTG is reminiscent to that of a Petri
net in the sense that a foken decides the activation rules for
waveforms. Yet, for the WTG case, only one token can exist
at any time. Initially, this token is placed in the initial nodal
state sq.

The waveform pre-set function P, defines which WFs can
be activated if the token is in a specific nodal state. The post-
set function P, indicates which nodal state will hold the token
after a WF has been executed. We refer to the post-set and pre-
set of a WF as the set of nodal states obtained from functions
of P, and P,, respectively. Similarly, the post-set and pre-set
of a nodal state is inferred from P, and P,, respectively. A
nodal state s with more than one WF in its post-set is a choice.
From now on, we consider that the graph induced by P, and
P, is always connected. The state of a WTG is defined by
the position of the token (i.e. the nodal state) and a set of
transitions fired in a WF in its post-set.

A complete depiction of a WTG can be seen in Fig. 2, which
specifies a simple buck controller. In this example, the initial
state is also a choice between two waveforms: late_or_not_zc

P s ST

uv

gn

gn_ack

-
gp =~ |
gp_ack [o

ap
late_or_not_zc \
‘.’ choice merg

eO—»égp_ack
zc / an]—,Z_
gnack P]

uv

JL L

oc_handling
gn

gn_ack
gp
gp_ack

early_zc

Fig. 2: WTG for a simple buck controller.

and early_zc. After the execution of one of the two waveforms,
a final waveform, oc_handling, is executed before looping
back to the initial state. The nodal state choice is in the pre-set
of the WFs late_or_not_zc and early_zc, and in the post-set of
oc_handling. Similarly, the post-set of choice is late_or_not_zc
and early_zc, with the pre-set containing only oc_handling.

C. Boolean guards

Every WF can have a Boolean guard defined by a product
of literals of the input signals. For example, the guard a - b
indicates that the WF can only be activated when a = 1 and
b= 0. If a = * in a guard, it indicates that the value of a is
irrelevant. An empty guard is one in which all input signals
have been assigned to * (i.e. no literals are present in the
guard). A WF is said to be unguarded if it is associated to an
empty guard, otherwise it is said to be guarded.

Section IIl will discuss different structural properties of
WTGs. One of them enforces the signals comprising a guard to
be stable. Typically, guards are used to select WFs based on the
value of stable input signals for which the actual value is still
unknown. Additionally, every choice must have a consistent
definition of guards in its post-set, i.e., either all WFs are
guarded or all WFs are unguarded. In this sense, we distinguish
between guarded choices and unguarded choices depending on
whether the WFs in the post-set of a choice are all guarded
or unguarded, respectively. Section III will also discuss the
Boolean properties of the guarded choices.

An example on the use of guards can be seen in Fig. 3 with
the specification of a small decoder from 2-bit binary to one-
hot positional code. In this case, a pair of input signals in1 and
1n0 is destabilized in the initialization, only becoming stable
before a request is signaled by req. A guarded choice then
selects which waveform is executed: code0, codel, code2 or
code3. This depends on what values the signals ¢n1 and in0
stabilize at, which is indicated by the guard expression on top

in0, inl

inl T ke

in0 T T »%---1
out3
req
code3
in0, inl
in1 T ~%---4

in0

out2

req

code2

@rded_choice

in0, !inl

inl

@_>in0

s0 req

initialization

inl

in0

outl

req

codel

1in0, linl

inl

in0

out0

req

code0

Fig. 3: Decoder from 2-bit binary to one-hot positional code.

of every waveform. The expression is a coma-separates list
of expected values of input signals, e.g. a guard expression
in0, !inl indicates that the waveform should be executed when
1n0 is high and inl is low. The waveform whose guard
evaluates to true is executed: it first sets the corresponding
output in the positional code high and then resets it when req
goes low.

