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Abstract—Despite their attractiveness as metastability fil-
ters, Schmitt-Triggers can suffer from metastability themselves.
Therefore, in the selection or construction of a suitable Schmitt-
Trigger implementation, it is a necessity to accurately determine
the metastable behavior. Only then one is able to compare
different designs and thus guide proper optimizations, and only
then one can assess the potential for residual metastable upsets.
However, while the state of the art provides a lot of research
and practical characterization approaches for flip-flops, compar-
atively little is known about Schmitt-Trigger characterization.
Unlike the flip-flop with its single metastable point, the Schmitt-
Trigger exhibits a whole range of metastable points depending
on the input voltage. Thus the task of characterization gets much
more challenging.

In this paper we present different approaches to determine
the metastable behavior of Schmitt-Triggers using novel methods
and mechanisms. We compare their accuracy and runtime by
applying them to three common circuit implementations. The
achieved results are then used to reason about the metastable
behavior of the chosen designs which turns out to be problematic
in some cases. Overall the approaches proposed in this paper are
generic and can be extended beyond the Schmitt-Trigger, i.e., to
efficiently characterize metastable states in other circuits as well.

Index Terms—Schmitt Trigger, Metastability Characterization,
SPICE

I. INTRODUCTION

To use digital abstraction in electronic circuits we have to
“digitize” an essentially analog input, i.e. either assign logic HI
or LO depending on whether it is above or below a threshold.
In order to prevent oscillation of the output due to noise in
case of an input voltage close to the threshold – like in case of
a comparator circuit –, the Schmitt-Trigger (S/T) uses a higher
threshold for rising transitions than for falling ones, leading
to a hysteresis (blue lines in Fig. 1). This, however, directly
translates into a dependence of the threshold on the current
output state, which, in turn, implies a positive feedback from
the output to the input. As a consequence, the S/T must be
susceptible to metastability. This intuitive argument has been
more formally supported by Marino [1] already, and more
recently Steininger et al. [2] have detailed several practically
relevant scenarios where metastability may occur and where
it may not. While there exist analytic solutions to calculate
certain properties such as the threshold voltages [3], none have
been presented so far regarding metastability.

This research was partially supported by the SIC project (grant
P26436-N30) of the Austrian Science Fund (FWF).
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Fig. 1: Stable and metastable states of a latch (dots) and an
S/T (lines) forming the characteristic z-shaped curve.

Actually S/T metastability is detrimental to its popular use
for “cleaning” noisy input signals, or conditioning metastable
outputs produced by other elements. Therefore it is crucial to
fully characterize the metastable behavior of an S/T and, in the
ideal case, estimate a mean time between (metastable) upsets
(MTBU), as it is common with metastability in flip-flops. The
latter has been well researched since the seminal work by
Kinniment et al. [4], Chaney et al. [5], and Veendrick [6].
However, as it turns out, the S/T case substantially differs
by the fact that its input remains connected to the positive
feedback loop all the time, which ultimately results in the
S/T exhibiting a whole range of metastable voltages VM (Vin)
rather than just one as in the flip-flop case. This makes
the analysis and characterization way more complicated, and,
unfortunately, hardly any results are available, apart from the
mentioned papers [1] and [2].

Before it is possible to analyze the traces and probabilities
to enter and leave these metastable states, and thus achieve a
similar expression like the MTBU of a flip-flop, we need an
efficient and accurate approach to characterize a given imple-
mentation. In [2] the authors used transient analog simulations
to search for the metastable values, a very time consuming
procedure which includes lots of manual steps yet. In addition
they solely showed their analysis on a single circuit, a six-
transistor implementation for a 65 nm technology. Therefore
it is not clear whether the results are transferable to other
implementations and technologies as well.
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Fig. 2: Schmitt Trigger implementation studied in [1].

Contribution: While we cannot solve all the open prob-
lems mentioned above in this paper, we extend the work by
Steininger et al. in [2] by presenting and critically analyz-
ing different approaches to simulate/evaluate the metastable
behavior of an S/T. This not only includes the (meta-)stable
states but also the behavior in their surrounding. These data
are of interest when investigating more advanced features such
as the overall probability to enter metastability or how quickly
it is resolved. More specifically, we
• derive a more fine grained map (compared to [2]) of the

output derivative V ′out over the Vin−Vout plane, which we
use as basis for more accurate estimations and analyses
about the general behavior.

