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Universal Test Complexity of Field-Programmable
Gate Arrays

Tomoo Inoue, Hideo Fujiwara, Hiroyuki Michinishi, Tokumi Yokohira, and Takuji Okamoto

Abstract— A field-programmable gate array (FPGA) can implement ar-
bitrary logic circuits in the field. In this paper, we consider universal test
such that when applied to an unprogrammed FPGA, it ensures that all the
corresponding programmed logic circuits on the FPGA are fault-free. We
focus on testing for look-up tables in FPGAs, and present two types of pro-
gramming schemes; sequential loading and random access loading. Then
we show test procedures for the FPGAs with these programming schemes
and their test complexities. In order to make the test complexity for FPGAs
independent of the array size of the FPGASs, we propose a programming
scheme called block-diced loading, which makes FPGAs C-testable.

Keywords— C-testable, field-programmable gate array (FPGA), pro-
gramming scheme, test complexity, test procedure, universal test.

|. INTRODUCTION

|[ELD-PROGRAMMABLE gate arrays (FPGAS) are digital

devices that can implement logic circuits required by users
inthefield [1], [2]. Because of their short turnaround time, low
manufacturing cost and programmability in the field, there has
been an increasing interest in system prototyping and system re-
configuration using FPGAs. There are many different architec-
tures of FPGAs driven by different programming technologies.
Oneimportant classisthe SRAM-based FPGAs (e.g. Xilinx [1],
[2], [3]), also called the look-up table FPGAS, which can bere-
programmed any number of times. A novel feature of these FP-
GAs is that each basic block can implement any logic function
that satisfies the I/0O constraints of the basic block. The inter-
connections between the basic blocks consist of metal segments
joined by program controlled pass transistors. In this paper, we
shall consider look-up table FPGASs.

Testing for FPGAS, as well as conventional digital ICs, is
one of the important problems. Severa works on testing FP-
GAs have been reported [4], [5]. Hermann and Hoffmann [4]
presented fault models and test generation for one-time pro-
grammable FPGAs (e.g. Actel’s[1], [2]). Durate and Nicolaidis
[5] reported a test methodology for cellular-based FPGAS (e.g.
Algotronix’s[1], [2]). For reprogrammable FPGAS, two types
of testing can be considered; one is testing for unprogrammed
FPGAs, and the other is testing for programmed FPGAs. An
unprogrammed FPGA can realize many different programmed
FPGAs by loading different programs. Therefore, to test the un-
programmed FPGA, we might have to test al the programmed
FPGA s obtained from the unprogrammed FPGA. However, it is
too time-consuming to test such alarge number of programmed
FPGAs. In order to resolve this intractable problem, we have
to consider alternative approaches to testing for unprogrammed
FPGAs.

In this paper, we shall introduce universal test such that when
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Fig. 1. Architecture of FPGA.

applied to agiven unprogrammed FPGA, it ensures that all pro-
grammed FPGAs corresponding to the unprogrammed FPGA
are fault-free. Here, we focus on testing for look-up tables in
FPGAs. Testing for other components in an FPGA can be con-
sidered in the same way as testing for look-up tables. Then we
shall present test complexity of FPGASs, wheretest complexity of
an FPGA refersto the time required to test the FPGA. We shall
present two types of programming schemes; sequential loading
and random access loading, and show that the test complexities
of FPGAswith these programming schemesare O(Nnlogn) and
O(Nn), respectively, where N is the array size of FPGASs or the
number of configurable logic blocks, and n is the size of 1ook-
up tables or the number of configuration memory cells for each
look-up table. The test complexities of these FPGAs depend
on the array size N, and thus they might not be C-testable [6].
If we can make FPGAs C-testable, we can considerably reduce
thetest complexity. Therefore, we shall propose anew program-
ming scheme, called block-dliced loading, which makes FPGAs
C-testable. The test complexities of test procedures for FPGAs
with block-dliced sequential loading and block-sliced random
access loading are O(nlog?n+log®n) and O(n+ logn), respec-
tively.

Il. ARCHITECTURE OF FPGA

The architecture of field-programmable gate arrays (FPGAS)
considered in this paper isillustrated in Fig. 1. An FPGA con-
sists of an array of programmable logic blocks, programmable
I/0 blocks, and a programmable interconnect structure. Each
logic block consists of a single look-up table (LUT). These
blocks and the interconnect structure are configured by static
RAMs called configuration memory cells. This FPGA is re-
ferred to as alook-up table FPGA.

