
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Latency Estimation for Fog-based Internet of Things

Jianhua Li¹, Tiehua Zhang¹, Jiong Jin¹, Yingying Yang², Dong Yuan³, Longxiang Gao4
¹Swinburne University of Technology, ²University of Technology Sydney, ³The University of Sydney, 4Deakin University

{jianhuali, tiehuazhang, jiongjin}@swin.edu.au, yingying.yang@student.uts.edu.au, dong.yuan@sydney.edu.au,

longxiang.gao@deakin.edu.au

Abstract—Low latency is critical for delay-sensitive

applications such as video surveillance, live streaming, and online

data analytics. Fog computing enables the emergence of the

latency-sensitive internet of things (IoT) network to support real-

time applications. While the distance between sensing and

processing is minimized in the fog network, the cross-fog latency

is yet to be determined. In this paper, we study the components

of network delays and develop a latency estimation framework

for fog-based IoT. The proposed framework, in particular,

precisely predicts the end-to-end inter-node delay along the

cloud-fog-things continuum. We investigate the benefits and use

cases based on latency estimated by the proposed framework. A

case study is further conducted to illustrate the validation and

advantages, followed by future research directions.

Keywords—Fog computing, IoT, Vivaldi algorithm, GNP,

latency

I. INTRODUCTION

Nowadays, smart environments (e.g., smart city, smart
community and smart home) are built heavily relying on
ubiquitous things and remote clouds promoting the emergence
of the internet of things (IoT). With the mission to enhance the
communication and collaboration capabilities, IoT ecosystem
integrates things, data, processes, and people to form an
unprecedented network along the cloud-to-things continuum.
While the integration is barely in its infancy period, it brings
tremendous challenges to the current internet, just to name a
few, heterogeneity, mobility and latency. Such constraints
drive the rising of fog computing (hereinafter fog) [1], which
brings the powerful computing intelligence to the proximity of
things, as shown in Figure 1. Conceptually, fog is inclusive of
the global cloud, regional core, last mile access networks,
clients and things. Fog, spanning from a variety of things to all
level of users, is an end-to-end horizontal architecture in which
processing, storage, control, management, connecting
capabilities, and applications are distributed in the most
efficient, logical place between data consumer and data source.

Some heterogeneous IoT applications in the smart
environment are delay-sensitive and real-time. In other words,
the collected data from sensing tiers must be immediately
processed to trigger the respective actuator without any delay
or within a tolerable time constraint, if any. For example, in
the connected vehicle system, safety and traffic support data
are required to be instantly processed to prevent accidents.
Under this circumstance, a second even milli-second level
delay is detrimental to the interest of life and asset. Initially,
we briefly discuss the delay components that are responsible
for the overall end-to-end latency along a particular route [2].
Later, we determine how to minimize such components
theoretically and practically.

𝐷𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑁 ⨯ (𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑠𝑒𝑟𝑖 + 𝑑𝑝𝑟𝑜𝑝) (1)

In (1), 𝑑𝑝𝑟𝑜𝑐 is nodal processing delay, 𝑑𝑞𝑢𝑒𝑢𝑒 is queuing

delay, 𝑑𝑠𝑒𝑟𝑖 is serialization delay, 𝑑𝑝𝑟𝑜𝑝 is propagation delay,

and N is the number of network segments a packet must go
through along the IoT ecosystem. Thus, the overall end-to-end
delay will be approximately N times of the summation of the
above four delays. With the advancement of both hardware
and software, the value of 𝑑𝑝𝑟𝑜𝑐 and 𝑑𝑠𝑒𝑟𝑖 per node are on the

order of microseconds [3], while the value of 𝑑𝑝𝑟𝑜𝑝 is about

five micro seconds per kilometre. By the use of QoS technique,
𝑑𝑞𝑢𝑒𝑢𝑒 can be optimized for some prioritized data. Overall, fog

effectively cuts latency between sensor reading and resulting

actuator response [4] by minimizing the propagation delay and

the number of network segments (N) within one fog network.
However, when a packet travels out of fog networks where fog
players have no visibility on number N, the delay and jitter
may dramatically surge. And in such case, fog’s promise to
latency-sensitive applications can be broken by the
accumulative high delays.