• determine all stable states, which partly lie in the unde-
fined voltage range1 for certain implementations making
metastable behavior very easily reachable.

• carry out a preliminary analysis on metastability resolu-
tion, which turns out be shaped exponentially (compara-
ble to the flip-flop) but with varying parameter τ(Vin).

• introduce a novel method, which is not limited to S/Ts,
that makes stable points metastable and vice versa.

• exploit plain DC analyses to determine metastability.
• evaluate the single approaches by characterizing three

common implementations and comparing the results
among each other and with the analytic results from [1].

This paper is organized as follows: In section II we briefly
review metastability of S/Ts followed by a description of the
proposed characterization methods in section III. Results and
discussion for three common implementations are shown in
section IV which is followed by a conclusion and an outlook
to future research possibilities in section V.

II. BACKGROUND

Metastability has been well researched for latches, formed
by cross-coupled inverters, since the seminal work by Kinni-
ment et al. [4] and Veendrick [6]. For these elements there
is even an equation for the mean time between metastable
upsets (MTBU) available which relies, besides others, on the
metastable resolution constant τC . The amount of stable (two)

1We call the voltage range above a well-defined LO and below a well-
defined HI, according to the logic specification, undefined. In a properly
functioning (metastability-free) circuit this range is crossed by steep tran-
sitions only.
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Fig. 3: Phase diagram of the S/T inspired by Marino [1]

and metastable (one) states is very small which is a direct
consequence of the decoupled input. Fig. 1 shows the single
states (dots), where Vin represents the value inside the loop.

A. Schmitt-Trigger Metastability

Unfortunately the situation is much more complicated for
the S/T since the input remains connected continuously and
hence has to be considered as well. For this purpose Marino [1]
modeled the S/T by a properly wired OpAmp (shown in Fig. 2)
and carried out analytic considerations. He used the phase
diagram (V ′out over the Vin–Vout plane, as shown in Fig. 3
with A equal to the amplifier gain and M being the output
saturation voltage) to divide the behavior in three different
regions, where the output in each is governed by the following
equations:

Region 1:
dVout
dt

= V ′out = −
1

τ1
(Vout − γ1) (1)

Region 2:
dVout
dt

= V ′out =
1

τ2
(Vout − γ2) (2)

Region 3:
dVout
dt

= V ′out = −
1

τ3
(Vout − γ3) (3)

The functions γ1 and γ3 represent the stable states while γ2,
which connects the former, the metastable ones. In contrast to
the latch there are now infinitely many (meta-)stable values
ranging from the lower (GND) continuously to the upper
(VDD) supply voltage. As was shown in [2] with the proper
input signal (exceeding the threshold and then steering back)
any of these values can be reached and held forever.

B. Schmitt-Trigger Metastability Characterization

The phase diagram as proposed by Marino is like a finger
print of a Schmitt-Trigger implementation and helps the de-
signer to understand and optimize the circuit. Therefore, in
this paper we are searching for ways to determine the phase



diagram in a fast, simple and yet accurate fashion for state-of-
the-art implementations. As analytic considerations are based
on certain abstractions, which are a good way to recognize
dependencies however lack accuracy especially for modern
technologies, we decided to base our analysis on SPICE
simulations.

1) Stable States (hyst): Let us first focus on γ1 and γ3.
These are very easy to achieve by starting two DC analyses,
one sweeping Vin from GND to VDD and one in the opposite
direction. The threshold voltages, VL and VH , are easily
recognized, as a small change on Vin leads to a major jump on
Vout. Please note that, in contrast to the analysis of Marino,
γ1 and γ3 are neither constant functions, nor straight lines in
real circuits. Instead the stable values start to deviate from
(GND/VDD) when the threshold voltage is approached (cp.
Fig. 1). For certain implementations this change is substantial,
as we will show in Section IV, and thus has to be carefully
analyzed. This is even more important as these states are
actually stable and thus much easier to reach than metastable
ones on γ2, i.e., simply by a rising input stopping at a specific
value (cp. [2]).

