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Abstract—Wireless mesh networking has been considered as

an emerging communication paradigm to enable resilient,

cost-efficient and reliable services for the future-generation

wireless networks. We study here mainly on the minimum-

latency communication primitive of broadcasting (one-to-all

communication) in known topology WMNs, i.e., the size and

the topology of the given Wireless Mesh Network (WMN) is

known in advance. A distinguished source mesh node in the

WMN initially holds a "source" message and the objective is

to design a minimum-latency schedule such that the source

message can be disseminated to all other mesh nodes. The

problem of computing a minimum-latency broadcasting sched-

ule for a given WMN is NP-hard, hence it is only possible

to get a polynomial approximation algorithm. In this paper,

we adopt a new noisy wireless network model introduced very

recently by Censor-Hillel et al. in [ACM PODC 2017, [6]]. More

specifically, for a given noise parameter p ∈ [0, 1], any sender

has a probability of p of transmitting noise or any receiver of

a single transmission in its neighborhood has a probability p

of receiving noise.

In this paper, we first propose a new asymptotically latency-

optimal approximation algorithm (under faultless model) that

can complete single-message broadcasting task in D+O(log2 n)

time units/rounds in any WMN of size n, and diameter D.

We then show this diameter-linear broadcasting algorithm

remains robust under the noisy wireless network model and

also improves the currently best known result in [6] by a

Θ(log log n) factor.

In this paper, we also further extend our robust single-

message broadcasting algorithm to k multi-message broad-

casting scenario and show it can broadcast k messages in

O(D + k log n + log2 n) time rounds. This new robust multi-

message broadcasting scheme is not only asymptotically op-

timal but also answers affirmatively the problem left open

in [6] on the existence of an algorithm that is robust to

sender and receiver faults and can broadcast k messages in

O(D + k log n+ polylog(n)) time rounds.

Keywords: Approximation algorithms, broadcasting, wire-
less networks, robust communication, noisy radio networks,
mesh networks.

1. Introduction

Wireless Mesh Networking (WMN) is a highly promis-
ing network architecture to converge the future-generation
wireless networks. A WMN has the dynamic self-
organization, self-configuration and self-healing character-
istics; and additionally inherent flexibility, scalability and
reliability advantages. In a WMN, the mesh nodes can com-
municate with each other via multi-hop routing or forward-
ing [1]. There are two types of WMN with respect to the
mobility property, i.e. static mesh networks and mobile mesh
networks. The IEEE 802.11s mesh networks in Wireless
Local Area Networks (WirelessLAN) is a kind of WMN
with static mesh nodes, where the Access Points (APs) can
communicate with each other via multi-hop routing. Another
example can be the WMN constructed by the mesh routers
with static topology. If the mesh nodes are equipped in
different moving objects, e.g. bicycles, buses and trains, the
network can be a kind of WMN with mobile mesh nodes. In
this paper, we focus on the WMN with static mesh nodes.

We consider the following model of a WMN: an undi-
rected connected graph G = (V,E), where V represents the
set of mesh nodes of the WMN and E contains unordered
pairs of distinct mesh nodes, such that (v, w) ∈ E iff
the transmissions of mesh node v can directly reach mesh
node w and vice versa (the reachability of transmissions is
assumed to be a symmetric relation). In this case, we say
that the mesh nodes v and w are neighbors in G. Note that
in a WMN, a message transmitted by a mesh node is always
potentially sent to all of its neighbors, which is the nature
and advantage of wireless communication.

The degree of a mesh node is the number of its neigh-
bors. We use ∆ to denote the maximum degree of the
WMN, i.e., the maximum degree of any mesh node in the
WMN. The size of the network is the number of mesh nodes
n = |V |.

Communication in the WMN is synchronous and con-
sists of a sequence of communication steps/rounds. In each
step, a mesh node v either transmits or listens. If v transmits,
then the transmitted message reaches each of its neighbors
by the end of this step. However, a mesh node w adjacent to
v successfully receives this message if only if in this step w
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is listening and v is the only transmitting mesh node among
w’s neighbors under the classic faultless model. If mesh
node w is adjacent to a transmitting mesh node but it is
not listening, or it is adjacent to more than one transmitting
mesh nodes, then a collision occurs and w does not retrieve
any message in this step. Specifically, the classic faultless
model assumes that any message that is transmitted without
collision will be correctly received. Moreover, we assume
that the collision is indistinguishable from the background
noise (that is, the mesh nodes do not have any collision
detection mechanism). Dealing with collisions is one of the
main challenges in efficient wireless communication.