Accurately predicted latency brings positive inputs to
many applications such as path selection. Nowadays, latency
estimation is primarily conducted through the assistance of
network coordinate system (NCS) that establishes a virtual
positioning system for every node. Grounded on the known
coordinates in geometry, a node can envisage its latency to
peer nodes. Many NCS algorithms can achieve more than 90
percent accuracy of latency estimation on the internet.
However, it is not appropriate in dynamic fog environment
where the existence of a group of nodes is temporary. Our
contribution, in this paper, is to propose an NCS algorithm for
all network nodes in the fog that estimate end-to-end packet
delay with higher accuracy.

Cloud

Fog Node

Things

SiSiSiSi SiSiSiSi SiSiSiSi SiSiSiSi

Global Cloud

Regional Core

Neighbourhood
Access

Customer Premises
Equipment Gateway

Things

Figure 1: The Cloud-Fog-Things Continuum

 The remainder of the paper is organized as follows.
Section II outlines state-of-the-art approaches for latency
prediction, the proposed framework of latency estimation in
the fog environment is then presented in Section III. The
performance of the framework is evaluated and validated
through a case study by demonstrating path optimization in
Section IV. Section V concludes the paper with some future
research directions.

II. THE LATENCY ESTIMATION APPROACHES

As mentioned earlier, NCS estimates latency based on
known network coordinates in virtual geometric vectors. An
NCS virtually plots the network nodes in a multidimensional
Euclidean space by mapping the delay into the measured
distance. For instance, if a network node 𝐴 has coordinate
(2,4) and knows that another node 𝐵 has coordinate (5,8) in a
two-dimensional Euclidean model, node 𝐴 can simply
calculate its distance to node 𝐵 as 𝑑𝑃𝐴−𝐵 =

√((5 − 2)2 + (8 − 4)2) = 5 without direct communication.
While in an n-dimensional Euclidean model, the latency
prediction formula is

𝑑𝑃𝐴−𝐵 = √∑ (𝐴𝑖 − 𝐵𝑖)2𝑛
𝑖=1 (2)

where 𝑑𝑃𝐴−𝐵 is the prediction delay, 𝐴𝑖 and 𝐵𝑖 are their
coordinates. Besides, the absolute relative error (RE)

𝑅𝐸 =
|𝐸−𝑅𝑇𝑇|

min(𝐸,𝑅𝑇𝑇)
 (3)

is used as the performance metric, where 𝐸 is the estimated
latency and 𝑅𝑇𝑇 is the actual measured distance. Based on
one-way delay (OWD) and/or round-trip time (RTT)
measurement, various NCSs have been developed to estimate
the latency among the networked nodes. OWD technique
generally requires a system with highly synchronized clocking
and a precise time stamping to aid the delay measurement,
however, its utilization is limited because of undesired errors.
For this reason, RTT is adopted for measurement and
prediction of latency in the majority of NCS.

A. Landmark Based Coordinate System

1) Global Network Positioning (GNP)
Landmark based NCS relies on a small number of

landmark nodes to compute synthetic coordinates. GNP [6] is
a typical example in this stream that has two phases for
positioning nodes, i.e., landmark phases and ordinary host
phases. In the landmark phase, each landmark measures RTT
to other landmarks, as shown in Figure 2(a), where three
landmarks are shown in blue. In the following phase, an
ordinary host measures its RTT to landmarks to work out its

coordinate. The ordinary host nodes like ℎ1 and ℎ2, repeat the
same process and get their coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2)
using simplex downhill method [7]. Based on the exact
coordinates, each node quantifies internode distance prior to
any direct communication. The performance of GNP deeply
relies on the distribution of landmarks. It achieves 90 percent
above accuracy when landmarks are ideally distributed, but it
has poor performance with badly chosen landmarks. In the
worst case, if the landmarks are not available, the entire system
could potentially stop working.

2) Network Positioning System (NPS)
To overcome the constraints of GNP, Ng et al. upgrade

their original GNP work to NPS [8], in which, NPS allows any
arbitrary node to act as landmarks, managed by independent
membership server. Any node can contact the membership
server to query primary settings of landmarks, system
hierarchy details and a list of referencing points for further
probing. Then, the node engages in individual probing process
for the determination of the updated positions of and the
respective distance to such referencing points, until its position
is stabilized. As demonstrated in Figure 2(b), fixed landmarks
(layer 0) are starting points of the dependency hierarchy. By
maintaining redundant dependency with interested referencing
points, a landmark failure becomes much less critical. As a
result, position consistency is achieved because it is more
tolerant in coping with temporary landmark failures.