III. IMPLEMENTABILITY CONSTRAINTS

WTGs allow a wide range of specifications, some of which
cannot be converted into hazard-free asynchronous circuits.
Furthermore, the inclusion of new transitions and states, such
as the don’t care states, introduces some complexities that
might be confusing to non-experts. There is, in particular,
two properties that can alleviate these problems and should
be intrinsic to the design of WTGs: output-persistency and
output-determinacy.

Output-persistency violations can arise when transitions are
disabled. A transition becomes disabled if it was enabled at
some state, but the firing of a different transition leads to a
state in which it is no longer enabled. If either transition,
the disabling or the disabled, belongs to a non-input signal,

this is considered a violation of output-persistency. These
violations are important because they cause hazards in the
circuit obtained by the synthesis procedure and should be
avoided.

For synthesis, it is necessary for the specification to be
output-determinate [13]. In essence, output-determinacy guar-
antees that the model is not self-contradictory, i.e. two identical
traces of events must produce the same output. A model with
destabilize transitions may easily fall into output-determinacy
violations.

Here we propose a set of easy-to-check structural properties
which guarantee that the complying WTG models are both
output-persistent and output-determinate:

1) Transitions of non-input signals can only be triggered by
rise or fall transitions.

2) Transitions of output signals can belong to the initial
transition set of a WF only if the final transition set of
every WF in the pre-set of the nodal state in the pre-set
are composed exclusively by rise/fall transitions.

3) The initial transitions of the waveforms in the post-set of
an unguarded choice must:
3a) Belong to input signals.
3b) Be disjoint between the waveforms in the post-set of

the choice.
3c) Be either rise or fall.

4) The guard conditions for the waveforms in the post-set
of a guarded choice must:

4a) Not be empty (i.e. all the waveforms in a guarded
choice have a guard).

Be pair-wise independent.

The literals belong to signals in stable state.

Be complete, i.e. the disjunction of Boolean expres-

sions of all guards is a tautology.

4b)
4c¢)
4d)

5) The state of all signals in the initial nodal state must be
either high or low.

Note that conditions for unguarded choices do not apply for
guarded choices and vice versa.

Disabling a signal requires some form of choice. In WTGs
this can only happen in choice nodal states or as a side-effect
of transitions different than rise/fall. Condition 3a) prevents
disabling output transitions in choices. Transitions different
than rise/fall cannot be directly observed by the system and
can potentially disable an output. These issues are avoided
by condition 1) and 2). Condition 2) is an extension for 1)
to prevent triggering an output transition between different
WFs. These conditions are then sufficient to avoid violations
on output-persistency.

Most of the remaining conditions are in place to guarantee
output-determinacy. Conditions 3b) and 3c) aim to determinize
choices in a WEF, preventing output-determinacy violations.
Without condition 3b), two WFs after a choice might produce
indistinguishable sequences of input transitions that lead to
different output transitions. Condition 3c) prevents a similar
case, in which a choice is decided by a transition that cannot
be observed by the system.

Synthesis

WTGZ ™STG— *SG— *Circuit
Mroperty

Backannotation verification

Fig. 4: Synthesis and verification flow.

Conditions 4a), 4b) and 4c) similarly aim to avoid scenarios
in which output-determinacy is not preserved. In the case of
guarded choices, the execution of a WF is decided according to
signal levels, which are determined by past transitions. For that
reason, output-determinacy can be guaranteed with conditions
over the guards, rather than the initial transitions. In essence,
there can be no intersection of what Boolean conditions are
true. This explains conditions 4a) and 4b). Condition 4c)
ensures that the signal levels for the signals in the guard remain
stable, enabling unique identification of the WF which is being
executed. Condition 4d) aims to avoid involuntary dead-locks
in the specification by requesting at least one of the guards
for the waveforms in conflict evaluates to true.

Finally, condition 5) exists to prevent cases in which signals
that are, initially, in the destabilize/stable state do not transition
before reaching a guard. This may result in a violation
of output-determinacy, since potentially two identical traces
could enable two mutually exclusive WFs with different output
transitions.

