
Towards Hazard-Free Multiplexer Based

Implementation of Self-Timed Circuits

Alexander Kushnerov1*, Moti Medina2, Alexandre Yakovlev3
1Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

2Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
3School of Engineering, Newcastle University, UK

*E-mail: kushnero@ee.bgu.ac.il

Abstract—The cost of design, test and fabrication of self-timed

circuits remains prohibitive for their wider adoption in practice.

Addressing this issue, researchers are trying to find ways for rapid

prototyping of self-timed circuits in FPGAs. Combinational logic is

realized in FPGAs by look-up tables (LUTs), which are typically

built as a binary tree of 2-way multiplexers (MUX 2:1). This brings

us to the idea of using MUX 2:1 in self-timed designs particularly, in

quasi-delay-insensitive (QDI) circuits. Multiplexers however, realize

a binate (non-monotone) Boolean function and therefore may cause

logic hazards. A standard way for preventing these hazards requires

designing of special circuit for MUX 2:1. On the other hand, there

are indirect evidences that the multiplexers in some commercial

FPGAs are hazard-free. Based on this assumption, we propose an

original approach for realizing a multi-input C-element, which is

widely used in QDI circuits. This paves the way for using hazard-

free MUX 2:1 in more complex self-timed elements. All the proposed

circuits are designed and verified in a CAD tool Workcraft.

Keywords—binate function; C-element; consensus cube; hazard;

lookup table; multiplexer; QDI circuit

I. INTRODUCTION

Self-timed or asynchronous circuits do not use clock to ensure

the validity of signals and operate in the mode of request-

acknowledge. As per definitions in [1] this is called a compliant

operation mode between a circuit and its environment. The

compliant operation is often considered at the level of individual

logic gates. In [1], compliance is captured in the property of semi-

modularity. Let us briefly recall it here. A self-timed circuit is an

interconnection of logic gates. Each logic gate is defined by its

Boolean function. An output of a logic gate can be in a stable or

in an excited state. In a stable state its output is in logical 0 or

logical 1, and this value corresponds to the value of the Boolean

function of the gate. In an excited state the gate’s output value is

opposite to that of its Boolean function. The gate can thus either

switch to the new stable state or return to the previous stable state.

The effect of returning to the previous stable state is often called

a hazard1, but in the theory of asynchronous circuits [1] it has

been defined more rigorously by the concept of “violation of

semimodularity”. There are two classes of self-timed circuits that

are considered to be hazard-free. One is speed-independent (SI)2

circuits [1], which assumes that gates have finite, but unbounded

delays, and wires have zero delays. This implies in particular, that

1 As per original definitions of D.A. Huffman [12] hazards are linked with the

property of Boolean functions (functional hazards) or logic gates (logic hazards)
to produce spurious transitions in circuits operating in fundamental mode.

the difference of delays in any branching of wires is also zero.

The other class is quasi-delay-insensitive (QDI) circuits [2] that

also assumes gates to have finite yet unbounded delays. With

respect to wires QDI assumes that the difference between the

delays of the branches is less than the minimum gate delay. This

assumption is called the assumption of an isochronic fork.

While in theory there is a subtle distinction between these two

classes, SI (or more precisely semimodular SI) and QDI, mostly

due to their different theoretical origins, in practice one can

always modify the description of the SI circuit and consider it as

a QDI circuit [3]. Therefore, avoiding some tedious explanations,

we will in the following use the more widely used term QDI,

which can be applied to semimodular SI circuits. Notably, in

order to meet the requirements of QDI circuits, one requires to

assume that each gate is atomic in the sense that its internal

structure only has a delay element associated with the gate’s

output, which we will call here the atomicity assumption. Within

the class of QDI, in this work, we also use the term output-

persistence [3], which allows us to extend the class of semi-

modular circuits with the circuits that have inputs from the

environment. So, the semimodularity condition can be applied

only to the outputs of the circuit’s gates.

A C-element (strictly speaking, Muller C-element [1]) is a logic

circuit realizing a latch function (see Section II), and widely used

in asynchronous systems for:

1) the implementation of information processing (data path)

with indication of inputs and outputs [4], [5],

2) the indication of the completion of transient processes

(completion detection) in the data path [6], [7], and

3) the coordination of concurrent processes (control path) [3].

Most of the existing methods for designing SI and QDI circuits

rely on the use of two-input or multi-input C-elements in either

original or generalized form [3], [4]. It is often the case, however,

that the library of logic gates may be restricted by the so-called

simple gates, such as NAND2 and NOR2. Hence a problem of

realizing a QDI circuit in a restricted basis arises. It is associated

with the problem of QDI decomposition [3], which is pertinent

for ASIC design, and even more so for FPGA-based design.

Nowadays, not only FPGAs, but entire FPGA development

boards are very low cost. This makes them extremely attractive

for prototyping self-timed circuits. The main obstacle for that is

the fact that FPGAs are intended for synchronous, clocked design.

2 In the original work of D.E. Muller [1] a circuit is called SI if it has only one

final class of behaviors reachable from the initial state. This is not sufficient to
prevent hazards and therefore the concept of semimodularity is introduced.

mailto:kushnero@ee.bgu.ac.il

The problems with self-timed design on FPGAs can be divided

into two groups. The first involves problems with hazard-free

realization of logic gates, and the second is related to delays in

programmable interconnects and wires. In this paper we consider

the problems only from the first group.