B. Distributed Network Coordinate System

1) Vivaldi

Unlike landmark based NCS that relies on predefined
landmarks in latency estimation, Dabek et al. advocate another
NCS called Vivaldi that does not need any dedicated
infrastructure [9]. As an analogy to the natural length of mass
springs, the prediction latency is assumed to be stable between
any two nodes. As illustrated in Figure 2(c), the current length
of each spring is treated as the distance between nodes locally.
If the spring is stretched, it indicates that the RTT is over-
estimated. While the spring is compressed, it suggests that the
RTT is under-estimated. Likewise, the natural length of spring
is a sign that the RTT is exactly estimated. According to
Hooke’s law, the natural length of springs among nodes a, b, c
and d determine the distance between the four nodes. In such
a coordinate space, Vivaldi sets synthetic coordinates to each
host, so as to estimate the data transmission RTT with
minimum error. A squared error function is used in [9] as
below:

h1 (x₁, y₁)

h2 (x₂, y₂)

L1

L2

L3

x x

yy

a

b

d

cLayer 0

Layer 1

Layer 2

Layer 3

Fixed
Landmarks

Normal
Node

Dependance

L1 (l₁, m₁)

L3 (l₃, m₃)

L2 (l₂, m₂)

Landmarks Host

(x₂, y₂)

Coordinates Network
Nodes

Spring
Distance

A

A

A

A

Normal
Node

Anchor
Node

Local
Connection

Base
Connection

 (a) (b) (c) (d)

Figure 2: Network Coordinate System a) GNP b) NPS c) Vivaldi d) Pharos

𝐸 = ∑ ∑ (𝑅𝑇𝑇𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗||)
2

𝑗𝑖 (4)

Where 𝑅𝑇𝑇𝑖𝑗 is the actual latency, ||𝑥𝑖 − 𝑥𝑗|| is the estimated

distance between nodes 𝑖 and 𝑗 . During the process of
minimizing the errors, the nodes are pushed or pulled towards
the perfect coordinates. In other words, Vivaldi moves each
node 𝑥𝑖 over a short distance at each interval to get close to the
exact position step by step.

Initially, when a new node joins the system, Vivaldi
assigns a random coordinate to it. As the new node starts
communicating with another node, it surveys the RTT to that
node and simultaneously learns the current coordinates of that
node. This process is repeated each time whenever new nodes
participate in this algorithm. Vivaldi nodes allow themselves
to be moved by a small-time step(𝛿). With each movement, a
node reduces its error with respect to others. Eventually, each
node keeps its own coordinates in the hope that the prediction
delay is equal to the measured delay. The authors of Vivaldi
obtained 90 percent above accuracy in simulation of 1740
DNS servers on the Internet. Unfortunately, it is still an open
issue to select the good value for 𝛿 in a complex network,
which makes it difficult to balance prediction accuracy and
convergence speed.

2) Pharos
Maintaining a global spring system with significantly

changeable distances is very hard. To improve Vivaldi in
short-link distance prediction, Chen et al. developed Pharos
[10] that classifies nodes into two distinct groups according to
their interspace. Both short-distance and long-distance
coordinates are assigned to each node. As a result, both local
cluster overlay for short-link distance and base overlay for
medium or long-link distance are hierarchical as represented
in Figure 2(d). Unlike a landmark node that must participate in
the process of computing coordinates in the system, an anchor
node needs only to respond to echo request regardless of actual
participation of positioning process.

Whenever a new node joins Pharos system, it broadcasts
its latency to locate the nearest anchor node and joins the
respective cluster. After joining, it starts connecting many
nodes in the same cluster, while some nodes in the cluster may
establish base connection with nodes in remote clusters. At the
end, Vivaldi is used to attain the two sets of coordinates for
both overlays.