In the noisy wireless network model introduced very
recently by Censor-Hillel, Haeupler, Hershkowitz, and Zuzic
in [6], the classic graph-based faultless model is augmented
with random faults. More specifically, for a given noise
parameter p ∈ [0, 1], any transmission may be noisy with
probability p (called a sender fault), or a mesh node u may
receive a noise message with probability p instead (called a
receiver fault). Furthermore, the faults have been assumed
to occur independently at each mesh node.

The two classical problems of information dissemination
in the WMNs are the single-message broadcasting problem
and the gossiping problem. The single-message broadcasting
problem requires distributing a particular message from a
distinguished source node to all other mesh nodes in the
WMN. In the gossiping problem, each mesh node v in
the network initially holds a message mv, and the aim is
to distribute all messages to all mesh nodes. A trade-off
between the single-message broadcasting and the gossiping
is multi-message broadcasting. For all problems addressed
above, the minimization of the time needed to complete the
task generally considers as the efficiency criterion.

In the models considered here, the length of a communi-
cation schedule is determined by the number of time rounds
required to complete the communication task. This means
that we do not account for any internal computation within
individual mesh nodes.

Our schemes rely on the assumption that the communi-
cation algorithm can use complete information about the
WMN topology. Such an assumption is acceptable since
we investigate the communication scenarios in static wire-
less mesh networks or classic radio networks here. Such
topology-based communication algorithms are useful when-
ever the underlying wireless network has a fairly stable
topology/infrastructure. As long as no changes occur in
the WMN topology during the execution of the algorithm,
the tasks of broadcasting and gossiping will be completed
successfully.

1.1. Our results

In this paper, we first propose an (efficiently computable)
asymptotically latency-optimal approximation schedule (un-
der classic faultless model) that can complete single-
message broadcasting task in O(D + log2 n) time
rounds/units in any WMN of size n, and diameter D. Note
that computing a minimum-latency broadcasting schedule

is NP-hard, hence it is only possible to achieve polynomial
approximation algorithms. We then show that this diameter-
linear broadcasting algorithm remains robust under the noisy
wireless network model and it also improves the currently
best known result in [6] by a Θ(log logn) factor.

We also further extend our robust single-message broad-
casting algorithm to k multi-message broadcasting sce-
nario and show it can broadcast k messages in O(D +
k logn+log2 n) time rounds. This new robust multi-message
broadcasting scheme is not only asymptotically optimal
but also answers affirmatively the problem left open in
[6] on the existence of an algorithm that is robust to
sender and receiver faults and can broadcast k messages
in O(D + k logn+ polylog(n)) time rounds.

1.2. Related work

The work on communication in known topology wire-
less networks was initiated in the context of the single-
message broadcasting problem. In [9], Chlamtac and We-
instein prove that the broadcasting task can be completed
in time O(D log2 n) for every n-vertex wireless network of

diameter D. An Ω(log2 n) time lower bound was proved for
the family of graphs of radius 2 by Alon et al [2]. In [12],
Elkin and Kortsarz give an efficient deterministic construc-
tion of a broadcasting schedule of length D + O(log4 n)
together with a D + O(log3 n) schedule for planar graphs.
Recently, Gąsieniec, Peleg, and Xin [18] showed that a
D + O(log3 n) schedule exists for the broadcast task, that
works in any wireless network. In the same paper, the
authors also provide an optimal randomized broadcasting
schedule of length D + O(log2 n) and a new broadcasting
schedule using fewer than 3D time slots on planar graphs. A
D+O(log n)-time broadcasting schedule for planar graphs
has been showed in [23] by Manne, Wang, and Xin. Very
recently, a O(D + log2 n) time deterministic broadcast-
ing schedule for any wireless network was proposed by
Kowalski and Pelc in [22]. This is asymptotically optimal
unless NP ⊆ BPTIME(nO(log logn)) [22]. Nonetheless,

for large D, in [8], a D + O( log3 n
log logn

) time broadcasting

scheme outperforms the one in [22], because of the larger
coefficient of the D term hidden in the asymptotic notation
describing the time evaluation of this latter scheme.

Efficient single-message broadcasting algorithms for
several special types of wireless network topologies can be
found in Diks et al. [11]. In [16], Gandhi, Parthasarathy and
Mishra claimed the NP-hardness of broadcasting in unit disk
graphs and constructed a broadcasting scheme with running
time at most 648D. Very recently, the broadcasting time
in unit disk graphs was further reduced to 16D − 15 and
D+O(logD) respectively by Huang et al. [20]. For general
wireless networks, however, it is known that the computation
of an optimal broadcast schedule is NP-hard, even if the
underlying graph is embedded in the plane [7], [25].