Traditionally QDI circuits are realized in monotone logic basis

(see Section II). This is not only because this basis is well-suited

for decomposition [3], but also because monotone gates in CMOS

technology occupy very small area on a chip. In some sense QDI

circuits behave like a latch-based oscillator and therefore minimal

basis for their realization differs from that for combinational

logic. A proof that for building semimodular autonomous (having

no inputs) circuits it is sufficient to have NAND2 and NOR2 gates

with a fanout of two is given in [6]. Thus, the inclusion of binate

(non-monotone) gates such as XOR and MUX into the realization

basis makes the hazard-free QDI design a non-trivial problem, as

has been shown, for example, in [8].

Let us recall how FPGAs make use of multiplexers and what

the internal circuit of 2-way multiplexers is. A LUT with 𝑛 inputs

is built in an FPGA as a binary tree of 2𝑛 − 1 elementary 2-way

multiplexers as shown in Fig. 1. It should be stressed that the LUT

structure presumes that all multiplexers are fanout-free. This will

be an important constraint for our implementations. Each gate

AO22 in Fig. 1 along with the inverter and buffer is a model of

MUX 2:1. Traditional realizations of such a MUX, starting from

a relay, are given in Fig. 2. Although the realization on relay may

seem too old, there are now LUTs built of nanoelectromechanical

(NEM) relays [9]. The on-resistance of a switch should be low in

the commutation of 0 and 1, therefore for 𝑉𝑑𝑑 ≤ 1𝑉 it is realized

on a transmission gate [10].

(a) (b)

Fig. 1: LUT with 3 inputs (a) and its model at the level of logic gates (b).

y
a
b

x

a

b

x

y

y
a

b

x

!y

Vdd

a b

x

(a) (b) (c)

Fig. 2: MUX 2:1 based on relay (a), pass-transistor (b) and tristate inverter (c).

3 The term “generalized” covers both “symmetric” and “asymmetric” C-elements,
depending on whether the set of literals in the set and reset are equal or not [4].

This, however, requires twice as many transistors as the pass-

transistor circuit in Fig. 2(b). Yet another variant of MUX 2:1 is

shown in Fig. 2(c). It is based on tristate inverter and used only to

switch the outputs of two adjacent LUTs [11].

Each pair of inverter and buffer in Fig. 1(b) control a single

layer of gates. In practice, the delays of the inverter and of the

buffer are made approximately equal [10]. The column C0…C7

in Fig. 1(b) corresponds to constants 𝑖0 … 𝑖7, which specify the

LUT function as follows:

𝑦 = ((𝑖0𝑎̅ ∨ 𝑎𝑖1)𝑏 ̅ ∨ 𝑏(𝑖2𝑎̅ ∨ 𝑎𝑖3))𝑐 ̅ ∨ 𝑐((𝑖4𝑎̅ ∨ 𝑎𝑖5)𝑏 ̅ ∨ 𝑏(𝑖6𝑎̅ ∨ 𝑎𝑖7)) (1)

Sometimes (1) is written in the SOP form with minterms 𝑎𝑏̃̃𝑐𝑖̃𝑗,

where 𝑗 = 0 … 7, and “∼” is a polarity. Let 𝑖0 … 𝑖7 in (1) are set

for example to [00111111]. This after factoring out, will give us

𝑦 = (𝑎̅ ∨ 𝑎)(𝑏𝑐 ̅ ∨ 𝑐(𝑏̅ ∨ 𝑏). In case if the delays of {IL1, BL1}

and {IL2, BL2} in Fig. 1(b) are zero, 𝑎̅ ∨ 𝑎 = 1 and 𝑏̅ ∨ 𝑏 = 1.

This gives 𝑦 = 𝑏𝑐 ̅ ∨ 𝑐, which turns into 𝑦 = 𝑏 ∨ 𝑐 if the delays of

{IL3, BL3} are zero. The problem of non-zero delays is linked to

logic hazards [12] and discussed in Section IV.

The objective of this paper is to study the feasibility of the MUX

basis for realization of hazard-free asynchronous elements, in

particular on LUTs with feedbacks. The contribution of this paper

is in demonstrating the examples of the MUX 2:1 based circuits,

which are hazard-free under different assumptions about delays

within MUX 2:1. The paper proposes two types of the circuits.

One is quasi-binate circuits obtained by mapping unate gates into

MUX 2:1. The other type is binate circuits built only from XOR

and transparent latches. An important contribution of the paper is

a set of new realizations of multi-input C-elements. Obtaining

these realizations can be described as a combination of structural

and behavioral refinements in the Workcraft CAD tool [13].

II. THEORETIC BACKGROUND

In this paper we need the following basic concepts [3]. A QDI

circuit is a netlist of logic gates. A logic gate is called atomic if it

instantaneously evaluates its Boolean function and has finite, but

unbounded delay. A Boolean function 𝑓 (𝑥1, … , 𝑥𝑛) is called

positive [negative] unate in variable 𝑥𝑖 if 𝑓(𝑥𝑖 = 1) ≥ 𝑓(𝑥𝑖 = 0)

[𝑓(𝑥𝑖 = 1) ≤ 𝑓(𝑥𝑖 = 0)]. A function that is not unate in 𝑥𝑖 is

binate in 𝑥𝑖. A function is called positive (negative) unate if it is

positive (negative) unate in all variables, otherwise it is binate.