C. The Comparison

Each of the aforementioned NCS has advantages and
disadvantages in a variety of use cases, while none can address

all the challenges in computing coordinates. To begin with, the
landmark system generally requires stable landmarks to serve
other nodes, and the landmarks must be available and well-
distributed. Furthermore, the change of distance between
landmarks may not be timely updated to ordinary nodes,
leading to an inaccurate estimation. Nevertheless, a good
landmark based NCS empowers the accurate latency
prediction without any direct communication between two
nodes. Another strong point of landmark based system is its
easiness to integrate a dedicate server that simplifies the
positioning process and manages network coordinates for all
level of nodes, regardless of their computing intelligence.

On the other hand, fully distributed NCS like Vivaldi does
not require any dedicated device, instead, it relies on specific
Algorithm 1: Landmark candidate (re)registration with FILE
server through Vivaldi

// A Fog node x sends query to FILE server to determine if it
is

// required to run Vivaldi.

 Send (𝑄𝑢𝑒𝑟𝑦);

// FILE server responds to the node, either true or false. When

// true, it sends back an initiative coordinates 𝑥𝑖 and a

// recommended list of other landmark nodes to probe.

 Receive (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑥𝑖 , (𝐿1𝑖 , 𝐿2𝑖 , … , 𝐿𝑛𝑖));

// If required to run Vivaldi, the node becomes a possible

// landmark. Then it needs to evaluate its latency to other

// Landmark nodes, until the prediction error is acceptable

if (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 == 𝑡𝑟𝑢𝑒)

do { Vivaldi(𝑟𝑡𝑡𝑖𝑗 , 𝑒𝑗, 𝑥𝑗); }

while (𝑒𝑖 > 𝐴𝑐𝑐𝑝𝑡𝐸𝑟𝑟);

// If not required to run Vivaldi, the node is a common node.

// Then it needs to calculate its coordinate towards Landmarks,

//where Dimensions defines an n-dimensional Euclidean model.

else if (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 == 𝑓𝑎𝑙𝑠𝑒)

Landmark(𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡));

traffic patterns (piggybacking traffic) to enable self-motivated
positioning. This dependency on traffic patterns limits the scope
of application areas. Another weak point of Vivaldi is the
shortage of mature architecture for managing network
coordinates. It thoroughly relies on each node to adaptively
position itself individually, which does not benefit much to low-
end nodes. Despite that, such nodes can quickly respond to
network changes, enabling an up-to-date latency estimation.

III. FOG-BASED IOT LATENCY ESTIMATION (FILE)

As studied in Section II, all the NCS are developed on
hypothesis that there will be an exact distance between any two
network nodes. Besides, the NCS performs best in computing
the coordinates for persistent objects, such as DNS servers on
the Internet. However, the prosperity of IoT has significantly
changed the environment, where myriads of things may
frequently change their locations. In a fog network, enormous
amounts of things and people may come and leave a from time
to time. For instance, a driving vehicle is admitted as a fog
node. Because lots of fog nodes intermittently join and disjoin
a fog network, it is not always practical to calculate network
coordinates for all of them. As such, none of the current NCSs

Figure 3: FILE Performance

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
b

so
lu

te
 R

el
at

iv
e

E
rr

o
r

Number of Landmarks

Prediction Error Rate Comparison

GNP

FILE

is immediately applicable to fog-based IoT. We therefore
propose a new framework in this regard.

Although the multitude of nodes are very dynamic in fog
based IoT ecosystem, many nodes are still relatively fixed
along the cloud-fog-things continuum. For example, various
servers (storage server, application hosting server, etc.) in both
fog and cloud collaboratively reinforce other fog nodes, which
generate enormous piggybacking traffic that can be used by
Vivaldi for accurate internode latency estimation. When things
join a fog network, such nodes can be engaged as the
landmarks, to base the positioning of ordinary nodes in GNP.
Hence, there are two phases in the proposed FILE system, i.e.,
Vivaldi phase and GNP phase. Next, we detail the algorithms
in each process.

Algorithm 2: Landmark coordinate calculation in Fog (Vivaldi)

// Operation 1:

// FILE server initializes the coordinate of 𝑥𝑗 and inform a list

// of nodes with their coordinates (𝐿1𝑗 , 𝐿2𝑗, … , 𝐿𝑛𝑗) at the

// beginning, then the nodes measure their RTT in between to

// establish their coordinate and know their local error estimate.