2) Metastable States: Far more interesting for us is how-
ever γ2. Simply connecting γ1 and γ3 by a straight line, as
derived by Marino, yields a first approximation, for more
accurate result we have to resort however to more advanced
methods. Luckily metastable states can be uniquely identified
by checking for V ′out = 0, a property that all points on γ1, γ2
and γ3 share. This immediately follows from the fact that one
can stay infinitely long in perfect metastability and of course
stable states.

Steiniger et al. [2] used transient analysis for this purpose.
In detail they observed for a pair of V̂in and ˆVout if Vout(t) in-
or decreased during a simulation run. Based on the result they
implemented a binary search algorithm for the value of ˆVout
in the next simulation until the desired accuracy was achieved.
This procedure was then repeated for numerous values of
Vin along γ2. Since this is a very time consuming task we
searched for more ingenious solutions and even found several
alternatives, which we will describe in the following.

III. METHODS FOR OBTAINING γ2

Efficient and precise ways to determine the (metastable)
characteristics of a Schmitt-Trigger are key for reliability
predictions or comparisons between different implementations.
In the following we will elaborate several approaches to deter-
mine the metastable states (γ2), as this is currently the biggest
challenge. For accurate simulations we resorted to HSPICE
using a 28 nm UMC technology library. Comparisons with an
older 65 nm technology showed no qualitative difference so
we restrict ourselves to presenting the former in this paper.
Our circuit model is pre-layout, but we consider a capacitive
output load of CL = 2 fF in our AC analyses.

A. Static Analysis of Grid Points (map)

Recall from Section II-B2 that all (meta-)stable states share
the property V ′out = 0. As a first approach we can cover the
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Fig. 4: Output derivative for transient and static simulations.
The deviation stays constant as the projection (opaque green
dots) shows.

Vin-Vout plane with a regular grid and determine V ′out for each
grid point to find where it gets (close to) zero. Albeit this
initially appears quite untargeted and laborious, it provides
us with a map that will turn out valuable for analyzing the
resolution behavior later on.

Listing 1: deriving Iout in Vin-Vout plane in SPICE
.DC VIN 0 supp wid th SWEEP VOUT LIN c o u n t 0 supp
. PROBE DC I (VOUT)

Our approach uses built-in commands from SPICE only, as
detailed in Listing 1: We sweep Vin from 0 to VDD (supp) in
steps (width) corresponding to the grid. In the same way Vout
is swept (count = #steps). For this purpose we replace the
load capacitance by a voltage source and actually measure
the current through the latter (visible in the second code
line). In comparison to the approach from [2], where the
authors performed transient analysis and picked V ′out, this is
considerably faster but serves the same purpose, albeit we get
Iout as a result instead. To compare the results of static and
transient simulation (see Section III-B) in Fig. 4 we can use
the transformation V ′out ·CL = Iout, which leads however to a
constant deviation. That discrepancy is a result of the internal
capacitance of the S/T which we determined to be 1.854 fF
and whose value stays constant even for varying values of CL.
In the following we will therefore use ĈL = CL + 1.854 fF
for transformations between V ′out and Iout.

Note that our proposed DC analysis does not reflect poten-
tial dynamic effects: In real circuits V ′in most certainly has an
effect on V ′out through coupling capacitances. However, in our
view this only restricts the possible paths a metastable state
can be reached, but not the actual value itself, since all (meta-
)stable states are per definition static, i.e., V ′out = 0. Therefore
we consider it fundamental to determine the static, general
case in the first place – and this is what the DC analysis
properly does.

Obviously we won’t be lucky enough to hit Iout = 0 (or
V ′out = 0) exactly this way, but those pairs of grid points



between which Iout changes its sign already confine γ2. In a
first step contour plots can be used to draw an (interpolated)
contour line at Iout = 0, i.e., at the (meta-)stable line.
Furthermore the map may serve as starting point for more
precise estimations.

B. Transient Estimation (expAC)

When starting transient simulations in the grid points con-
fining γ2 (changing sign of Iout) one observes traces that
are nearly perfect exponentials (see Fig. 4), as predicted by
theory [1]. This has major implications. Firstly, it suggests that
the resolution behavior is comparable to the flip-flop, with the
main difference, however, that the resolution time constant τ is
now not unique but varies with Vin. This will become apparent
in Section IV.