IV. SYNTHESIS AND VERIFICATION FLOW

One of the cornerstones on the design of WTG is to be
able to use existing infrastructure and tools for asynchronous
circuits. This is possible because WTG corresponds to a subset
of STG and an easy transformation from WTG to STG is
available. This is predominantly exploited in the synthesis and
verification flow of WTG.

Fig. 4 shows an overview of the synthesis flow. First, WTG
is transformed into STG while making use of back-annotation
into every place and transition. In essence, this back-annotation
allows tracking the correspondence between every element of
the STG into the WTG. A similar process is then performed
from STG to SG, along with additional back-annotation that
enables the same kind of tracking between STG and SG. Once
in SG, the process of synthesis and verification can take place
using preexisting tools, such as PETRIFY [4]. It is also possible
to work directly with the STG with tools that support it, as is
the case with MPSAT [6]. If problems arise during verification
or even synthesis, the back-annotation allows traces with errors
to be propagated all the way to WTG.

Thanks to this, all the process related to synthesis and
verification can easily take place without further tool imple-
mentations other than the transformation into STG.

A. Conversion of WTIG into STG

The conversion of WTG into STG is very straightforward.
In WTG, the meaning of nodal states is strongly related to
the notion of places in STG, while transitions have identical
semantics in both models. In fact, this conversion would be

! nitial Final |

itransitions transitions:

WF entry; {_WF exit

Fig. 6: STG representation of a WTG.

almost trivial were it not for the support of the extended
transitions and guards.

For simplicity, let us provisionally assume that there are
no guards and only rise/fall transitions are supported. Fig. 5
depicts the STG obtained from a waveform. In it, every WF
transition is converted into a STG transition and every arc
defined by F' corresponds to an arc between transitions in
the STG. The figure also highlights two groups of transitions:
the initial and final transitions. These transitions were defined
earlier as the minimal and maximal elements in a WEF, re-
spectively. The conversion into STG requires two new dummy
transitions, the WF entry and WF exit transitions, which are
represented as empty boxes in Fig. 5. These dummy transitions
must be connected to the initial and final transitions.

The nodal states are directly converted into places in the
STG. For every connection between a nodal state and a WE,
the STG will contain an arc between the place representing
the nodal state and the WF entry/exit transition of the WF,
depending on the direction of the arc. Finally, a token is added
to the STG place that represents the initial nodal state in the
WTG. Fig. 6 shows an example of an STG converted from a
WTG.

Since the standard STG does not recognize transitions
different than rise/fall (along with dummy, which do not
explicitly exist in WTG), the modeling of these require the
addition of a structure that simulates their behavior. In WTG,
at any moment, a signal is in two of the following four states:

o High or low.

« Stable or unstable.

This can be simulated in STG by adding, for every input
signal (non-input transitions can only be rise/fall), four places
representing each of the four states. In this structure, a token

a_low

a_high
Fig. 7: STG structure simulating WTG transitions for a.

in a given place determines the state of a signal.
The inclusion of these transitions requires the following
steps:

o Every transition different than rise/fall, is converted into
a dummy transition in the STG.

« For every input signal, a new structure comprised of four
places and two transitions is added to the STG.

« Every transition of every input signal is connected to the
simulating structure in a specific way.

The new structure and its connections is represented by
Fig. 7 for a signal a. In this figure, transitions enclosed in
a box represent transitions that belong to a specific WF, while
the two transitions without a box (a™ and a~, on the right
side of the figure) belong to the structure itself. Rise and
fall transitions appear shadowed to indicate that they are not
dummy. Every other transition is converted into a dummy
transition in the STG. The places representing the four states
are identified by the name of the signal, following the state:
a_high, a_low, a_stable and a_unstable. At any moment, there
must be a token in either a_high or a_low and a token in either
a_stable or a_unstable.