 Receive (𝑡𝑟𝑢𝑒, 𝑥𝑗 , (𝐿1, 𝐿1𝑗), (𝐿2, 𝐿2𝑗), … , (𝐿𝑛 , 𝐿𝑛𝑗));

Measure (𝑅𝑇𝑇𝑗𝐿𝑚
);

Calculate (𝑒𝑗);

Update (𝑥𝑗);

// Node j report its coordinate to FILE server.

Send ((𝑗, 𝑥𝑗);

// Operation 2:

// When a new node 𝑖 join the system, the FILE server set its

// coordinate 𝑥𝑖 approximately. It also informs the new node a

// number of nodes with coordinates (including node𝑗) for

// calibration.

Receive (𝑡𝑟𝑢𝑒, 𝑥𝑖 , (… , (𝑗, 𝑥𝑗), …));

// Node 𝑖 measures node j, learns an error estimate 𝑒𝑗 and

// coordinate 𝑥𝑗.

Measure (𝑅𝑇𝑇𝑖𝑗);

Study (𝑥𝑗 , 𝑒𝑗)

// Node 𝑖 set an error estimate 𝑒𝑖, set the constants 𝑐𝑒 , 𝑐𝑐

Set (𝑒𝑖 , 𝑐𝑒 , 𝑐𝑐);

// The main Vivaldi function

Vivaldi(𝑟𝑡𝑡𝑖𝑗, 𝑒𝑗 , 𝑥𝑗)

{

// Sample weight balances local and remote error.

𝑤 =
𝑒𝑖

𝑒𝑖 + 𝑒𝑗

 // Compute relative error of this sample.

𝑒𝑠 =
|𝑟𝑡𝑡𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗|||

𝑟𝑡𝑡𝑖𝑗

 // Update weighted moving average of local errors.

𝑒𝑖 = 𝑒𝑠 ⨯ 𝑐𝑒 ⨯ 𝑤 + 𝑒𝑖 ⨯ (1 − 𝑐𝑒 ⨯ 𝑤)

// Update local coordinates.

𝛿 = 𝑐𝑐 ⨯ 𝑤

𝑥𝑖 = 𝑥𝑖 + 𝛿 ⨯ (𝑟𝑡𝑡𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗||) ⨯ 𝑢(𝑥𝑖 − 𝑥𝑗)

}

// Once this node gets accurate coordinate, it updates the

// FILE server with the latest information. report the

// up-to-date coordinate to FILE server

if (𝑒𝑖 <= 𝐴𝑐𝑐𝑝𝑡𝐸𝑟𝑟)

Send ((𝑖, 𝑥𝑖);

Algorithm 3: Ordinary node coordinate calculation through
Simplex Downhill algorithm

// A node x receives response from FILE server, required to

// run Simplex Downhill. The server also sets an original

// coordinate, recommended landmarks and their coordinates.

 Receive (𝐹𝑎𝑙𝑠𝑒, 𝑥𝑖 , (𝐿1, 𝐿1𝑖), (𝐿2, 𝐿2𝑖), … , (𝐿𝑛 , 𝐿𝑛𝑖));

// Through the given coordinate, the node learns the

// dimension numbers used in the Euclidean model. While the

// probe is the interested landmarks, the target is IP addresses
// of any node.

Landmark(𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡))

{

// Measure distance between probes

 Measure (𝑅𝑇𝑇𝑖𝐿𝑖
);

// Measure distance between targets

Measure (𝑅𝑇𝑇𝑖𝑡𝑖
);

// Then, run call Simplex Downhill function, to evaluated

// errors until the error estimate rate is acceptable.

 while (𝑅𝐸 > 𝐴𝑐𝑐𝑒𝑝𝐸𝑟𝑟)

do { 𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡); }

// After that, the node reports its coordinates to FILE server

 Send ((𝑖, 𝑥𝑖);

 }

A device in fog is assumed to connect and register to cloud
before the device could communicate and exchange data with
other entities. In regard to latency estimation, a dedicate
membership server is setup in cloud to store system
configuration parameters and to keep soft state about
participating networked nodes. Hence, a FILE server in the
cloud is liable to oversee the positioning of all level nodes
encompassing the IoT ecosystem. A FILE server that provides
primary system configuration information is able to
dynamically selects some nodes as landmarks when the current
landmark is unavailable or too heavily loaded. Initially, a node
needs to query the FILE server regarding its alternative role in
the system, i.e., landmark or ordinary nodes through
Algorithm 1. If the FILE server determines the querying node
is a candidate of landmarks, Algorithm 2 is used to calculate
its coordinate, otherwise, Algorithm 3 finds the positioning of
ordinary nodes.