Gossiping in wireless networks with known topology
was first studied in the context of the communication with
messages of limited size, by Gąsieniec and Potapov in [15].



They proposed several optimal or close to optimal O(n)-
time gossiping procedures for various standard wireless
network topologies, including lines, rings, stars and free
trees. In the same paper, an O(n log2 n) gossiping scheme
for general wireless network topology is provided and it
is proved that there exists a wireless network topology
in which the gossiping (with unit size messages) requires
Ω(n logn) time. In [24], Manne and Xin show the optimality
of this bound by providing an O(n logn)-time gossiping
schedule with unit size messages in any wireless radio
network. The first work on gossiping in known topology
wireless networks with arbitrarily large messages is [17],
where several optimal gossiping schedules are shown for
a wide range of wireless network topologies. For arbitrary
topology of the wireless networks, an O(D+∆ logn) sched-
ule was given by Gąsieniec, Peleg, and Xin in [18]. Cicalese,
Manne and Xin [8] provided a new (efficiently computable)

deterministic schedule that uses O(D+ ∆ logn
log ∆−log logn

) time

units to complete the gossiping task in any wireless network
of maximum degree ∆ = Ω(logn). Later, Xin and Manne
gave an asymptotically optimal scheme with running time

at O(D + ∆ logn
log∆ ) in [28].

The k multi-message broadcasting problem had also
been extensively studied. Bar-Yehuda and Israeli [5] pro-
posed a O((n + (k + D) logn) log∆)-round algorithm,
where ∆ is the maximum node degree. A determinis-
tic algorithm with running time in O(n log4 n + k log3 n)
rounds was shown by Chlebus et al. [10]. A nearly optimal
O(k logn + D logn/D + poly(logn))-round scheme was
given by Ghaffari and Haeupler in [13]. Ghaffari et al.
proposed a scheme that can accomplish k multi-message
broadcasting task in O(k logn+D + log2 n) rounds if the
topology is known in [14].

Very recently, Censor-Hillel, Haeupler, Hershkowitz, and
Zuzic in [6] introduced a new wireless communication
model that was called noisy radio network model, in which
the classic graph-based model is augmented with random
faults. More precisely, for a constant fault parameter p ∈
[0, 1), every transmission may be noisy with probability p
(sender fault), or a node v that would otherwise receive a
message with probability p for noise (receiver fault). More-
over, these faults occur independently at each node. It had
been shown that while the Decay algorithm of Bar-Yehuda,
Goldreich and Itai [5] was robust to faults, the diameter-
linear algorithm of Gąsieniec, Peleg and Xin [18] deterio-
rated considerably. A new randomized, diameter-linear algo-
rithm in the noisy radio network model had been proposed
with running time Θ(D + logn log logn(log n+ log 1

δ
)) to

complete the single-message broadcasting with a probability
of at least 1− δ. The work in [6] also described how to ex-
tend two robust single-message broadcasting schemes to the

multi-message scenario, achieving throughputs of Ω
(

1
logn

)

and Ω
(

1
logn log logn

)

messages per round, respectively.

Latency-efficient communication schemes under the tra-
ditional physical interference model had also been studied
extensively in [21], [3], [26], [27], [29], [30]. Very recently,

Xin and Xia proposed a "noisy" physical interference model
and showed some interesting latency-efficient gossiping
schemes in [31].

2. Latency-optimal Broadcasting Schemes

In this section, we first present the idea of a new
asymptotically latency-optimal algorithm that generates a
communication schedule for completing the single-message
broadcasting task in D+O(log2 n) time rounds under classic
faultless model which is based on a non-trivial combination
between a new scheme of the transmission pattern and
the good properties of a super gathering spanning tree

(SGST) in [8]. We then show this diameter-linear broad-
casting algorithm remains robust under the noisy wireless
network model and also improves the currently best known
result in [6] by a Θ(log logn) factor. Finally, we also
extend our robust single-message broadcasting algorithm
to k multi-message broadcasting scenario and show it can
broadcast k messages in O(D + k logn + log2 n). This
new robust multi-message broadcasting scheme is not only
optimal but also answers affirmatively the problem left open
in [6] on the existence of an algorithm that is robust to
sender and receiver faults and can broadcast k messages in
O(D + k logn+ polylog(n)).