Positive unate functions are also called monotone. Thus, the

MUX 2:1 function 𝑦 = 𝑎𝑥̅ ∨ 𝑥𝑏 is binate. A positive unate in 𝑥𝑖

function can be represented as 𝑓(𝒙) = 𝑓(𝑥𝑖 = 0) ∨ 𝑥𝑖𝑓 (𝑥𝑖 = 1)

and therefore is related to the concept of generalized C-element3.

It is given as:

𝑦(𝒙, 𝑦) = 𝑆(𝒙) ∨ 𝑦𝑅̅ (𝒙) (2)

where 𝑆(𝒙) and 𝑅(𝒙) are set and reset functions, which satisfy

the condition 𝑆(𝒙)𝑅(𝒙) = 0, i.e., 𝑆(𝒙) and 𝑅(𝒙) are orthogonal.

The behavior of a QDI circuit can be described in a concise and

convenient way by signal transition graphs (STGs) [14], [15]. An

STG is a particular type of a labeled Petri net, where transitions

are associated with the changes in the values of binary signals.

For example, a label “𝑥 +” is used to denote the transition of a

signal 𝑥 from 0 to 1 (a rising edge), while “𝑥 −” is used for a 1 to

0 transition (a falling edge). This labeling may differentiate

between input, internal, and output signals. The arcs in an STG

capture the causal relations between the signal transitions. An

STG can include (explicit) Petri net places with multiple input

and output transitions. Such an STG describes behavior with

choice, which is associated with the non-deterministic selection

of input transitions made by the environment. In this paper we

consider only the so-called distributive circuits4 [6], which are

described by STGs without places.

There are special algorithms for synthesizing QDI circuits by an

STG specification as well as algorithms using this specification

to verify the obtained circuits for hazard-freedom. The circuit can

be either autonomous or have inputs driven by the environment

(cf. compliant operation [1], [6]). For the case of verification, the

circuit is converted to the so-called circuit Petri net that itself is a

type of STG. If the circuit is autonomous, its STG is checked

against various properties, for example deadlocks. To verify the

circuit having inputs and outputs, its circuit Petri net is composed

with the STG model of the environment by means of parallel

composition. This forms an STG of the closed system.

In both synthesis and verification the most important property

of the STG is output-persistence [3]. An STG is called output-

persistent if every signal transition being enabled eventually fires,

that is once enabled transitions cannot be disabled. The internal

and output signals of a circuit must be output-persistent, and the

environment must provide persistency of the input signals.

Stricter definitions can be found in [3]. In this paper we use

Workcraft [13] for STG construction, simulation, verification and

synthesis of QDI circuits.

It is a common belief that the property of output-persistence

guarantees absence of hazards. That is true only in case if a QDI

circuit is built of monotone logic gates. However, gates with

inverted inputs can exhibit “hidden” hazardous conditions akin to

the problems of static logic hazards. This are gates that are binate

in some variables or purely binate. Let us consider the latter case

by example of the multiplexer function 𝑦 = 𝑎𝑥̅ ∨ 𝑥𝑏. If there is a

some delay in the inverter for 𝑥 in the cube 𝑎𝑥,̅ compared to the

non-inverting input in cube 𝑥𝑏, a takeover between these two

cubes may cause a hazard. Let for example 𝑎 = 𝑏 = 𝑥 = 𝑦 = 1

then cube 𝑥𝑏 = 1, while cube 𝑎𝑥̅ = 0. Let now 𝑥 switches from

1 to 0. Logically, there is a takeover of holding the output 𝑦 at 1,

between 𝑥𝑏 and 𝑎𝑥.̅ So the state 𝑦 = 1 should be stable. If the

delay of 𝑥 ̅is smaller than the delay of the AO22 gate realizing the

MUX and the delay model is inertial [3], the effect of takeover

will not cause any hazard. Otherwise, there is a potential hazard.

A standard way to prevent this hazard is to introduce a third,

consensus cube 𝑎𝑏, which would extend the minimal SOP form

of the MUX function to the so-called complete sum of prime

implicants. Unfortunately, the traditional MUX realizations, like

AO22 gate with input inverter, are fixed in their minimal form.

Therefore, in our design we should take special precautions. With

the aid of Workcraft we can detect cube takeovers for critical

transitions that cause violation of the consensus conditions.

4 The term “distributive circuits” stems from [1] and is linked to the distributive
lattice that is formed by the so-called cumulative states of the circuit. Later the

Summary on the circuit classification used in this paper:

1) QDI circuits are circuits insensitive to gate delays and wire

delays up to the isochronic fork assumption.

2) Semimodular circuits are (closed, i.e. having no inputs) QDI

circuits that are free from hazards. They assume all gates

being atomic, i.e. delays are attached to gate outputs.

3) Distributive circuits are semimodular circuits which exhibit

only AND causality (modelled by STGs without places).

4) Output-persistent circuits are QDI circuits that are free from

hazards, but unlike semimodular circuits, they can have

inputs. Output-persistence can be checked using Workcraft.

5) Circuits with binate consensus are QDI circuits in which for

every 2 terms with a binate variable, there is a consensus

cube, which prevents the circuit from a potential hazard.

6) Circuits that have binary consensus violation (such as those

using standard MUX) may experience static hazards unless

their binate elements are designed appropriately.