In particular, Algorithm 1 brings two benefits to FILE
system. One is to reflect the up-to-date inter-landmark latency,
and the other is to update its position to FILE server that
notifies the distance variation between landmarks. Next, the
Vivaldi phase is presented.

A. Vivaldi Phase

This algorithm has two operations. In the first instance, a
number of nodes measure their internode 𝑅𝑇𝑇 to set up a
reference system. Later on, the new-comer nodes figure out
their coordinates using those referencing nodes.

We introduce FILE server in Algorithm 2 with
management functions that significantly differentiated our
approach compared to Vivaldi. FILE server initially sets the

coordinate uniformly in D-dimensional Euclidean model. Also,
it assigns approximate coordinates at the beginning, resulting
in the mitigation of positioning workloads. On top of this, due
to the global view and thorough understanding about fog
deployment, FILE server advises nodes of interest in the probe
process, which improves the performance of overall latency
estimation.

B. GNP Phase

As investigated in Vivaldi phase, each Vivaldi-running
node must report its accurate coordinate to FILE server.
Grounded on the harvest of nodes and their coordinates, FILE
server not only provides the comprehensive supports for
Vivaldi running nodes, but also supplies all level of landmarks
along the cloud-fog-things continuum. As delineated in Figure
1, there are five function layers in the deployed continuum
including global cloud, regional core, neighbourhood access,
customer premises equipment gateway and things. Such
deployment seeks to place processing where it is just-in-need,
which creates a classic scenario of the utilization of landmark
based NCS. Thereupon, we inspect the detailed operations.

Landmark operation and succeeding ordinary nodes
operation are the components of this GNP phase. In the
landmark operation, traditionally, it is to use certain number of
fixed nodes as landmarks. Theoretically, there shall be at least
D+1 landmarks in D-dimensional Euclidean model. Though
increasing the number of landmark nodes contributes to higher
accuracy, the distribution of landmarks is critical in such NCS.
Since the landmarks are fixed at some location, it is hard to
timely reflect the network topology change. However, the
landmarks can be flexibly and dynamically selected from the
potential landmark list under control of FILE server, through
which, the landmarks are ideally maintained to warranty
accuracy and liability.

Although the distance between landmarks has been
estimated in Vivaldi phase and reported to FILE server, it is
also measured in the landmark operation for further calibration.
The measured and estimated values are reported to FILE
server for further calibration, in this way, the server sets the
landmark coordinates accurately. Subsequently, the ordinary
nodes measure the RTT to the selected landmarks, calculate
their coordinates using Simplex Downhill algorithm.
Algorithm 3 is used in GNP phase.

As long as the coordinates are precisely estimated, the
latency prediction is easily achieved through Formula 2.
Beyond that, it is possible to predict latency between resource-
limited nodes that cannot run FILE, e.g., a bar code scanners
collecting visitor ID information. Such latency may be
quantified on the uplink application server that collects the
latency from the scanner based on time tag, plus the accurately
predicted latency between application servers.

To sum up, FILE assumes that things require to be
connected either to fog, cloud or both after their registration.
A hybrid of centralized and distributed network coordinate
methods is used to position nodes in the complicated
ecosystem. This FILE framework empowers perfect landmark
suppliers, through which, ordinary nodes calculate their
coordinates individually. It enables the latency estimation
among all nodes in fog environment. Thereafter, we evaluate
the accuracy performance against GNP and showcase the
advantages.