2.1. Preliminaries

For the convenience of our presentation as well as the
self-containedness, we first recall the following recursive
ranking procedure of nodes in a tree (see [8]). Leaves have
rank 1. Next consider a mesh node v and the set Q of its
children and let rmax be the maximum rank of the mesh
nodes in Q. Given a fixed integer parameter 2 ≤ x ≤ ∆, if
there are less than x mesh nodes in Q of rank rmax then
set the rank of v (e.g. rank(v, x)) to rmax, otherwise set the
rank of v to rmax + 1.

For an example, see Figure 1, where the same tree is
ranked with thresholds x = 2 and x = 3 respectively.

Lemma 1. Let T be a tree with n nodes of maximum
degree ∆. Then, r

[x]
max ≤ ⌈logx n⌉, for each 2 ≤ x ≤ ∆,

where r
[x]
max = maxv∈T rank(v, x). (see [8].)

For clarity of presentation, we reproduce some defini-
tions from [8].

Given an arbitrary tree, we choose its central node c as
the root. Then according to the hop distance from c, the
mesh nodes in the tree (rooted at c) are partitioned into
consecutive layers Li = {v | dist(c, v) = i}, for i = 0, .., r
where 0 ≤ r ≤ D is the radius of the tree. We denote the
size of each layer Li by |Li|.

For a fixed value x ≥ 2, let Ri(x) = {v | rank(v, x) =

i}, where 1 ≤ i ≤ r
[x]
max.

Based on the above rank sets, the mesh nodes can be
divided into three different types of transmission sets.
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Figure 1. A tree of size n = 37 ranked with x = 2 (left) and x = 3

(right)

Definition 2. The fast transmission set is given by
F k
j = {v | v ∈ Lk ∩ Rj(2) and parent(v) ∈ Rj(2)}.

Also define Fj =
⋃D

k=1 F
k
j and F =

⋃r[2]
max

j=1 Fj .

Definition 3. The slow transmission set is given
by Sk

j = {v | v ∈ Lk ∩ Rj(2) and

parent(v) ∈ Rp(2), for some p > j; and
rank(v, x) = rank(parent(v), x), x > 2}. Also

define Sj =
⋃D

k=1 S
k
j and S =

⋃r[2]
max

j=1 Sj .

Definition 4. The super-slow transmission set is given
by SSk

j = {v | v ∈ Lk ∩ Rj(x) and parent(v) ∈

Ri(x), i > j}. Accordingly, define SSj =
⋃D

k=1 SS
k
j

and SS =
⋃r[x]

max

j=1 SSj .

Note that the above transmission sets define a partition
of the node set in that each mesh node v only belongs to
one of the transmission sets and V = F

⋃

S
⋃

SS.

2.1.1. The super gathering spanning tree. In this
subsection, we reproduce the definition of a super

gathering spanning tree (SGST) from [8], which plays an
important role in our new broadcasting schemes in both
the classic graph-based faultless and the noisy wireless
network models described later.

A super gathering spanning tree (SGST) for a graph
G = (V,E) is any BFS spanning tree TG of G, that satisfies:

(1) TG is rooted at the central node c of G,
(2) TG is ranked according to the ranking pro-
cedure from Section 2.1,
(3) all mesh nodes in F k

j of TG are able to trans-
mit their messages to their parents simultane-
ously without any collision, for all 1 ≤ k ≤ D

and 1 ≤ j ≤ r
[2]
max ≤ ⌈logn⌉,

(4) every mesh node v in Sk
j ∩ Ri(x) of TG

has the following property: parent(v) has
at most x − 1 neighbors in Sk

j ∩ Ri(x),

for all i = 1, 2, ..., r
[x]
max ≤ ⌈logx n⌉,

j = 1, 2, ..., r
[2]
max ≤ ⌈logn⌉ and k = 1, ..., D.

An example has been shown in Figure 2.
We will use the following theorem for the analysis of

our new broadcasting scheme in Section 2.2.

Theorem 5. For an arbitrary graph (e.g., an arbitrary
WMN), there always exists an O(n2 logn) time
construction of a SGST . (See [8].)
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Figure 2. Construction of a super gathering spanning tree.

2.1.2. Decay Algorithm. The classic Decay algorithm [5],
[6] is to broadcast a single message from the source s to all
other nodes. The time rounds can be divided into phases of
O(log n)-round. During the ith round of each phase, where
i ≤ O(log n), each informed node broadcasts the message
independently with probability 2−i.

The following Lemma had been shown in [6].