An LUT implements combinational logic asa2X x 1 memory
composed of configuration memory cells, where k is the num-
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ber of input lines of the LUT. When an input pattern is applied
to an LUT , the LUT selects a configuration memory cell ad-
dressed by the input pattern, and the output of the cell provides
the value of the function. An LUT can therefore implement any
of 2" functions of itsinputs, where n = 2%, When the FPGA is
programmed, the memory is loaded with the hit pattern corre-
sponding to the truth table of the function. Fig. 2 (a) shows a
block of athree-input LUT.

A pass transistor controlled by a configuration memory cell,
as shown in Fig. 2(b), configures a connection of wiring seg-
ments in an interconnect structure. The wire segments on each
side of the transistor are connected or not, depending on the
value in the memory cell. A multiplexer, as shown in Fig. 2(c),
also controls a connection of wiring segments. Multiplexers
may be of any width, with more configuration memory cells for
wider multiplexers. Fig. 3 shows the building blocks from Fig.
2 combined into a configurable logic block (CLB) with wiring.
The CLB inFig. 3includesasinglethree-input LUT surrounded
by wiring channels. Each wiring channel contains several seg-
ments. Segments have connectionsto the CLB and to each other
through pass transistors and multiplexers.

A look-up table FPGA is programmed by loading a program
composed of abit sequence into its configuration memory cells.
Each bit of the program is stored in the corresponding configura-
tion memory cell, and consequently LUTSs and interconnections
are configured. Accordingly alogic function or a configuration
isimplemented on the FPGA. The FPGA must include circuitry
to load a program. Here we consider two types of programming
schemes as follows.

Sequential loading: When an FPGA is programmed, the pro-
gram is shifted into the FPGA, and each bit of the program is
stored in the corresponding configuration memory cell. This
type of loading scheme is called sequential loading, and an
FPGA with thistype of loading is called a sequentially loadable
FPGA (SL-FPGA). Whenever an SL-FPGA implements config-
urations, it loads all configuration memory cells.

Random access loading: Each configuration memory cell is
directly addressable. When an FPGA is programmed, each bit

isloaded by means of its address, and stored in the correspond-
ing cell. This type of loading scheme is called random access
loading, and an FPGA with this type of loading is called aran-
dom access loadable FPGA (RAL-FPGA). An RAL-FPGA can
implement a configuration by loading only the bits which differ
from those of the previous one.

1. UNIVERSAL TEST

We can consider testing for FPGAs as two types of testing;
one is testing for unprogrammed FPGAS and the other is test-
ing for programmed FPGAs. Astesting for unprogrammed FP-
GAs, we introduce universal test such that when applied to an
unprogrammed FPGA,, it ensures that all the configurations im-
plemented on the corresponding FPGA are fault-free.

An LUT is one of the important and characteristic config-
urable components in a look-up table FPGA. A k-input LUT
consists of 2K configuration memory cells, and each memory cell
hasits own address. When aninput patternisappliedtothe LUT
from its k input lines, the LUT decodes the input pattern and
reads out the memory cell corresponding to the input pattern.
Hence, an LUT can be considered as a random access memory
(RAM). However, since the decoder for writing (or program-
ming) is different from that for reading, conventional methods
for testing of RAMs[7], [8] to such LUTs can not be applied.

A. Fault Model

Let k be the number of input lines of an LUT. Let n = 2%
be the number of configuration memory cells of an LUT. Let
A= {ap,a,...,an—1} denote a set of input patterns for an LUT,
i.e., aset of addresses of configuration memory cellsof the LUT.
Let M = {mg,my,...,My_1} denote a set of configuration mem-
ory cellsin an LUT. The decoding function of an LUT can be
model ed as amapping from Ato 2V. The function of afault-free
(i.e. correct) LUT isexpressedas f () = {mi} for0<i<n—-1.
Notethat the range of the fault-free decoding function f isasin-
gleton for dl a;.

Then, we define four fault models as follows.

Stuck-at fault (SAF): Thevauethat isread out from the mem-
ory cell my corresponding to input pattern & is always either 0
or 1, irrespective of configurations. This type of fault is called
a stuck-at fault (SAF). Note that an SAF is independent of the
decoding function.