IV. PERFORMANCE EVALUATION AND CASE STUDY

A. Performance Evaluation

The absolute relative error (𝑅𝐸) is studied as the

performance metric, in comparison the accuracy of FILE with

GNP. Attempt to acquire the latency from fog to cloud, we

inspect twenty home routers to Amazon and Azure cloud in

both Sydney and Melbourne. Over and above that, a couple of

well-known cloud speed testing webpage tools [11, 12] are

also used as our test-result reference. An average of 500ms of

RTT is observed. Then, each router is treated as one fog node

along the home routers to data center path. The average inter-

node latency is about 10ms and Chang et al. also demonstrate

same in [13]. Thus, we set the inter-fog node latency as 10ms.

The inter-fog and things-to-cloud latency data are used in our

experiment with 100 computers that are distributed in 6 Fog

networks. These Fog networks are connected to Cloud with

various distance. After that, FILE algorithm is conducted on

this setting. Figure 3 plots the prediction error rate with

different numbers of landmarks. FILE achieves more than 90

percent accuracy with 13 or more landmarks, while 16

landmarks are required to achieve similar accuracy in GNP.

More interestingly, FILE allows to use any waypoint as

referencing point for positioning to improve the estimation

accuracy.

In summary, the proposed framework assists to predict the

delay between things, fog and cloud nodes, before their direct

communication. Because the latency prediction is one of the

key parameters to optimize the fog performance, it brings

comprehensive benefits to the entire IoT ecosystem including

service discovery, IoT placement, content distribution, path

selection, and so on. Next, a case study is conducted to

demonstrate the advantages of the proposed framework

further.

B. Case Study

Poor weather is one of the primary reasons for traffic
accidents along the millions-kilometres Chinese expressways
[14]. In particular, the ground fogs in lake or mountain area
can suddenly cause visibility down to the meter-level in a
second. In this case, the drivers brake hard subconsciously

Figure 4: The Real-time Driving-condition Information System

Table 1: Data Setting in the Simulation

Data Settings Value

Fog to Cloud Delay 500ms

Fog to Cloud Jitter 100ms

Fog to Fog Delay 10ms

Fog to Fog Jitter 2ms

causing disasters of rear end collisions and massive highway
pileups. Due to the difficulties of forecasting such weather,
RDIS (real-time driving-condition information system) is
deployed to make early warnings ahead of such areas. This
system is composed of weather sensors, cameras, roadside
service units, infotainment systems, patrol and rescue vehicles.
As displayed in Figure 4, fog nodes are deployed to enable
RDIS along the roads. FILE is used for quick response to the
protection of lives and assets, as it globally oversees and
manages the coordinates infrastructure.

Landmarks are dynamically maintained to base accurate
latency prediction for the nodes, which warrants the least
latency of data transmission. We use GNS3, an open source
network simulator used by networking professionals [15], to
deploy our testbed. Cisco 7204 routers are used to simulate all
the network nodes, except for delay and jitter generator that is
simulated by WANem [16]. Table 1 presents the data set
applied in the simulation. We configure the testbed to generate
three data paths to carry data from DCSI (driving condition
surveillance infrastructure) to STMC (smart traffic
management centre). The data paths include cloud (case 1),
fog with the least hop count (case 2), and fog with the least
latency (case 3).

Figure 5 depicts the instantaneous end-to-end latency
changes in the three cases when the packet size is 100 bytes.
In case 1, when the data must go through the cloud, the
maximum, minimum and average delays are 2349.25 ms,
1745.18 ms, and 2038.31 ms respectively. Case 2 illustrates
the fog routing without NCS, where the maximum, minimum
and average delays are 493.11 ms, 303.86 ms, and 381.54 ms
respectively. When FILE predicts the delay in real-time, each
node can send data over the route with the least latency. Hence,
in case 3 the maximum, minimum and average delays are
406.77 ms, 210.50 ms, and 264.80 ms respectively between
DCSI (sensing) and STMC (processing). Also, we examine the
latency with the varying packet size of 500, 1000 and 1500
bytes. Overall, the end-to-end latency does not change much
in all the cases. Table 2 presents the result of the varying size
of packets.

V. CONCLUSION

Since we can only minimise rather than eliminate the end-

to-end network latency, latency prediction is of paramount

importance for the fog optimization. By taking advantage of

both Vivaldi (fully distributed) and GNP (landmark-based)

alogrithm, our proposed FILE can predict the latency with high

accuracy for both fog nodes and things. Following the

illustrated benefits, we showcase the rerouting based on the

lowest end-to-end latency to further expedite the data

transmission. The result concludes that FILE gives very

positive input for real-time applications. As the low latency is

the driving reason for fog adoption, we believe it is worth

much more research, and in particular, we are going to

investigate the FILE convergence behaviour on different

overlays and Fog deployment strategies.