Lemma 6. If a node v has an informed neighbor at the
start of the phase, it becomes informed by the end of
the phase with constant probability.

Consequently, we can also derive the following Lemma:

Lemma 7. In any bipartite graph, one partition (holding the
message) can inform all nodes in another partition in
one phase (O(log n) rounds), with constant probability.

The main Theorem of the time complexity of Decay algo-
rithm ([5]) states:

Theorem 8. In the faultless model, Decay
algorithm broadcasts a single message in
O(D logn + log n(logn + log 1

δ
)) rounds with a

probability of failure of at most δ.

More precisely, it has been shown in [6]. Fix a path s =
u0, u1, ..., ul = v from the source s to any node v (the length
l of the path is at most the diameter D). At round t, let φ be
the largest i such that ui knows the message (initially, φ =



0). After one phase (O(log n) rounds) φ either remains the
same or increases by 1 with constant probability according
to Lemma 6. Therefore, after O(D+ logn+ log 1

δ
) phases,

the probability of failure can be bounded by a Chernoff
bound:

Pr[Φ < l] < exp

(

−Ω

(

logn+ log
1

δ

))

.

We can apply a union bound over all n nodes and derive
that the failure probability is at most n · exp(−Ω(logn +
log 1

δ
)) < exp(−Ω(log 1

δ
)) < δ. This is a very crucial prop-

erty used in the analysis of our new broadcasting schemes.

2.2. Optimal Single-Message Broadcasting Sched-

ule in Faultless Model

In this section, we show a new single-message broad-
casting scheme of length D+O(log2 n) time rounds, which
is asymptotically optimal. We adopt the randomized Decay
algorithm in the Section 2.1.2 to replace the deterministic
one used for the super-slow transmissions in [8]. Combining
the new transmission pattern with the good properties of the
super gathering spanning tree, we derive the claimed result.

In our single-message broadcast scheme, a super-
gathering spanning tree rooted at the source node s is used.
The broadcast message is now disseminated from the root
towards the leaves of the tree.

Similarly as the approach in [8], we define p(a) as the
unique shortest path from the root s to a leaf a. Note that the
message does not necessarily follow the path p(a) and could
actually even been delivered along non-shortest paths. We
can measure the delay from the time the message is already
available at some node v on the path p(a) to the time the
message has already reached the following node w on the
path (though not necessarily via a transmission from v).

The path p(a) can be though of as consisting of several
segments

p(a) = 〈pF1 (a), p
S
1 (a), p

SS
1 (a), pF2 (a), p

S
2 (a), p

SS
2 (a), . . . ,

pFq (a), p
S
q (a), p

SS
q (a)〉 ,

where each pFi (a) is a segment consisting of fast trans-
mission edges (i.e., edges leading from parent(v) to v of
rank(parent(v), 2) = rank(v, 2)), each pSi (a) is an edge
(u,w) where u is a node on layer Lk for some k, w is
a node on layer Lk+1 and rank(u, 2) > rank(w, 2) and
rank(u, x) = rank(w, x). We refer to such edges (u,w)
as slow transmission edges. Further, each pSS

i (a) is an edge
(y, z) where y is a node on layer Lk for some k and z is
a node on layer Lk+1 and rank(y, 2) > rank(z, 2) and
rank(y, x) > rank(z, x). We refer to such edges (y, z)
as super-slow transmission edges. Note that some of the
segments pFi (a), p

S
i (a) and pSS

i (a) may be empty.
The progress of the message dissemination can be

viewed as traversing the path p(a) by alternating (flipping)
among chains pFi (a) of fast transmission edges, slow trans-
mission steps over edges pSi (a) and super-slow transmission
edges pSS

i (a).

Next we describe the schedule governing these trans-

missions. Consider a node v with 1 ≤ rank(v, 2) ≤ r
[2]
max

on BFS layer Li with a child w of the same rank at the
next BFS layer. Then v can perform a fast transmission

to w in a time step t satisfying t ≡ i + 9j mod 9r
[2]
max,

where j = rank(v, 2). The slow transmissions at the
BFS layer Li are performed in the time steps t satisfying
t ≡ i + 3 mod 9. The super-slow transmissions at the
BFS layer Li are performed in the time steps t satisfying
t ≡ i + 6 mod 9. This way, the fast, the slow and the
super-slow transmissions at any BFS layer are separated by
three units of time. Thus, there are no collisions between
the fast, the slow and super-slow transmissions at the same
BFS layer. Moreover, there cannot be conflicts between
transmissions coming from different BFS layers either. In
fact, at any time step, transmissions are performed on BFS
layers at distances that are multiples of 3 apart.