III. PROBLEMS WITH INITIAL DECOMPOSITION

Consider a 2-input C-element, defined by 𝑦 = 𝑎𝑏 ∨ 𝑦(𝑎 ∨ 𝑏).

Fig. 3(a) shows its realization on an atomic majority (MAJ3) gate

with zero-delay feedback. The STG determining the environment

of this C-element as two inverters is shown in Fig. 3(b).

(a) (b)

Fig. 3: C-element realized on atomic MAJ3 gate (a) and its STG (b).

A realization of the MAJ3 gate on a LUT does not guarantee that

the obtained C-element would be output-persistent. Moreover, as

shown in [16], such a C-element is hazard-free only in case of a

single input change (SIC), which is a special case of the protocol

shown in Fig. 3(b). However, SIC protocol is apparently used in

asynchronous systems built on FPGAs [17], [18], [19].

Fig. 4(a) shows a typical implementation of the MAJ3 gate on

a 3-input LUT. To analyze it, we use the circuit in Fig. 1(b), where

C0…C7 are set to [00010111]. Substituting them into (1), we get

𝑦 = 𝑎𝑏𝑐 ̅ ∨ 𝑐(𝑎𝑏̅ ∨ 𝑏(𝑎̅ ∨ 𝑎)), where 𝑎̅ ∨ 𝑎 is a problem. Indeed, if

IL1 and BL1 in Fig. 1(b) have different delays a hazard 1-0-1 will

appear at the output of L1M4. We consider the hazards in more

detail in Section IV that contains an important assumption. Based

on this assumption, we conclude that L1M4 will be always in 1.

Thus, the C-element can be represented by the circuit shown in

Fig. 4(b), which is reduced to the circuit shown in Fig. 5(a), if

each MUX is atomic and hazard-free.

0

1

(a) (b)

Fig. 4: C-element realized on a single LUT3 (a) and its simplified circuit (b).

behavior of distributive circuits was characterized by the class of STGs that has
no places with choice and merge [3], [6].

(a) (b)

Fig. 5: The circuit in Fig. 4(b) in another view (a) and merging of its gates (b).

Verifying the circuit in Fig. 5(a) in Workcraft, we get a warning

“output persistency is violated” and the following report:

Event 'a-' disables signal 'L1R'. Event 'b-' disables signal 'L2R'. Event 'L2R+'

disables signal 'y'. Violation trace: a+, b+, L1S+, L2S+, y+.

This implies that L1R, L2R and what is most important, the

output 𝑦 were excited, but did not fire. Let us now merge the gates

AND and OR with the MUX as shown in Fig. 5(b) and run the

verification again. Unfortunately, in this case we get the same

warning, but now:
Event 'a-' disables signal 'L1R'. Violation trace: a+, b+, L1S+, y+

In other words, there is no output hazard now, but the transition

of L1R from 0 to 1 is not acknowledged yet. This effect is known

in the context of sensitivity to the delays of wires [6]. If an input

wire has a fork, the delay of each branch must be zero, otherwise

the circuit may lose the property of output-persistence. In the next

section we show under what conditions the circuits realized on

MUX 2:1 can be hazard-free and output-persistent.

IV. PROPOSED APPROACH

The above problems do not allow us to consider the entire

LUT as an atomic gate and therefore we need to lower the level

of abstraction. If we have already obtained a QDI decomposition

of a circuit and want to map it into the MUX basis, we can assume

that MUX 2:1 is atomic. This provides output persistence, but

hazards may still appear due to internal delays.

Let for example the variables [𝑎, 𝑏, 𝑦] change according to the

transition diagram shown in Fig. 6(a). If this order of firings is

realized on the monotone gate 𝑦 = 𝑎 ∨ 𝑏, there are no hazards.

However, if we realize the same on the MUX 2:1 model shown

in Fig. 6(b), the single input change from 111 to 101 may lead to

a hazard 1-0-1 (logic static-1 hazard). Indeed, if IM is slower than

BM and 𝑏 is changing from 1 to 0, then the bottom AND forces

the OR to switch from 1 to 0. It can be shown that other input

changes (single and multiple5) do not cause hazards.

With the transition diagram shown in Fig. 7(a) the situation is a

bit different. Here, we realize 𝑦 = 𝑎̅ ∨ 𝑏, and the diagram contains

two transitions (𝑎 − and 𝑎 +) that may lead to hazards in the

MUX model shown in Fig. 7(b). For example, if BM is slower

than IM and 𝑏 is in 1, the transition 𝑎 + leads to a hazard 1-0-1.

 1
(a) (b)

Fig. 6: Transition diagram for 𝑦 = 𝑎 ∨ 𝑏 gate (a) and its SOP model with
external inverter and buffer (b).

5 Note that a hazard-free MUX 2:1 can be used for building multilevel circuits that

are hazard-free under single and multiple input changes [29], [30].

1

(a) (b)

Fig. 7: Transition diagram for 𝑦 = 𝑎̅ ∨ 𝑏 gate (a) and its SOP model with

external inverter and buffer (b).

The fact that 𝑎 − is followed by 𝑎 + does not present a serious

cause for concern since we assume that the delay of propagating

the 𝑎 − through IM and BM is considerably smaller than a

concurrent path that exists in the circuit. As will be shown in all

examples of our circuits for C-elements, this constraint of relative

timing (for definition see [20]) easily holds. Thus, the only

concerning case would be the cube takeover described above in

Fig. 6 and Fig. 7. Of course, these hazards can be prevented in the

standard way, but there is no such an option in FPGAs.