Incorrect access fault (IAF): For some input pattern g € A,
whenever memory cell m; isto be accessed by input pattern &,
another memory cell m; which does not correspond to &; is ac-
cessed. That is,

f(ai) = {mj} #{m}.

Thistype of fault is called an incorrect access fault (1AF).
Non-access fault (NAF): For some input pattern a; € A, when-

ever memory cell my; is to be accessed by input pattern a;, no

memory cell isaccessed. That is,

f(ai) = ¢.

Thistype of fault is called a non-access fault (NAF). The output
value for the input pattern @ becomes the same as the output
value before applying the input pattern.



Multiple access fault (MAF): For some input pattern g € A,
whenever only memory cell m; isto be accessed by input pattern
a;, more than one memory cells are accessed. That is,

[f(a)] > 2.

This type of fault is called a multiple-access fault (MAF). The
output value under an MAF is formed by the bitwise OR or
AND function, which depends on the device technology, over
the memory cellsthat are accessed by a;. over the memory cells
intheset f(a).

Hereafter, we consider universal test for these faults of LUTs
provided that there exists only one fault in an FPGA 1.

B. Universal Test Procedure

The universal test for look-up table FPGAs can be performed
by repeating implementation of a configuration and application
of an input sequence to the configuration alternately. Hence,
auniversal test procedure for an FPGA is represented by a se-
guence of pairs of aconfiguration and an input sequence applied
to the configuration. Thus, a universal test procedure TP is ex-
pressed as

TP = <(C1,S_]_), (CZ,SZ);---,(Cnc’SWc»

whereC; isthei-th configuration, § is theinput sequence which
is applied to the i-th configuration C;, and n¢ is the number of
configurations in test procedure TP.

When a configuration on an SL-FPGA is changed to another
one, the program bits to be loaded into all the configuration
memory cellsin the FPGA are required. In general, the number
of configuration memory cells in an FPGA is large, and hence
SL-FPGA s require that the number n¢ of configurationsin auni-
versal test procedure is small. On the other hand, when a con-
figuration on an RAL-FPGA is changed to another one, only the
bits which differ from those of the previous configuration can
be loaded. Hence, RAL-FPGAS require that the differences be-
tween a configuration and the consecutive onein auniversal test
procedure are small. Therefore, we have to consider two univer-
sal test procedures severaly. In the following, we first consider
universal test procedures for asingle LUT, and next we modify
them into those for all the LUTsin an FPGA.

B.1 Universal Test Procedure for Single LUT

First, we consider a universal test procedure for asingle LUT.
Let k be the number of input lines of an LUT. Let n = 2X be the
number of configuration memory cell of an LUT. For the sake of
simplicity, we assume that input pattern a; for an LUT denotes
a binary representation of decimal number j for0< j<n-1
without loss of generality. Let b(aj,l) be the I-th bit of pattern
a;. Let Load(mj,v) denote loading a value v into memory cell
m;. Note that this operation Load() can be skipped if the pro-
gramming scheme of the FPGA israndom access loading and if
the value to be loaded into a memory cell isthe same asthat in
the previous configuration. Let Input(a;) denote applying input

1This assumption is for the sake of simplicity. We can show that the test pro-
cedures presented in the rest of paper can detect any multiple fault that consists
of SAFs, IAFs, NAFs and MAFs provided that the number of faulty LUTSsis at
most onein an FPGA.

1: TP() {

2: for(i = 1; i <= 2k; i++) {/* C: i-th config. */
3: for(j = 0; j < n; j++) {

4. if( <= k) {

5: Load (m;, b(aj,k—i)) ;
6: } else {

7: Load (mj, b(aj,2k—1)) ;
8: }

9: }

10: for(j = 0; j < n; j++) {
11: Input (aj) ;

12: }

13 if(i == 1) {

14: Input (ao) ;

15: }

16: }

17: }

Fig. 4. Test procedure: TP;.

pattern a; to read out the value in the corresponding memory
cell m;.

Fi g.J 4 shows auniversal test procedure for asingle LUT. This
test procedureiscaled TP;. Asshown inthisfigure, in test pro-
cedure TPy, memory cell m; is loaded with the (k — i)-th bit of
a; at thei-th configuration C; for 1 <i <k, and is loaded with
the complement of the (2k — i)-th bit of a; at thei-th configura-
tion G for k+ 1 <i < 2k. Then, al memory cells are read out
by applying all the input patterns for each configuration. At the
first configuration Cy, input pattern ag is applied not only as the
first input pattern but also as the last one to detect an NAF for ag
(Lines13to 15in Fig. 4).