When the message arrives at the first node v of a fast
segment pFi (a) of the route (with a particular rank), it might

wait for as many as 9r
[2]
max = O(log n) time steps before

being transmitted to the next BFS layer. However, it will
then be forwarded through the fast segment pFi (a) without
further delays.

Once reaching the end node u of the fast segment
pFi (a), the message has to be transmitted from some node
on u’s BFS layer to the next node w on p(a), which has
rank(u, 2) > rank(w, 2) and rank(u, x) = rank(w, x),
using a slow transmissions mechanism. For slow transmis-
sions, the algorithm uses the x transmissions to progress
distance one on p(a) due to the property of the SGST .
Note that the transmission patterns for the fast and the slow
transmissions are identical as the one in [8].

Once reaching the end node y of the slow segment
pSi (a), the message has to be transmitted from some node
on y’s BFS layer to the next node z on p(a), which has
rank(y, 2) > rank(z, 2) and rank(y, x) > rank(z, x),
using a super-slow transmissions mechanism. For super-
slow transmissions, our algorithm uses the Decay algorithm
mentioned in Section 2.1.2 with a O(log n) transmission
rounds in each phases. By Lemma 7, the Decay algorithm
allows to move uniform information from one partition of a
bipartite graph of size n (here, an entire BFS layer Lj of the
tree) to the other (here, the next layer Lj+1) in time O(log n)
with constant probability. Since the path can be decomposed
into at most O(logx n) super-slow edges. By Theorem 8, the
message successfully traverses all of the super-slow edges
after O(log n(logx n + log 1

δ
)) transmission rounds with a

probability of at least 1− δ
n

.

By virtue of the above observations we can
bound the total time required for the broadcast the
single source message to reach a leaf a as follows.

Let Di, for 1 ≤ i ≤ r
[2]
max, denote the length of

pF (a), the ith fast segment of the route p(a) used
by the broadcast message that has reached a. Thus
the time required to communicate a is bounded by
O(log n) +D1 + . . .+O(log n) +D

r
[2]
max

≤ D+O(log2 n)
(with probability 1) for the fast transmissions plus



r
[2]
max · O(x) = O(x log n) (with probability 1) for the

slow transmissions and O(log n(logx n + log 1
δ
)) with a

probability of at least 1− δ
n

for the super-slow transmissions,

yielding a total of D+O(log2 n+x · logn+ log2 n
log x

) rounds

with a probability of at least 1 − δ
n

. Combing with the
union bound over all nodes, we can summarize our findings
in the following theorem.

Theorem 9. In the faultless model, we can spreads a single
message in D + O(log2 n + x · logn + logn(logx n +
log 1

δ
)) rounds with a probability of failure of at most

δ. In particular, by setting x = Θ(logn), we obtain the

bound D +O(log2 n).

2.3. Optimal Single-Message Broadcasting in Noisy

Model

In this section, we show how we adapt the single-
message broadcasting algorithm we derived at Section 2.2
from the faultless setting to the sender or receiver faults
setting (the noisy network model) in order to obtain robust
single-message broadcast scheme. Our new robust scheme
is based on the framework in [6],

As in the broadcasting scheme at Section 2.2, a SGST
is constructed from the source node s. The communication
process is split into consecutive blocks of 9 time rounds
each. The first 3 rounds of each block are used for fast
transmissions from the set F , the middle 3 rounds are
reserved for slow transmissions from the set S and the
remaining 3 are used for super-slow transmissions of the
mesh nodes from the set SS. We use 3 rounds of time
for each type of transmission in order to prevent collisions
between neighboring BFS layers.

During super-slow transmission rounds, a standard De-
cay algorithm (see Section 2.1.2) is performed on all nodes.
These rounds are meant to push the message from one fast
stretch or one slow transmission to the next.

During slow transmission rounds, we replace the deter-
ministic approach of faultless broadcasting by the standard
Decay algorithm. Note also the number of informed nodes
who are competing the transmission at any node (associating
on a slow transmission edge) can be bounded by the ranking
parameter x due to the properties of the SGST.

During fast transmission rounds, we adopt the frame-
work from [6] but modify the transmission pattern for the
fast stretches. First, partition the nodes of each fast stretch
into blocks of size S := Θ(log logn) (all the blocks have
size Θ(log logn), except possibly the last one). The proce-
dure of broadcasting on a block has been defined in the fol-

lowing way: a node v with 1 ≤ rank(v, 2) ≤ r
[2]
max on BFS

layer Li (with a child w of the same rank at the next BFS
layer) can perform a fast transmission to w in a time step

t satisfying t ≡ i+ 9j mod 9r
[2]
max, where j = rank(v, 2).