ACKNOWLEDGEMENT

Authors wish to thank Dr. Khandakar Ahmed for his
valuable contribution in the latency estimation algorithm
design.

REFERENCES

[1]. J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner, "EHOPES:

Data -centered Fog platform for smart living", in Proceedings of ITNAC,
pp. 308-313, Sydney, Australia, Nov. 2015.

[2]. A. Abdou, A. Matrawy, and P.C. Van Oorschot, "Accurate one-way
delay estimation with reduced client trustworthiness," IEEE
Communications Letters, vol. 19, no.5, pp. 735-738, Mar. 2015.

[3]. "Bandwidth, Packets per Second, and Other Network Performance
Metrics," Available: http://www.cisco.com/c/en/us/about/security-
center /network-performance-metrics.html, Accessed on 9/04/2017.

[4]. F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, "Fog Computing: A
platform for Internet of things and analytics," in Big Data and Internet
of Things: A Roadmap for Smart Environments, pp. 169-186, 2014.

[5]. G. Armitage, and A. Heyde, "REED: Optimizing first person shooter
game server discovery using network coordinates," ACM TOMM, vol 8,
pp. 2-20, May 2012.

[6]. T.E. Ng, and H. Zhang, "Predicting Internet network distance with
coordinates-based approaches," in Proceedings of 21st Annual Joint
Conference on IEEE INFOCOM, vol. 1, pp. 170-179, New York City,
USA, Jun. 2002.

[7]. K. I. McKinnon, "Convergence of the Nelder--Mead Simplex method to
a nonstationary Point," SIAM Jounal on Optimization, nol 9, no.1, pp.
148-158, May 1998.

[8]. T.E. Ng, and H. Zhang, "A network positioning system for the Internet,"
in Proceedings of USENIX Annual Technical Conference, pp. 141-154,
Boston, USA Jun. 2004.

[9]. K. Dabek, R. Cox, F. Kaashoek, and R. Morris, "Vivaldi: A
decentralized network coordinate system," ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 15-26, Aug. 2004.

[10]. Y. Chen, Y. Xiong, X. Shi, B. Deng, and X. Li, "Pharos: A decentralized
and hierarchical network coordinate system for internet distance
prediction," in Proceedings of GLOBECOM, pp. 421-426, Nov. 2007.

[11]. M. Leonhard, "CloudPing.info," Available: http://www.cloudping.info/,
Accessed on 19/04/2017.

[12]. "Cloud Network Test," Available: http://www.cloudharmony.com
/speedtest, Accessed on 19/04/2017.

[13]. Y.C. Chang, and J.P. Sheu, "An energy conservation MAC protocol in
wireless sensor networks," Wireless Personal Communications, vol. 48,
no. 2, pp. 261-276, Jan. 2009.

[14]. J. Zhao, and W. Deng, "Traffic accidents on expressways: new threat to
China," Traffic Injury Prevention, vol. 13, no. 3, pp. 230-238, Dec. 2011.

[15]. C. Welsh, GNS3 network simulation guide, Packt Publ., 2013.
[16]. H.K. Kalitay, and M.K. Nambiarz, "Designing wanem: A wide area

network emulator tool," In proceedings of Third COMSNETS, , pp. 1-4,
Bangalore, India, Jan. 2011

Figure 5: The Latency Comparison on Packet Size 100

Table 2: Latency with Various Packet Size

 Average Latency (milliseconds)

Packet size 100 500 1000 1500

Case 1 2038.31 2049.82 2032.06 2057.24

Case 2 381.54 381.23 386.37 388.58

Case 3 264.80 264.65 265.57 261.93

0

300

600

900

1200

1500

1800

2100

2400

10 40 70 100 130 160 190

R
o

u
n

d
-t

ri
p

 T
im

e
(m

s)

Packets

Instantaneous Network Latency Comparison

Via Cloud
Via Fog (Default Route)
Via Fog (Optimized Route)