As it can be seen, a token in a_unstable allows the STG
to arbitrarily transition between high and low. This is accom-
plished by connecting, with a read-arc (i.e. a bidirectional arc),
the place a_unstable with transitions a™ and a~. Conversely,
a token in the a_stable place disallows the firing of the
transitions a™ and @~ that belong to the simulating structure.
The connection between a_high and a_low to those same
transitions enables the transfer of the token from one to the
other as the signal fires rise and fall transitions in a WFE.

Additionally, every transition in a WF for every input signal
must be connected to the simulating structure in a specific
way, as represented by Fig. 7. For the example signal a, these
connections are:

e Rise/Fall: These transitions are only allowed if the signal
is stable and change the state between high and low. This

is enforced by connecting these transitions with a read-
arc to a_stable and the appropriate connections to the
places representing high and low states. As an example,
for rise this is ensured by a connection from a_low to
a™ and from a* to a_high (i.e. moving the token from
low to high).

e Destabilize/Stabilize: These transitions must move the
token between the stable/unstable states. As such, a a’
transition has an arc from a_unstable and an arc towards
a_stable. For a a*, the arcs go in the opposite way, from
a_stable to a* and from a* to a_unstable.

o Stabilize at 0/1: These transitions are similar to a’ and
so share the same arcs: from a_unstable and towards
a_stable. Additionally, since they must also ensure a
high/low state, they also include a read-arc with a_high
or a_low, for a®' and a° respectively.

The last elements that remain to be translated are guards.
These are now very easy to convert by making use of the same
simulating structure. In particular, a guard for a waveform
must ensure that a signal has a specific state. This can be
enforced by adding read-arcs between the WF entry transition
and the places in the STG that represent the required state
for every signal. Fig. 8 shows an example of the conversion
of a guarded choice into STG. For simplicity, the WFs are
represented as a graph and guard conditions are expressed in
the arcs. In the example, the guard for the function a - b is
simulated by adding a read-arc between the dummy transition
representing the WF entry and a_high and b_low. Since both
signals must be stable before reaching the guard, additional
read-arcs are added towards a_stable and b_stable. The other
guards are similarly simulated by their own corresponding
arcs.

V. DESIGN AUTOMATION

The design automation of WTG is currently implemented
in the WORKCRAFT [12] toolkit. It offers a a comprehensive
implementation of WTG that allows the design, verification
and synthesis of specifications. Besides tools, it is worth
considering that electronic designers might not be used to
the classical design flow of asynchronous circuits. For that
reason, we additionally propose a set of strategies that address
the design flow of WTG at different degrees of simplicity:
the use of design guidelines to guarantee synthesis, exploiting
back-annotation to report issues, and making necessary timing
assumptions when no other option is available. These strate-
gies, which can be used individually or in combination, are
described in the following subsections.

A. Guideline-driven development

The guideline-driven development is the only strategy cur-
rently implemented in WORKCRAFT. The idea behind this
strategy is to abstract the designer from the issues and quirks
of asynchronous circuit design that prevent synthesis, such
as irreducible encoding conflicts. To accomplish that, the

choice

Fig. 8: Representation of a guarded choice in WTG on the left. Its conversion into STG is shown on the right. Red and blue
lines represent arcs from the simulating structure of a and b respectively.

toolkit must enforce the structural properties for circuit imple-
mentability and a set of additional constrains (the guidelines)
that give a strong guarantee of synthesis.

In order to be implementable as a circuit the specification
must have complete state coding (CSC). Two states are in
CSC conflict if they exhibit the same value of all the sig-
nals (encoding), but enable different non-input signals. There
is no way to distinguish such states, and yet different outputs
should be produced. The tools are usually capable of resolving
CSC conflicts automatically by inserting new internal signals
in such a way that differentiate the encoding of the conflicting
states. There are, however, irreducible CSC conflicts that
cannot be handled automatically.