The procedure continues on for c ·S = Θ(log logn) rounds
for some sufficiently large constant c. Note that it has been
stated in [6] the probability that a message that is in a

broadcasting block in the beginning fails to exit the block
is at most 1

logc
′

n
for a constant c′ which can be set as large

as needed (by increasing the round multiplier c).
We use the same concept "supernode" from [6] to

contract the nodes in a block into one. A broadcast on
this supernode corresponds to the block-broadcast procedure
described in the last paragraph and "superrounds" on this
graph correspond to Θ(log logn) rounds in the original
graph.

Similarly, we can define ranks, BFS levels and fast trans-
mission supernodes in the same way as in the original graph
we defined in the last Section 2.2. The algorithm on the
contracted graph is as follows: at round t, a fast supernode

with level i and rank j broadcasts if t ≡ i+9j mod 9r
[2]
max;

the slow transmissions at the BFS layer Li are performed
in the time rounds t satisfying t ≡ i + 3 mod 9; and the
super-slow transmissions at the BFS layer Li are performed
in the rounds t satisfying t ≡ i + 6 mod 9. Consequently,
the fast, the slow and the super-slow transmissions at any
BFS layer are separated by three rounds of time. Thus, there
are no collisions between the fast, the slow and super-slow
transmissions at the same BFS layer. Moreover, there cannot
be conflicts between transmissions coming from different
BFS layers either. In fact, at any time step, transmissions
are performed on BFS layers at distances that are multiples
of 3 apart.

Consider any SGST-path p(a) on the contracted graph

p(a) = 〈pF1 (a), p
S
1 (a), p

SS
1 (a), pF2 (a), p

S
2 (a), p

SS
2 (a), . . . ,

pFq (a), p
S
q (a), p

SS
q (a)〉 ,

from s to another node a and note that it has at most r
[2]
max =

O(log n) fast stretches and at most r
[2]
max = O(log n) slow

transmission edges, and at most r
[x]
max = O(logx n) super-

slow transmission edges.

Assuming a message is on a super-slow transmission
edge, by following the standard Decay algorithm, during the
next Θ(logn) rounds it is transmitted along that edge with
constant probability according to Lemma 6. Given the fact
that there are only O(logx n) such edges, a Chernoff bound
gives us that after O(log n(logx n+log 3

δ
)) such time rounds,

the message is transmitted along all the super-slow edges
on p(a) with probability at least 1− δ

3n . Applying a union
bound over all n nodes gives that the failure probability is
at most n ·exp(−Ω(logn+log 3

δ
)) < exp(−Ω(log 3

δ
)) < δ

3 .

Similarly, we assume a message is on a slow trans-
mission edge. By the construction and the properties of a
SGST, we know that the number of informed neighboring
nodes can be bounded by x − 1. Therefore, the graph
induced by the slow transmission edges together with the
corresponding incident nodes can be colored by x (Θ(x)).
We can now consider all nodes with same colour as one
single node since they perform in an identical transmission
manner. By following the standard Decay algorithm, during
the next Θ(log x) rounds it is transmitted along that edge
with constant probability according to Lemma 6. Given the
fact that there are only O(log n) such edges, we can use a



Chernoff bound to show that after O(log x(log n + log 3
δ
))

such time rounds, the message is transmitted along all
the slow edges on p(a) with probability at least 1 − δ

3x .
Applying a union bound over all x nodes (Θ(x) color-
ing scheme) gives that the failure probability is at most
x · exp(−Ω(log x+ log 3

δ
)) < exp(−Ω(log 3

δ
)) < δ

3 .

Finally, we start to counting the number of time rounds
that a message spends on fast stretches (during fast trans-
mission rounds). Note that from the design of the algorithm
(transmission patterns) and the properties constructed by
the SGST no two broadcasting nodes ever interfere with
each other. Therefore, the only failures occurs from con-
stant probability faults. We follow the similar strategies and
analysis from [6] but more smartly use the properties of the
SGST. Combing with a better probability setting (e.g., by an
appropriate constant c), we improves a Θ(log logn) factor
from the best robust single-message broadcasting scheme
proposed in [6].