On the other hand, the very fact that the circuit in Fig. 2(c) uses

the tristate inverter implies that the MUX can hold the previous

state6 on the output capacitance. Moreover, it is assumed in [8]

that the pass-transistor based MUX in Fig. 2(b) holds the previous

state longer than the difference between the delays of BM and IM.

Based on this assumption we can claim that the mapping of any

monotone gate (with no more than 3 inputs) into MUX 2:1 will

be hazard-free. The remaining question is how “genuine” binate

gates will map into MUX 2:1, which is used for example, to

realize 𝑦 = 𝑎𝑏̅ ∨ 𝑏𝑦. In this case we have to assume that the

following conditions are satisfied: transition 𝑏 + must happen

well before 𝑎 +, and similarly, well before 𝑎 −. Then, if 𝑏 −

happens in parallel with 𝑎 + or 𝑎 −, we can again rely on the

temporary retention of the MUX state on the output capacitance.

A general procedure for designing QDI circuits in the MUX 2:1

basis from the STG specification can be formulated as follows:

1) synthesize a complex gate circuit from a given initial STG.

2) if the obtained circuit fits the fanout-free structure of a LUT,

map it into MUX 2:1, else refine the STG and go to 1).

3) verify the MUX circuit for the absence of deadlocks and for

output persistence. If both of these verifications succeeded,

end, else correct the STG and go to 1).

The synthesis here means mapping into gates that are specified in

the library. Since MUX 2:1 has 3 inputs, we restrict the Workcraft

library by gates having no more than 3 inputs. The second step of

the procedure is non-formal and may require a lot of iterations.

To get around this obstacle, we start from a circuit that is already

realized on simple gates and potentially suited for realization on

a LUT. Such a circuits will be called a “prototype”. To fit it to the

structure of a LUT, we convert “problematic” forks (nodes) to

wires. To this end, we first convert the circuit along with the given

environment to the circuit Petri net. Then we contract some signal

transitions and go to 1) to see how this affects the circuit structure.

Once a suitable circuit has been obtained, we map its gates to

the MUX basis using the stamps shown in Table I. Each stamp is

specified by an admissible behavior obtained by a projection of

an STG describing the entire circuit on the corresponding gate.

All the listed behaviors require MUX 2:1 to be hazard-free.

6 This state holding is reminiscent of what happens in a dynamic C-element, whose

generalization can be used in acyclic charge-storage circuits introduced in [31].

Table I: Some behaviors realized by 2- and 3-input combinational gates and
latches, which can be replaced by the corresponding MUX 2:1 stamps.

№ Behavior Gate/Latch MUX stamp

1

0

2

 1

3

 0

4

1

5

6

7

8

9

10

11

It is important to stress that there are such behaviors for AO21

and OA21 gates and based on them latches that cannot be realized

by a single MUX 2:1. For example, the STG shown in Fig. 8

describes two unate circuits of a C-element [20], [21] which have

no equivalent MUX 2:1 realization. This counterexample allows

us to conjecture that if the used MUX 2:1 are hazard-free, then

quasi-binate circuits (considered in the next section) is a subset of

the circuits realized in the basis of 3-input AOI and OAI gates.

Fig. 8: Behavior that cannot be realized on two MUX 2:1.

V. QUASI-BINATE CIRCUITS

If we consider MUX 2:1 as an atomic gate and assume that it

is hazard-free, the problems with realization of a C-element on a

LUT are reduced to finding an initial QDI decomposition. Let us

recall the basic facts about the operation of a C-element. AND

(OR) logic performs AND causal [3] synchronization in the phase

0-1 (1-0). Thus, we can select as prototypes some circuits that

exploit this property. The C-element is a latch that uses set (𝑆)

and reset (𝑅) signals. We can provide them in two different ways.

One is a full-cycle protocol with mutually exclusive 𝑆 and 𝑅. The

other way is with overlapping 𝑆 and 𝑅. In both cases we can use

the latch from row 9 of Table I, since 𝑆 and 𝑅 are unlocked in

7 Two circuits that have the same signals and are described by the same STG will
be called isomorphic.

terms of complete state coding (CSC) [3]. For the first case the

order of firings (projection) can be written as:

𝑆 + ⋯ 𝐿 + ⋯ 𝑆 − ⋯ 𝑦 + ⋯ 𝑅 + ⋯ 𝐿 − ⋯ 𝑅 − ⋯ 𝑦 − ⋯ (3)

where 𝐿 is an auxiliary latch, 𝑦 is an output of C-element, and

“⋯” means transitions of some internal signals. So, in the first

case we have to use a combination of a latch (to solve the CSC)

and indicator producing the output 𝑦. As seen from the following

projection, in the second case it is sufficient to have only the

output latch 𝑦, since the phases of 𝑆 and 𝑅 are matched with 𝑦.

𝑅̅ + ⋯ 𝑆 + ⋯ 𝑦 + ⋯ 𝑆 − ⋯ 𝑅̅ − ⋯ 𝑦 − ⋯ (4)

As a prototype for the first case we take the circuit from [22]

and use the procedure described in Section IV. The resulting

circuit is shown in Fig. 9(a). It is fully symmetric not only by the

structure, but also by behavior, as seen from the STG in Fig. 9(b).