Letr(i,j) bethe output value of the LUT for the j-th input
pattern at the i-th configuration. For 0 < j < n—1, let Ry(j)
and Rx(j) be the sequences obtained by arranging all the output
values corresponding to the j-th input patterns at the i-th con-
figurations C; for 1 <i < kand for k+ 1 <i < 2k, respectively.
That is,

Ri(j) =
Ra(])

When the LUT is fault-free, the sequences Ri(j) and Rx(j)
have the following propertiesfor 0< j <n—1.

(r(%,),r(2,0)5--- (k1))
(r(k+1,j),r(k+2,j),...,r(2, j))

Ri(j) =g N
RZ(J) = (r(k+17])’r(k+27]),7r(2k7]))
= (f@ @D, kD)
= Ru(j)
= g ()

where X denotes the bitwise complement of x.

Table | shows an example of the configurations in test proce-
dure TPy for the number of input linesk = 2.

For universal test procedure T Py, we have the following lem-
mas.



TABLEI

EXAMPLE: TP, FORk = 2.
memory cell configuration

address Cy Cy C3 Cy
Mo 00 0 0 1 1
my 01 0 1 1 0
mp 10 1 0 0 1
mg 11 1 1 0 0

Lemma 1. TPy can detect any SAF.
Proof: Suppose that the output value from a memory cell
m; is stuck at 0 (1). Output valuer(i,j) =0 (1) for al i, and
consequently

Ru(j) = Ro(j) = 00...0(11...1).

Thisisinconsistent with Equations (1) and (2). ]
Lemma 2. TPy can detect any IAF.
Proof: Suppose that an input pattern a; selects a memory
cell ms (s# j). The sequence Ry () is expressed as

Rl(j) = Qs.

Thisisinconsistent with Equation (1) because thereisno pair of
addresses as and a; such that aj = as. [ |
Lemma 3: TPy can detect any NAF.

Proof: Suppose that an input pattern a; selects no memory
cell.
(Casewhere j =0): Atthefirst configuration C1, memory cells
mp and m,,_1 areloaded with 0 and 1, respectively. Hence, if the
LUT isfault-free,

r(L,n) #r(l,n—1). (3

Memory cell mg isto be selected by address ag which isthe last
input pattern of the sequence S; at thefirst configuration C; after
memory cell my_1 isread out (line 14 in Fig. 4). If ag selects
no memory cell, r(1,n) =r(1,n—1). Thisisinconsistent with
Equation (3).

(Casewhere1 < j <n-—1): At the k-th configuration Cy, 0
and 1 are loaded into all memory cells aternately. Hence, if
the LUT isfault-free,

r(k,1) #r(k,I—1) 4

for 1 <I < n—1. If aninput pattern a; selects no memory cell,
r(k,j) =r(k,j —1). Thisisinconsistent with Equation (4).
|
Lemma 4: TPy can detect any MAF.
Proof: Suppose that an input pattern a; selects ms and m
(s#t). From Equations (1) and (2), the sequences Ry(j) and
Ro(j) are expressed as

Ru(j) =
Ro(j) =

respectively, where x denotes either bitwise AND or bitwise OR
function depending on technology. Hence,

asxa and
aAs*a ,

Ru(]) 7 Re(J)-

1: TR() {
2: if (Outputsunder MAFsareformed by AND ) {
3: v = 0;
4: } else { /* by OR */
5: v=1
6: }
7 for (i = 1; i <= n; i++) { /* C: i-th config. */
8: for (j = 0; j < n; j++) {
9: if (j==1i-1) {
10: Load (m;, V) ;
11: } else {
12: Load (m;, V) ;
13 }
14: }
13: j=1i-1;
15: Input (aj) ;
16: if (b(aj,0) == 0) {
17: I = j+1;
18: else {
19: I = j-1;
20: }
21: Input (&) ;
22: }
23: }
Fig. 5. Test procedure: TP..
Thisisinconsistent with Equation (2). |

From Lemmas 1 through 4, we have the following theorem.

Theorem 1. Universal test procedure T P; can detect any fault
inan LUT.