For the sakes of clarification and comparison, we use
the same concepts from [6]. Call a fast transmission node
from the path p(a) a barrier if its BFS level is divisible by
S and call a message active if it is on a fast transmission
stretch and the node it is currently at is broadcasting.
We also define a new concept "connector". Call a slow
transmission edge from the path p(a) a connector if it
connects two fast transmission stretches. A connector will
be used to glue two separate fast stretches together (with
extra small overhead, e.g., O(log logn) rounds by setting
x = logn) to minimize the total number of the fast stretches.
Note that a message that enters a fast stretch has to wait

r
[2]
maxcS = O(log n log logn) rounds until it becomes active.

Once it is active, we now analyze its behavior during the
next cS = O(log logn) rounds. The message can either exit
the fast stretch, remain active (reaching the next barrier) or
become inactive (failing (c− 1)S out of cS transmissions).
We now follow the framework in [6] and bound the proba-
bility of becoming inactive by using a different probability
setting, which is at most 1

log3 n log logn
by Chernoff with

an appropriate constant c. Every time a message becomes
inactive, it waits O(log n log logn) rounds before it becomes
active.

Let d1, d2, ..., dq be the lengths of the fast
stretches in the path p(a). Combining the properties
of the SGST with the power and functionality of

connectors, we can bound q ≤ r
[x]
max = O(logx n).

By choosing x = log n, q ≤ Θ( logn
log logn

). When a

message is active, it traverses the paths in at most
∑q

i=1⌈di/S⌉ · cS =
∑q

i=1 O(di + 1) = O(D + logn
log log n

)
rounds. Note that the extra small overheads at the
connectors can be bounded in the slow transmission rounds
by O(log n log logn) in total with a failure probability at
most δ

3 . The number of rounds it takes for a message to
become active is at most

(

q +
T

cS
Pr[msg inactive in cS rounds]

)

· O(log n log logn)

≤ O(log2 n) +
T

Θ(log logn)

O(log n log logn)

log3 n log logn

= O(log2 n) + Θ

(

T

log2 n log logn

)

where T is the total length of the robust single-message
broadcasting scheme. The q term comes from becoming
active each time a message enters a fast transmission stretch
under consideration of the help from the connectors. The
T
cS

accounts for the possibility of a message becoming
inactive in between barriers. Note that the work in [6]

requires O(log2 n log logn) + Θ
(

T
log2 n

)

number of time

rounds to handle the fast stretches. Consequently, our new
scheme saves a Θ(log logn) factor to complete the message
broadcasting in the fast stretches. Under a same Chernoff
bound as [6] together with the approaches we used to handle
slow-transmission edges and super-slow transmission edges,
we can prove that if T = Θ(D + logn(logn+ log 3

δ
)), the

message gets passed along the path with a probability of
at least 1 − δ

3n . Similarly, the union bound gives that the

failure probability is at most δ
3 .

Putting together the behavior during the fast, slow, super-
slow transmission rounds gives that the protocol forwards
the message from the source to all other nodes in the claimed
number of rounds with probability at least 1− δ.

Consequently, we specify our main results in this
section in the following Theorem.

Theorem 10. Our robust broadcasting scheme spreads a
single message in O(D + logn(logn + log 1

δ
)) rounds

with a probability of failure of at most δ if sender or
receiver faults occur with probability p.

2.4. Robust Algorithms for Multi-Message Broad-

cast

Haeupler in [19] states that the interesting feature of
single-message broadcasting algorithms that are robust to
sender failures is that they can be used in a black-box
manner to transmit k messages with random linear network
coding. Based on the same conditions in [6] to satisfy the
requirements to use random linear network coding, we state
the results that can be achieved and refer the reader to [6]
for details.

Theorem 11. Our robust single-message broadcasting
scheme with random linear network coding can broad-
cast k messages in O(D + k logn + log2 n) rounds if
sender or receiver faults occur with constant probability.
It follows that any topology has a coding throughput of

Ω
(

1
logn

)

.



3. Conclusion

In this paper, we propose asymptotically latency-optimal
schedules under both classic faultless and noisy wireless net-
work models that can complete single-message broadcasting
task in O(D+log2 n) time units in any WMN of size n, and
diameter D, which also improves the currently best known
result in [6] by a Θ(log logn) factor. We also show how to
extend our robust single-message broadcasting algorithm to
k multi-message broadcasting scenario and achieve a time
bound on O(D + k logn+ log2 n). This new robust multi-
message broadcasting scheme is not only asymptotically
optimal but also answers affirmatively the main problem
left open in [6]. We hope our work can stimulate the further
research on reliable and robust communication in wireless
networks.
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