Secondly, it gives us the possibility to infer the metastable
voltage by recording just a short piece. Assume we start in an
arbitrary point (V̂in, V̂out) and observe the output, i.e., Vout(t)
and V ′out(t) in the course of the simulation. Since we assume
the trace to be exponential we get the following relations:

Vout = VM ± Vx · exp
(
t− t̂
τ

)
(4)

V ′out = ±
1

τ
· Vx · exp

(
t− t̂
τ

)
(5)

where t̂ denotes the unknown time shift between our measure-
ment and the actual resolution curve and Vx > 0 the unknown
scaling factor of the exponential. Let us now apply the natural
logarithm on |V ′out| leading to

ln(|V ′out|) = ln

[
1

τ
· Vx · exp

(
− t̂
τ

)]
+
t

τ

By applying a linear fit to our simulation results we can
easily determine the value of τ , which is inversely proportional
to the slope. Going back to Equation (4) and expressing the
exponential term by V ′out finally yields:

VM = Vout ∓ τ · V ′out
VM is obtained by plugging in a single pair of measured

values for Vout and V ′out. Note that we actually do not
have to know the absolute time (or the parameters t̂ and
Vx, respectively): We used the time and value difference
between some measured values of V ′out to determine τ , while
a consistent pair of (Vout, V ′out) sufficed to finally obtain VM .

For valid results, two aspects have to be considered:
• Initially, V ′out observed by the transient analysis changes

disproportionately (cp. Fig. 4) leading to a bad fitting. As
a consequence the first samples have to be removed.

• At some point the waveform changes from “leaving
metastability” (increasing |V ′out|) to “approaching stable
value” (decreasing |V ′out|). By choosing initial conditions
and simulation time it must assured that this point is never
reached by the simulation.
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Fig. 5: Absolute deviation between VM predictions based on
the resolution direction for different circuit implementations
(cp. Section IV).

C. Static Estimation (expDC)

In accordance to the transient measurements of V ′out we also
see an exponential growth of the static Iout as we follow a
resolution trajectory, which is reasonable as they only differ
by a constant factor. Therefore it is quite natural to apply the
same estimations as before also on Iout. One can rewrite the
expressions in Equation (5) to

V ′out =
Iout

ĈL

=
1

τ
· (Vout − VM ) (6)

ĈL/τ can be achieved by the slope of Iout over Vout, i.e., by
fitting the data from the Iout map. Plugging an arbitrary Vout,
the corresponding Iout and the known ĈL/τ into Equation (6)
finally yields the metastable voltage VM .

Compared to the transient analysis the calculations on
Iout are far easier to execute and thus less prone to errors.
Both provide however the possibility to improve the limited
accuracy of tools (due to numerical issues).

Please note that for both, expAC and expDC, τ and
VM can be determined twice: either for traces resolving the
metastability to GND or for such resolving to VDD. Ideally
both would render the same results. In reality, however, we
get slightly different values for τ (which may indeed have a
physical reason), and slight deviations in VM (most likely due
to numerical issues, which have an exponential effect). For the
latter Fig. 5 shows the difference between the predictions for
the curve resolving to VDD (V ↑M ) and GND (V ↓M ) for expDC,
whereat results for expAC are slightly worse. For better
accuracy we therefore determine VM (using the corresponding
τ ) as the point where the two resolution curves meet.

D. Binary Search (binary)

A more pragmatic approach is binary, where we sweep
Vin from VL to VH , and for each value a binary search is
performed to find a fitting value of Vout, i.e., where Iout is



zero. This is very similar to the approaches in [2], [7] with the
difference that we use the static current instead of the transient
output derivative.

To our advantage SPICE has a mechanism to run a binary
search built-in (called “Bisection”) which simplifies the task
a lot. The corresponding code is shown in Listing 2. The first
line states that we want to bisect, and at most 40 steps shall
be carried out. Note that this narrows down the initial interval
by a factor of 240, so most of the time the algorithm quits
earlier, as the demanded accuracy is reached first.