A CSC conflict becomes irreducible when the only way to
distinguish conflicting states is by inserting a signal before an
input event. This, however, cannot be done automatically as
delaying the input would requite the change of communication
protocol between the circuit and its environment. There are
two situations leading to irreducible CSC conflicts: i) con-
flicting states are separated by a sequence of input events; ii)
there is a choice state from which the conflicting states are
reachable via the input-only traces. In both cases, in order
to resolve the conflict, a signal would need to be inserted
before an input event, which cannot be done automatically as
it requires designer to explicitly change the specification.

In the context of WTG, two additional constrains are suffi-
cient (but not necessary) to prevent irreducible CSC conflicts:

o Transitions of the same input signal must be separated
by an output signal transition.

o Waveforms in the post-set of an unguarded choice cannot
contain sequences of input transitions that correspond to
different permutations of the same events before an output
signal fires.

It is important to note that the application of these guidelines
has an impact on the expressiveness of the model. Yet, for non-
expert designers, it is useful to have a strong guarantee that
the design can be synthesized without having to understand
some of the complexities inherent to asynchronous design.

s0 b]]—[sl

wl

Fig. 9: Report of an irreducible conflict in WTG. The alternat-
ing transitions of a, which produce the conflict, are highlighted
in red.

B. Back-annotation of synthesis issues

As previously mentioned, the proposed synthesis flow in-
cludes the transformation of WTG into STG and SG, along
with back-annotations that allow tracking elements of the
specification between the models. This can be exploited in the
design stage in order to report errors, warnings and different
issues that might arise during synthesis. It is possible, for
example, to detect an irreducible CSC conflict in the SG and
report a trace in WTG. This can be further enhanced by the
inherent ability of WTG to display graphical information to
the user.

Fig. 9 shows an example of such a report. The WTG
presents an irreducible conflict that prevents synthesis and
requires an action on the part of the designer. This can be
displayed to the user by using, in this case, a red highlight
that clearly indicates the location of the problem. It is then up
to the designer to chose the best path of action to resolve the
issue.

This synthesis strategy gives more control and flexibility
to the user and is reminiscent to the classic design flow of
other models for asynchronous design. The drawback is that
a designer needs to understand the issues and their possible
solutions, so it might not be appropriate for newcomers.

C. Timing assumptions

The addition of destabilize/stabilize transitions and guards
makes WTG particularly well suited to specifications that
include synchronous signals. For these cases, it is often
impossible to synthesize a circuit that belongs to the speed-
independent family. Fig. 10 shows a WTG specifying the

d Id
ck T ck T
d T d] fee-
g Lf 1 qTl
]ﬁﬂ rise \ fall
(?> i ;’C\“ 1d o
S H
q%[ck T ck T
ni
d | §--- d Tk
LU — R L.
IOW ‘ h,gh "

Fig. 10: WTG specification of a D Flip-Flop.

behaviour of a D Flip-Flop. The use of guards makes this
specification simple to read. Yet, this specification contains
irreducible conflicts that cannot be solved.

A way to go around this is the introduction of timing
assumptions. In this case, synthesis is possible as long as we
assume that the environment (i.e. ck and d) is slower than the
circuit. This corresponds, for the case of a D Flip-Flop, to a
hold constrain. In the example, the fall transitions for ck and
the destabilize transitions for d (shown in the figure as thick
amber lines) should only be fired after the circuit has had time
to update its state. This necessary condition can be identified
by the synthesis tool and reported to the user by highlighting
the transitions that require timing assumptions.

The use of timing assumptions is not new. PETRIFY imple-
ments the option to perform synthesis with assumptions of a
slow environment, as discussed in [14]. This can be extended
to WTG by detecting when this is required for synthesis. The
user can then have the option to give up speed-independence
for those cases in which no other alternative is available.

VI. CONCLUSIONS

This work addresses one of the main issues preventing asyn-
chronous circuits from proliferating in commercial systems.
Despite the many advantages for this type of circuits, the
steep learning curve and unfamiliarity with current models for
electronic designers has proved to be too high an entry barrier.