Since this STG does not contain places, the circuit is distributive.

Note that we can detach the bubble from the AOB gate and turn

it to an external inverter, without violation of output-persistency.

Moreover, the wire connecting the latch AO with the SET and

RST gates can have arbitrary delay.

(a) (b)

Fig. 9: Unate circuit of a 3-input C-element (a) and its STG (b).

Let us introduce a response delay as the number of transitions of

internal signals needed to acknowledge the transition of a certain

input at the output. The response delays may differ for transitions

“+” and “−” and therefore we separate these delays by “/”. For

example, the response delay for 𝑎 + in Fig. 9(b) is determined by

trace SET-, AO-, SET+, while for 𝑎 − it is RST+, AO+, RST-.

We write it as “response delay: a±3/3”. Since NAND4 and NOR4

in Fig. 9(a) cannot be realized on MUX 2:1, we decompose them

as shown in Fig. 10(a). Fortunately, this decomposition preserves

output persistence. Now, using the MUX stamps from Table I, we

can isomorphically7 map the unate circuit of Fig. 10(a) into a

quasi-binate circuit shown in Fig. 11.

(a)

(b)

Fig. 10: Circuit in Fig. 9(a) after decomposition (a) and its STG (b).

1

0

Fig. 11: LUT suited quasi-binate circuit of a 3-input C-element isomorphic to

the circuit in Fig. 10(a). Response delays: a±8/8, b±7/7, c±6/6.

To map the circuit in Fig. 11 into an FPGA, we need two 4-input

LUTs, since L4S and L4R have a fanout greater than one. Note

that the chains L1S…L3S and L1R…L3R are actually diagonal

borders in the structure of LUT3 shown in Fig. 1(b). Thus, for

L1S…L3S the constants C0….C6 should be set to 1, and C7 to 0.

This means that for a 4-input LUT the constants C0…C14 should

be set to 1, and C15 to 0. The chain L1R…L4R is realized by the

second 4-input LUT, where C0 should be set to 1, and C1…C15

to 0. Note that the constants in Fig. 11 are formed inside the LUTs

when C0…C15 pass through MUX 2:1. Since we assume that the

multiplexers are hazard-free, the internal constants are stable.

Typically, the outputs of LUTs are connected pairwise to an

external multiplexer that realized on tristate inverter as shown in

Fig. 2(c). This can be either RMUX or MUX. However, we still

need an additional multiplexer and, what is often not available,

the corresponding interconnects. Thus, theoretically the circuit in

Fig. 11 can be mapped into an FPGA as shown in Fig. 12.

Fig. 12: FPGA implementation of the circuit in Fig. 11.

As in the circuit of Fig. 9(a), the wire connecting RMUX with

L1S and L1R in Fig. 11 can have arbitrary delay, therefore we can

weaken the requirement for its fork to the inputs of L1S and L1R.

If we want to have a larger number of inputs in the quasi-binate

circuit in Fig. 11, we can insert the corresponding MUX stamps

into the set and reset chains. Moreover, this circuit can be used

for realization of asymmetric C-elements like those used in NCL

logic [5]. It is evident from the STG in Fig. 10(b) that the shortest

response delay is 6, that is the circuit in Fig. 11 is relatively slow.

There is yet another problem that can appear in practice. As

evident from Fig. 12, the inputs 𝑎, 𝑏, 𝑐 are common for (physically

adjacent) LUT4a and LUT4b. This means that the forks in the

corresponding wires must be isochronic. Whether this can be

accomplished in commercial FPGAs is yet unknown. Let us

suppose that we can increase the speed by introducing additional

feedbacks. In this case the problem of isochronic forks turns into

a problem of minimal delay in each of the feedbacks [6], which

for some feedbacks can be solved by relative timing assumptions.

As a prototype for the second case (with overlapping 𝑆 and 𝑅)

we take the circuit from [23] and refine it using the procedure

from Section IV. This gives the circuit shown in Fig. 13(a).

 (a) (b)

Fig. 13: Unate cross-circuit of a 2-input C-element (a) and its STG (b).

From the STG in Fig. 13(b) we can see that the response delays

of 𝑎 and 𝑏 are asymmetric. Fig. 14 shows an isomorphic mapping

of the unate circuit in Fig. 13(a) into a quasi-binate one.

0

1

Fig. 14: LUT suited quasi-binate circuit of a 2-input C-element isomorphic to
the circuit in Fig. 13(a). Response delays: a±2/3, b±3/2.

Unfortunately, we did not find a method allowing the unate circuit

in Fig. 13(a) to have a larger number of inputs with minimum

number of cross-feedbacks. The latter is necessary because of the

fanout-free structure of a LUT. However, we can apply heuristics

and try to combine the ideas behind the circuits in Fig. 9(a) and

in Fig. 13(a). For this we use the procedure from Section IV and

obtain the circuit shown in Fig. 15(a).

(a) (b)

Fig. 15: Unate combined circuit of a 3-input C-element (a) and its STG (b).

Since the STG in Fig. 15(b) does not contain places, the circuit in

Fig. 15(a) is distributive. As before, the response delays of 𝑎 and

𝑏 are asymmetric, but that of 𝑐 is symmetric. AND3 and OR3 in

Fig. 15(a) should be decomposed into 2-input gates. We can

either keep the structural symmetry of feedbacks or make them

asymmetric. Fig. 16(a) shows one of the variants of symmetric

decomposition obtained by the procedure from Section IV.