Listing 2: bisection in SPICE
. model optMod1 OPT METHOD=BISECTION ITROPT=40
. param o u t Va l = optFunc1 ( vdd / 2 , vout VL , vout VH )
.DC VIN i n V a l i n V a l 1 SWEEP OPTIMIZE= optFunc1
+ RESULTS= optMeasure MODEL=optMod1

The second line sets the parameter outVal which determines
the output voltage and the range within which it shall be swept.
We used here the value of Vout at Vin = {VL, VH} as we have
to be sure to avoid the stable states. The search itself always
starts at VDD/2. The last line finally launches the DC analysis
for the input voltage in the range [inVal,inVal], meaning that
we execute this search for each value of Vin separately, since
we were not able to convince SPICE to do that automatically.

E. Metastability Inversion (inversion)

The reason why metastable states are hard to characterize
is the fact that it is close to impossible to actually reach
them even in simulations, since, by definition, the system
consistently works towards leaving them. A good physical
analogy is the inverted pendulum. Stable states, in contrast,
are naturally assumed by the system. This observation suggests
reduced characterization effort if the cases could be reverted,
i.e., stable points are made metastable and vice versa.

With this in mind, let us model the system in the metastable
state as an (output) current source that is controlled by the
output voltage, namely

Iout = K · (Vout − VM )

A positive current charges the load capacitance, i.e., in-
creases Vout, which in turn increases the current even more.
For the voltage gradient we get

V ′out =
Iout

ĈL

=
K

ĈL

· (Vout − VM )

which yields an exponential function for Vout, more specif-
ically, with K > 0 an exponentially growing one. We can,
however, invert the sign of K by connecting a current source
IL to the output, whose current is controlled by Iout, i.e.

IL = p · Iout.
Mathematically, this changes the current into the capaci-

tance from Iout to (1− p) · Iout, and we get

V ′out =
(1− p) · Iout

ĈL

=
(1− p) ·K

ĈL

· (Vout − VM )

Ip

In Iout
Vout

..
.

..
.

CL

(1− p) · Iout

p · Iout=IL

Fig. 6: Circuit setup to invert (meta-)stable points.

which, for p > 1, yields a decaying exponential function and
hence a stable solution.

Intuitively spoken, any positive Iout is overcompensated
by IL, such that CL, instead of being loaded by Iout, now
gets discharged through that portion of IL that exceeds Iout.
Therefore ultimately Vout is reduced, and, as a consequence,
Iout as well. This naturally drives Iout towards zero, which
represents exactly the state that is normally metastable. Fig. 6
shows the resulting circuit for Iout > 0.

Overall the added current source serves as a proportional
controller (for the current) that stabilizes the “inverted pen-
dulum”. Implementing such an element in SPICE, and simi-
larly in other simulation suites, is straightforward. The only
challenge left is to choose a proper value for p, which is a
very delicate task: In essence, p contributes to the gain in
the control loop and is hence, according to control theory,
crucial for stability. Choosing p too low (very close to 1) leads
to slow stabilization and consequently long simulation times.
Choosing p too high, in contrast, causes oscillating behavior.

In order to come up with a guideline for a reasonable choice
of p we have used the example of the implementation shown
in Fig. 12b that employs the same inverter loop as the latch.
Consequently we could build on the model from Veendrick [6].
By extending the latter with our controlled current source
we can approximate the behavior of the dynamic system
comprising S/T and controller. From that it turns out that the
right choice for p is

p = 2A2

(
1 +

√
1− 1

A2

)
≈ 1 +

1

4A2
(7)

with A2 being the product of the (DC) gains of each of the
two inverters in the model. Note, however, that the inverter
gain is not constant, so the “ideal” p will change as we move
along γ2. In our experiments we chose the highest gain, i.e.
the one in the middle of the inverter’s transfer curve, which
yielded very useful values for p. Luckily SPICE supports the
determination of the loop gain, so A2 can be obtained by
the code piece shown in Listing 3, whereat we connected a
constant voltage source to the input and set the initial value
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Fig. 7: Application of the Newton-Raphson algorithm to find
a stable value (marked by black dot) of Vout for fixed Vin.

of Vout appropriately. For the complete code refer to the tool
described in Section IV.

To get as close as possible to the DC case we measure
the gain at very low frequencies (1× 10−5 Hz), which is
shown in line 3 in the listing. Please note that different S/T
implementations will lead to different feedback models, such
that Eq. (7) cannot be applied directly in these cases.