Next we present another universal test procedure for asingle
LUT, called TP.. Fig. 5 shows universal test procedure TP.. In
test procedure TP,, at the i-th configuration, only the (i — 1)-
th memory cell mj_; is loaded with v and the others are loaded
with v's, where value v is determined by technology. Let I (j,x)
denote the configuration number when memory cell m; that is
loaded with x isread out, and it can be expressed as

I(j,v) = j+1
1G,v) {}*2

for al j. When the LUT is fault-free, the output values for test
procedure TP, are expressed as

ri,0) = v (5)
ri,) = v
= 1(i,0) (6)

if jiseven
otherwise (odd)

for ali.

Table |1 shows an example of the configurationsin test proce-
dure TP, for the number of input linesk = 2.

For test procedure T P,, we have the following lemmas.

Lemma5: TP, can detect any SAF.

Proof: Suppose that the output value that is read out from

amemory cell m; isstuck at v (V). The output values for input
pattern a; are expressed as

r(1(5,v),0) = r(1(j,v),1) = v (v)



TABLE Il
EXAMPLE: TP, FORk = 2.

memory cell configuration
address Cy Cy C3 Cy
my 00 Y Y v v
m 01 v v v v
my 10 v v v v
mg 11 v v v v
Thisisinconsistent with Equation (5) or (6). |

Lemma 6: TP, can detect any IAF.
Proof: Suppose that an input pattern a; selects a memory
cell ms (s# j). At the (j + 1)-th configuration, ms = v. Hence,
the output value for input pattern a; is expressed as

r(j+21,0)=v

Thisisinconsistent with Equation (5). ]
Lemma 7: TP, can detect any NAF.

Proof: Suppose that an input pattern a; selects no memory
cell. Atthel(j,v)-th configuration, input pattern a; is applied
as the second pattern after the value v is read out. The previous
output value v is kept due to the NAF, i.e.,

r((j,v),1) r(1(j,v),0)
=V

Thisisinconsistent with Equation (6). |
Lemma 8: TP, can detect any MAF.
Proof: Suppose that an input pattern a; selects ms and m
(s#t). The output value for input pattern a; can be expressed
as

r(1(,9),0) = d(m) « d(m)

where d(ims) is the value that is loaded into ms, and * denotes
either AND or OR function depending on technology. For each
configuration, there is not more than two memory cells that are
loaded with V's. Hence,

d(mg) xd(m) =v
for any pair of mg and m such that s #t. Thus,
r(1(j,v),0) =v.

Thisisinconsistent with Equation (5). |
From Lemmas 5 through 8, we have the following theorem.

Theorem 2: Universal test procedure TP, can detect any fault
inan LUT.

B.2 Universal Test Procedure for All LUTs

Here we consider universal test procedures for all LUTs in
an FPGA. If we use any number of primary inputs/outputs for
universal test, we can perform universal test procedure such as
TPy and TR, for all LUTsin an FPGA concurrently. An FPGA,
however, has a restricted number of 1/0O blocks, and hence in-
put sequences cannot be applied to al the LUTs directly and
simultaneously while the corresponding output values from all
the LUTs are being observed. Therefore, for al LUTs in an

FPGA, we haveto consider universal test procedures under such
aconstraint of the limited number of 1/0 blocks.

First, we modify test procedure TP; into that for al LUTSs.
Suppose a set of k LUTs such that the i-th LUT implements a
function fi(x) = b(x,k—1i) for 1 <i < k. If aninput pattern a;
is applied to each of those LUTs concurrently, the output pat-
tern obtained from the k LUTSs is the same as the input pattern
aj, i.e, (f1(aj), f2(aj),. .., fk(aj)) = aj. Note that the function
fi(x) corresponds to the function that isimplemented at the i-th
configuration, G;, in test procedure TPy for 1 <i < k. Hence if
the input sequences that are the same as those in test procedure
TP, are applied those LUTS, then the k LUTs can be tested si-
multaneously while the resulting output sequences are applied
to another set of k LUTs as input sequences, and consequently
all LUTsin an FPGA can be tested.