The WTG model presented in this paper is a serious
attempt to overcome this challenge. Designed to be as familiar
as possible to the designer, WTG remains very expressive
in comparison with existing models. Furthermore, its easy
conversion into STG allows the re-use of all the previous work
and tools build by the asynchronous community.

In order to further increase the ease of access, we describe a
set of strategies for the design flow. These range from ensuring
synthesizability by following a set of guidelines to go around
synthesis issues by allowing timing assumptions. Yet more
work still needs to be done in this area, as these strategies
currently lack proper implementation and support for WTG.

ACKNOWLEDGEMENTS

This work was supported in part by funds from the Spanish
Ministry for Economy and Competitiveness and the Euro-
pean Union (FEDER funds) under Grant TIN2017-86727-
C2-1-R and in part by the Generalitat de Catalunya under
Grant 2017 SGR 786 and Grant FI-DGR 2015. WORKCRAFT
design automation for WTGs was sponsored by EPSRC Im-
pact Acceleration Account under grant Waveform-based design
flow for A4A circuits.

REFERENCES

[1] J. Spars and S. Furber, Principles asynchronous circuit design. Springer,
2002.

[2] S. Nowick and M. Singh, “Asynchronous design — part 1: Overview and
recent advances,” IEEE Design & Test, vol. 32, no. 3, pp. 5-18, 2015.

[3] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and
A. Yakovlev, “Benefits of asynchronous control for analog electronics:
Multiphase buck case study,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pp. 1751-1756.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “A region-based theory for state assignment in speed-
independent circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 16, no. 8, pp. 793-812, 1997.

[5] W. Belluomini, C. Myers, and U. Hofstee, “Verification of delayedreset
domino circuits using Atacs,” in International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), 1999, pp. 3—12.

[6] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for
asynchronous circuits based on STG unfoldings and incremental SAT,”
Fundamenta Informaticae, vol. 70, no. 1-2, pp. 49-73, 2006.

[71 J. Cortadella, A. Moreno, D. Sokolov, A. Yakovlev, and D. Lloyd,
“Waveform transition graphs: A designer-friendly formalism for asyn-
chronous behaviours,” in International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2017, pp. 73-74.

[8] G. Borriello, “A new interface specification methodology and its appli-
cation to transducer synthesis,” University of California, Berkeley, Tech.
Rep., 1988.

[9]1 K. Yun, D. Dill, and S. Nowick, “Synthesis of 3D asynchronous state

machines,” in International Conference on Computer Design (ICCD),

1992, pp. 346-350.

P. Vanbekbergen, C. Ykman-Couvreur, B. Lin, and H. De Man, “A

generalized signal transition graph model for specification of complex

interfaces,” in European Design and Test Conference (EDAC), 1994, pp.

378-384.

A. Yakovlev, A. Petrov, and L. Rosenblum, “Synthesis of asynchronous

control circuits from symbolic signal transition graphs,” in Asynchronous

Design Methodologies, ser. IFIP Transactions, S. Furber and M. Ed-

wards, Eds., vol. A-28. Elsevier Science Publishers, 1993, pp. 71-85.

D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years

later,” in This asynchronous world. Essays dedicated to Alex Yakovlev

on the occasion of his 60th birthday, A. Mokhov, Ed. Newcas-
tle University, 2016, available online http://async.org.uk/ay-festschrift/
paper25- Alex-Festschrift-2ed.pdf.

V. Khomenko, M. Schaefer, and W. Vogler, “Output-determinacy and

asynchronous circuit synthesis,” Fundamenta Informaticae, vol. 88,

no. 4, pp. 541-579, 2008.

J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kondratyev, L. Lavagno,

K. S. Stevens, A. Taubin, and A. Yakovlev, “Lazy transition systems

and asynchronous circuit synthesis with relative timing assumptions,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 21, no. 2, pp. 109-130, 2002.

[10]

(11]

[12]

[13]

[14]