Listing 3: measuring loop gain in SPICE
. ac dec ’ 10 ’ ’ 0 ’ ’ 10 ’
. l s t b mode= s i n g l e v s o u r c e = v l s t b
. measure l s t b g a i n l o o p g a i n a t m i n i f r e q

The method of metastability inversion is not restricted to S/T
but can easily be extended to also determine the metastable
point of other circuits. We verified this by introducing a current
source into a “latch-style” inverter loop (i.e. with unconnected
input) which then quickly approached its metastable value.

F. DC Analysis (static)

With metastability inversion transforming metastable states
into stable ones we could use DC analysis to collect the values
on γ2. While this works well, we discovered in the course
of our research, that already DC simulations on the unmodi-
fied implementation are capable of delivering the metastable
values. The reason for that is the Newton-Raphson algorithm
which SPICE uses to determine the DC operating point [8].
Let us take a closer look at this procedure: Assume that we
fixed Vin in the metastable region and want to determine a
stable Vout (we already know that there are exactly three
possibilities). For a stable value the current coming from the
p-stack (Ip) and the one flowing into the n-stack (In) at the
output have to be equal. Determining those currents for various
values of Vout gives us traces like those shown in Fig. 7. The
three stable states marked by black dots are clearly visible. To
start the algorithm we have to make a guess, say we pick V1.
The next task would be (1) to determine the derivative of Ip in
this point, i.e, I ′p(V1), (2) find the crossing point of the latter
with In and finally (3) restart the procedure with Vout = V2,
i.e., the value in the crossing point. If we start close enough

VDD

0.3818 V

0.4454 V

Vin Vout

Fig. 8: Flip-flop half used for DC metastability analysis.

to VM the algorithm will approach it automatically. It can
be seen that a deviation of several tens of millivolts can be
tolerated for the initial guess, an accuracy easily achievable
by connecting the last stable values of γ1 and γ3 by a straight
line.

After the first metastable value was found others follow
quickly as the current value of VM serves as starting point for
the search on the next one, whose value does not differ much
and is thus found very rapidly.

For that reason the most important task is to get a good
initial guess for the first value. If we are too far off, we will
find the stable state and thus end up with part of the hysteresis
that we already know. Assume we start in the point on γ2 that
is closest to γ3. Due to this close proximity we can infer that
for that choice the metastable value will be close to the peak
value for Vout on γ3. Therefore, if we choose a slightly higher
value for Vout we end up with a very good initial guess, since
our starting point is closer to γ2 than to γ3. The amount of
increase is uncritical and can actually be chosen rather big, in
our experiments up to VDD/4.

We varified our approach also on a flip-flop half, i.e., a loop
of asymmetric inverters (width ratio 1/10) with a transmission
gate (see Fig. 8) in a similar fashion. In detail the input values
to the first and second inverter were set to VDD/2 = 0.45V
and then SPICE was asked to calculate the operation point.
As a result we got Vin = 0.4454V and Vout = 0.3818V.

IV. EVALUATION

Provided that an appropriate SPICE description of the
circuit is available, the complete characterization process can
be carried out fully autonomous. Thus we implemented all
the approaches presented in the previous section in a small
tool which is publicly available2. For the simulations presented
in the following, we used a 28 nm UMC technology library
(VDD = 0.9V) and determined the (meta-)stable states for
1000 equally spaced values of Vin.

The aim of these simulations is twofold:
• We want to evaluate and compare the presented methods

in a practical application. To this end we apply them for
characterizing three different S/Ts: a) the standard 6T
implementation (std) b) an inverter loop [9] (loop) and

2https://github.com/jmaier0/meat
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Fig. 9: Simulation results for std.

c) an adjustable hysteresis one [10] (adjust), as other
circuits in literature are heavily based on these.

• The analysis and comparison of the S/T implementations
is as such important. In particular it is interesting to see
how far the behaviors differ among each other and also
from the theoretical results [1].

A. General Remarks

In principle, the resolution of all presented methods can
be made as high as desired. In practice there exist however
limitations such as the finite simulator precision (number
format), the required run time and the available output file
formats. The latter caused heavy problems as we only managed
to export results with 7 positions after the decimal point (solely
for binary we achieved 10 by using a different method).