(a)

(b)

Fig. 16: Circuit in Fig. 15(a) after decomposition (a) and its STG (b).

It is evident from the STG in Fig. 16(b) that the response delays

of 𝑎, 𝑏 and 𝑐 are ±4/6, ±6/4 and ±3/3 respectively. An isomorphic

mapping of the unate circuit in Fig. 16(a) into the MUX basis is

shown in Fig. 17.

0

1

Fig. 17: LUT suited quasi-binate circuit of a 3-input C-element isomorphic to
the circuit in Fig. 16(a). Response delays: a±4/6, b±6/4, c±3/3.

VI. BINATE CIRCUIT

For realizing a C-element we can also use “genuine” binate

gates such as XOR and transparent latches. As a prototype for this

case, we take the autonomous circuit of a binary counter [24]. In

this circuit we can isolate the functional part of the C-element,

while the rest of the parts can be considered as the environment.

Thus, we obtain the circuit shown in Fig. 18(a), where the wires

represented by DM and DX can have arbitrary delays.

(a) (b)

Fig. 18: Binate circuit of a 2-input C-element (a) and its STG (b).

Response delays without DM and DX: a±2/2, b±3/3.

As evident from the STG in Fig. 18(b), the signal XOR has 4

transitions that indicates the binate nature of the circuit. It is also

evident from this STG that the response delays of 𝑎 and 𝑏 are

symmetric. Verifying the circuit in Fig. 18(a) in Workcraft, we

get violation of binate consensus for both MX1 and MX2. Thus,

these multiplexers should be hazard-free. Note that in this binate

circuit we need to have access to data inputs of both MUX 2:1.

The same access is required in the full adder built of multiplexers

and XOR gate. Such an adder is typically used in commercial

FPGAs and we hope that in some of them it can be reconfigured

to realize the circuit in Fig. 18(a).

VII. CONCLUSION AND DISCUSSION

It has been shown in the paper that hazard-free MUX 2:1 can

be used for building the circuits of multi-input C-element. Two

new types of the MUX based circuits have been introduced. One

is quasi-binate circuits, which are built originally on monotone

gates and then mapped into MUX 2:1. We conjecture that these

circuits are a subset of the circuits based on 3-input AOI and OAI

gates. The circuits of the second type are inherently binate, since

they are built of transparent latches and XOR gates. All the

presented circuits have been obtained and verified in Workcraft.

The transistor realizations of the multiplexers used in FPGAs

have been shown. They differ from the traditional ones realized

in the minimal SOP (POS) form by behavior in transients. We

assume that the FPGA multiplexers during a race of the control

signals are in a high impedance state and hold their previous state

on the output capacitance. For the minimal SOP (POS) form this

behavior emulates the consensus cube. It is important to notice

two specific things related to MUX based circuits. One is that any

latch built on pass-transistor based MUX requires a buffer at the

output. The other thing is that any MUX with a feedback may

start to oscillate under certain conditions, such as stuck-at faults.

Although the proposed circuits can in principle, be realized on

FPGAs, there are at least two problems that require future study.

One is that certain wires need to have delay smaller than a delay

of some path in the circuit. Such a path consists of other wires,

interconnects and logic gates. The other problem is that the fork

of every input wire inside a LUT should be isochronic. There are

several published results that can help in coping with the above

problems. The internal delays of a LUT and routing delays within

a slice of a commercial FPGA have been characterized in [25].

The latter are also given in [26] along with the routing delays

between two slices. As it turns out, a long routing wire carrying a

logical 1, reduces the delay of an adjacent long wire. This effect

is studied in [27]. Having the exact information about wires and

interconnects and wires, we could use assumptions on relative

timing, which are available in Workcraft.

Using the MUX basis can be promising from the point of view

of new technologies. We have already mentioned the NEM relay

based MUX [9], which is closest to atomic gate and similarly to

the pass-transistor circuit, is bidirectional. Thus, it can be used for

realization of free choice in the circuits and generally speaking,

allows revisiting the old idea of bidirectional SI nets [28].

VIII. FUTURE WORK

The proposed circuits have been obtained heuristically and

require stricter analysis and classification both in terms of hazards

and design. More specifically the directions for further studies

can be formulated as follows:

1) To analyze programmable interconnects, wires in feedbacks

and internal LUT circuit from the point of view of delays,

relative timing and isochronic forks.

2) To conduct experiments on real FPGA boards, especially

with the “scalable” circuit in Fig. 11. Unfortunately, those

FPGAs that contain two detached multiplexers often do not

allow forks at the terminals of these multiplexers.

3) To generate all possible projections for MUX 2:1 and then

select only those that do not lead to hazards at all or lead

only to static hazards.

4) To devise a systematic approach that filters out the circuits,

which only seem (by logic transforms) to be in the MUX

basis, but do not fulfil the behavioral criteria (such as the

output persistence and binate consensus)

5) To compare the quasi-binate basis with 3-input {AOI, OAI}

basis and demonstrate how restriction of fanout influences

this comparison.