The accuracy of the results is somewhat limited by the
achieved resolution and the assumption of a perfectly ex-
ponential resolution trajectory for expDC and expAC, the
simulation time for inversion, and in general by the
accuracy of the circuit and transistor models underlying the
SPICE simulations (which we will neglect from now on, as
this issue is immanent to all simulation approaches). To verify
that the metastable states obtained through the various methods
are indeed accurate, we started transient simulations in each of
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Fig. 10: Deviation of Vout after 200 ps.

them and measured the output deviation after 200 ps. Fig. 10
shows the results for std. As one can see binary, which
predicts VM with a resolution of ±5 nV, has clearly the lowest
deviation and thus is the most accurate. Therefore we will use
binary as golden reference for all further analyses, rather
than continuing with the computationally intensive transient
simulations for accuracy validation.

Where the single methods differ, however, is the effort
one needs to invest. To quantify that, we try to approach
the metastable value reasonably close (±10 µV) and then
compare the required run times. Table I gives an overview
of the achieved results. As the hysteresis differs among the
implementations, the number of grid points between VL and
VH (metastable grid points), and thus the run time, varies.
Nevertheless, for the same circuit a comparison among differ-
ent methods is still valid.

TABLE I: Overview of simulation times

simulation time [s]
method std loop adjust
metastable grid points 282 378 125

hyst 1.825 2.012 1.842
binary 232.279 349.224 104.585
map 310.826 318.153 362.692
expAC 526.149 806.603 233.369
expDC 2.047 2.481 1.310
inversion 901.588 1552.542 447.089
static 0.850 0.939 0.853

Since the target of ±10 µV was quite deliberately chosen,
let us review the impact of target accuracy on the run time for
each method:

binary The amount of binary steps has hardly any impact
on the runtime. We experienced a reduction by only 10 %
when switching from 40 to 20 iterations with a accuracy
loss of four orders of magnitude.

map The run time scales linearly with the amount of points
which is quite natural as each one is determined by a
separate DC analysis.

expAC & expDC The accuracy increases only with a more
accurate map. Apart from that, their simulation time is
constant.
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Fig. 11: Simulation results for loop.

inversion The chosen gain p of the current source has a
high impact on the simulation time. Higher gain decreases
run time but also yields more instabilities, e.g. oscilla-
tions. Increasing the simulation period helps to resolve
these, however the run time increases almost by the same
factor.

static The simulation time is constant, and always the
highest possible accuracy is delivered. In our setting,
however, the output data format limited the attainable
(exportable) accuracy.

Clearly there is still room for optimizations such as
• determining Iout solely for grid points close to the

metastable line for map
• better choice of the gain p in inversion or even

improving the whole control loop dynamics by an integral
or differential part

• non-uniform simulation time for inversion
which we left for future research. For this reason the presented
run times shall only be used to get an intuition how long the
characterization approximately takes.

Since we use both transient and DC analyses overall we
experienced that the former are much harder to handle, as
more parameters have to be defined, primarily the time period
of simulation. In addition further complications such as cutting
the first part of the simulation in expAC or an appropriate gain
for the current source in inversion have to be overcome.
In total DC analyses achieve better results in shorter time with
simpler methods. During our research we even realized that
most methods, in particular static, are also applicable to
other problems, such as determining the metastable value of
a flip-flop. We consider this more a lucky coincidence than a
designed feature as it is a side effect of the utilized Newton-
Raphson algorithm.

B. Standard Implementation (std)

To compare our results with those from Steininger et al.
we first analyze the implementation used in [2]. The transistor
level circuit is shown in Fig. 12a.

The achieved (meta-)stable line (shown in Fig. 9a, γ1 and γ3
solid, γ2 dashed) fits very well to the results published in [2].

Thus we conclude that our tool works as expected. The same
figure also shows a heat map of the output current Iout in the
Vin-Vout plane. Please note that the Iout-spacing of the contour
lines is linear. This means that close to the metastable line Iout
changes only moderately, as expected from the exponential
resolution trajectories predicted by theory.