ACKNOWLEDGEMENTS

We would like to thank Boris S. Tsirlin for discussing the very

idea of using multiplexers in semimodular circuits and for his

patents. We are also grateful to Danil Sokolov, who realized the

binate consensus verification in Workcraft. This research was

partially supported by ISF, grant 867/19 and by EPSRC, grant

EP/N023641/1 "STRATA".

REFERENCES

[1] D. E. Muller, "Theory of asynchronous circuits," Report no. 66, Digital

Computer Laboratory, University of Illinois at Urbana-Champaign, 1955.

[2] A. Martin, "The limitations to delay-insensitivity in asynchronous
circuits," in MIT Conference on Advanced Research in VLSI, 1990.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A.

Yakovlev, Logic synthesis for asynchronous controllers and interfaces,
Springer, 2002.

[4] J. Sparsø, Introduction to Asynchronous Circuit Design., TU of Denmark,

2020.

[5] K. M. Fant, Logically Determined Design, Wiley, 2005.

[6] V. I. Varshavsky, Ed., Self-Timed Control of Concurrent Processes,

Kluwer, 1990.

[7] W. B. Toms, Synthesis of Quasi-Delay-Insensitive Datapath Circuits. PhD

thesis, University of Manchester, 2006.

[8] P. S. Siegel, Automatic Technology Mapping for Asynchronous Designs.

PhD thesis, Stanford University, 1995.

[9] T. Qin, S. J. Bleiker, S. Rana, F. Niklaus and D. Pamunuwa,

"Performance analysis of nanoelectromechanical relay-based field-
programmable gate arrays," IEEE Access, vol. 6, pp. 15997-16009, 2018.

[10] C. Chiasson and V. Betz, "Should FPGAs abandon the pass-gate?," in

IEEE Int. Conf. on Field Programmable Logic and Applications, 2013.

[11] C. Manoj, "Lookup table with relatively balanced delays". Patent

US7471104, 30 Dec. 2008.

[12] D. A. Huffman, "The design and use of hazard-free switching network,"
Journal of the ACM, vol. 4, no. 1, pp. 47-62, 1957.

[13] "Workcraft homepage," [Online]. Available: http://workcraft.org.

[14] L. Y. Rosenblum and A. V. Yakovlev, "Signal graphs: from self-timed to

timed ones," in IEEE Int. Workshop on Timed Petri Nets, 1985.

[15] T. A. Chu, Synthesis of Self-timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, Massachusetts Institute of Technology, 1987.

[16] K. Maheswaran and V. Akella, Hazard-free implementation of the self-

timed cell set in a Xilinx FPGA. Tech. report, U.C. Davis, 1994.

[17] Q. T. Ho, J. B. Rigaud, L. Fesquet, M. Renaudin and R. Rolland,

"Implementing asynchronous circuits on LUT based FPGAs," in Int.

Conf. on Field Programmable Logic and Applications, 2002.

[18] M. M. Kim and P. Beckett, "Design techniques for NCL-based

asynchronous circuits on commercial FPGA," in IEEE Euromicro Conf.

on Digital System Design, 2014.

[19] Z. Shin, M. H. Oh, H. Kwon, H. Kim and D. Kang, "Implementation of an

asynchronous micro-controller on the commercial FPGA," Int. Journal of

Computer Theory and Engineering, vol. 9, no. 6, pp. 466-472, 2017.

[20] K. S. Stevens, R. Ginosar and S. Rotem, "Relative timing," IEEE Trans.

on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 1, pp. 129-

140, 2003.

[21] N. Starodoubtsev, A. Bystrov and A. Yakovlev, "Semi-modular latch

chains for asynchronous circuit design," in PATMOS Int. Workshop, 2000.

[22] B. S. Tsirlin, "Multi-input H flip-flop," USSR author's certificate
SU1162019, 15 Jun. 1985.

[23] B. S. Tsirlin, "H flip-flop," USSR author's certificate SU1324106, 15 Jul.
1987.

[24] J. C. Nelson, "Speed-independent counting circuits," Report no. 71,

Digital Computer Laboratory, University of Illinois at Urbana-

Champaign, 1956.

[25] B. Gojman, S. Nalmela, N. Mehta, N. Howarth and A. DeHon, "GROK-

LAB: Generating real on-chip knowledge for intra-cluster delays using
timing extraction," ACM Trans. on Reconfigurable Technology and

Systems, vol. 7, no. 4, pp. 1-23, 2014.

[26] J. V. Manoranjan and K. S. Stevens, "Burst-mode asynchronous controller
implementation on FPGA using relative timing," in Southern Conf. on

Programmable Logic (SPL), 2014.

[27] I. Giechaskiel and J. Szefer, "Information leakage from FPGA routing and
logic elements," in ACM/IEEE Int. Conf. on Computer-Aided Design,

2020.

[28] W. D. Frazer, A Switching Theory for Bilateral Nets of Threshold
Elements, PhD thesis, University of Illinois at Urbana-Champaign, 1963.

[29] B. Lin and S. Devadas, "Synthesis of hazard-free multilevel logic under

multiple-input changes from binary decision diagrams," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no.

8, pp. 974-985, 1995.

[30] S. Jukna, "Notes on hazard-free circuits," SIAM Journal on Discrete
Mathematics, vol. 35, no. 2, pp. 770-787, 2021.

[31] D. E. Muller and F. P. Preparata, "Toward a switching theory of CMOS

circuits," in Fall Joint Computer Conf. on Exploring Technology, 1987.