In contrast to the calculations of Marino [1], however, whose
V ′out only depends on the distance to the final, stable state, our
results show additional dependencies of Iout. This can be seen
very clearly by observing its maximum and minimum, which
both are near VDD/2.

Fig. 9b shows the (absolute) deviation of the predicted
metastable voltages from the ones of binary . Please note
that with the finite export number format deviations below
5× 10−8 V were out of reach. From our result we therefore
deduce that static and binary are capable of delivering
the same accuracy.

Finally 9c shows the (inverse of the) resolution constant
ĈL/τ determined by expDC. It significantly varies with Vin,
with the biggest (best) value in the middle and the lowest
at points close to the stable states, meaning that the latter
are left more slowly. The values achieved for the up- and
down-resolving waveform are shown separately, but the graphs
nicely overlap.

The significant change of τ raises the interesting question
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Fig. 12: Transistor level circuit implementations.
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Fig. 13: Simulation results for adjust.

whether the quick resolution from the middle will cross the
far distance to the saturation faster than the slow one from the
borders that only has a short distance to cross. In consequence
one might determine a worst starting point from which reso-
lution takes the longest. However, the answer heavily depends
on what is considered the threshold for “resolved”, and, most
importantly, on how deep the initial metastability was (recall
that resolution time is essentially unbounded).
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Fig. 14: Memory loop gain of loop.

C. Inverter Loop (loop)
The second circuit we investigate (transistor level imple-

mentation see Fig. 12b) is essentially a latch whose input
can not be decoupled any more, i.e., a plain inverter loop
(preceded by an additional inverter). The hysteresis is defined
by the relation between the driving strength of the first inverter
(transistors Mp1 and Mn1) and the weak feed back one (Mp2

and Mn2). For the latter we reduced the width to one tenth.
The Iout map (see Fig. 11a) significantly differs from the

one of std. First of all the contour lines are horizontal, much
more like the prediction made by Marino in [1]. Secondly
the current changes much more rapidly than before, which
also leads to much higher values for ĈL/τ (three orders of

magnitude, see Fig. 11c), i.e., metastability is resolved much
quicker. According to Eq. (7) p can be calculated using the
memory loop gain shown in Fig. 14. Picking the highest value
(A2 = 700) results in p = 1.000357 which was confirmed
to be a suitable value by simulations. Increasing p however
quickly leads to oscillations of Vout, whereat metastable points
with higher loop amplification become instable earlier.

D. Adjustable Hysteresis (adjust)

In some applications it is important to adjust the hysteresis
of the S/T during operation. One circuit that can be used for
this purpose is shown in Fig. 15. The value VB on an additional
input alters the position and width of the hysteresis. In our
simulations we used VB = VDD as in this case the hysteresis
is the widest and thus the most stable one. Anyway, similar
behavior could be observed for other choices of VB as well.

The first remarkable thing in Fig. 13a is the relatively large
peak value of Vout on γ3. It reaches up to about 0.3V which
is one third of the supply voltage and almost certainly in
the forbidden region. Please recall (see Section II-B1) that
those states can be easily reached by a ramp stopping at a
defined value, implying that resilience against metastability is
weakened a lot. The map furthermore reveals nearly vertical
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Fig. 15: Circuit implementation of adjust.



contour lines in the left half of the plot. This suggests, that
in this region the output slope is constant, i.e., we get ramps
at the output. Very surprisingly, Iout does not seem to depend
on the distance to the stable state at all, as it was calculated
by Marino [1].

The values of ĈL/τ (Fig. 13c) are comparable to std .
However, since the stable states from below reach far into the
mid-voltage region the graph is not symmetric any more.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented several ways to charac-
terize the metastable behavior of a Schmitt-Trigger including
estimations that increase accuracy beyond numerical precision,
a novel method to convert metastable states into stable ones,
and plain DC analysis that turned out to be already sufficient
to accurately determine metastability. By applying them to
three common CMOS implementations we not only verified
that they work properly but were also able to compare them,
giving an edge to DC rather than transient methods regarding
accuracy and run time. At the same time simulation results
revealed that the metastable behavior only partially follows
the theoretical predictions made in the past.

For future work we want to use the results of this paper
as starting point to derive an expression for estimating the
reliability impact of metastable upsets in S/Ts, comparable to
the MTBU formula in flip-flops.
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