Based on the above-mentioned method, we present a univer-
sal test procedure for al LUTsin an FPGA, called TPL. Test
procedure TP configuresiterations of functional blocks such
that each block consists of k LUTs and has k inputs and k out-
puts. Such ablock isreferred to as atest block. Let L, denote
the I-th LUT in each test block. The function implemented by
LUT L, at thei-th configuration in test procedure TP/ is the
same as that by the LUT at the (((i +1 —2) mod k) + 1) and
(k+ ((i+1—2) mod k) + 1) in test procedure TPy for 1 <i <k
and k+1 < i < 2k, respectively. Intest procedure TP, all test
blocks are connected with one another in a cascade. Test proce-
dure TPA- gppliesthe input sequence that isthe same as that of
test procedure TPy to the first test block in the cascade at each
configuration. The output sequences from the first test block is
applied to the second one. Similarly, the input sequences are ap-
plied to all the test block, and consequently all LUTs are tested
simultaneously. Fig. 6 shows an examplein case of k = 2. Fig.
6(a) illustrates 4 (= 2k) configurationsfor all LUTsin an FPGA.
Here, two LUTs are combined into a single test block, shown
outlined, and test blocks are cascaded from left to right. In this
cascade, connections between test blocks are configured to gen-
erate the input/output sequences of Fig. 6(b). Note that the order
of input sequences for even test blocks is the reverse of that for
odd test blocks at configurations Cy 1 through Cyx. However,
al the input patterns ag,ay,...,an—1 are applied to al LUTs at
each configuration, and NAFs of which detection depends on
the order of applied input sequences can be tested at the first k
configurations. Therfore, in the same way astest procedure TPy,
we have the following theorem.

Theorem 3: Test procedure TPt can detect any fault of all
LUTsinan FPGA.

In the same way as TP, we present atest procedure called
TP which is derived from test procedure TP,. As shown
in Fig. 5, in test procedure TP, only two input patterns that
are different in the last bit (i.e,, ...0 and ...1) are applied at
each configuration. On the other hand, the output values for
the two input patterns are 0 and 1. Hence, the output values
0 and 1 that are obtained from an LUT can be applied to the
last input line of another LUT for al the configurations. That
is, if we consider one LUT to be a test block, al LUTs can
be tested simultaneously by connecting the output line of atest
block (or an LUT) to thelast input line of another test block. Fig.
7 shows an example of test procedure TPyt in case of k = 2.
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Fig. 6. Example of test procedure TP (k = 2).

Fig. 7(a) illustrates 4 (= 2) configurations for al LUTs in an
FPGA. Here, one LUT is a single test block, shown outlined,
and test blocks are cascaded from left to right. As shown in
this figure, in test procedure TP, the function implemented
by each LUT at the i-th configuration is the same as that in test
procedure T P,. Thefirst and the third columns of Fig. 7(b) show
the input sequences for the leftmost and the next test blocks,
respectively. Note that when input sequence (a;,a) (denoted at
Lines15and 21in Fig. 5) isapplied to thefirst test block at odd
configuration, the input sequence for even test blocks becomes
(ay,a;). Inorder to feed the sequence (a;, & ) to even test blocks,
test procedure TPt applies the sequence (a;, &, a;) to thefirst
test block at odd configurations. Consequently, the sequence
(a,aj,a) which includes (aj,a) can be applied to even test
blocks. Thus, in the same way as test procedure TP, we have
the following theorem.

Theorem 4: Test procedure TP5- can detect any fault of all
LUTsinan FPGA.

IV. UNIVERSAL TEST COMPLEXITY

The universal test complexity of auniversal test procedure for
an FPGA refersto thetime required to perform the universal test
procedure for the FPGA. In this section, we consider the univer-
sal test complexities of the universal test procedures mentioned
above, TP and TPy for SL-FPGAs and RAL-FPGAS.

Suppose a universal test procedure for an FPGA G such that

TP={((C1,91),(C2,S),---,(Cn, Sv))

where n; isthe number of configurations. Let c(i) bethe number
of configuration memory cells that are loaded to implement the
i-th configuration C;. Let s(i) be the length of input sequence §
for the i-th configuration C;. The time required to implement all

(b)

(a) Configurations. (b) Input/output sequences.

the configurations in test procedure TP for FPGA G is given by
Nc
TS(TP) = - tec(i)
i=1

where t; is the time required to load one bit of a program into
configuration memory cell in FPGA G. The time required to
apply al the input sequences in test procedure TP for FPGA G
is given by

(TP = gl tes(i)

wherets is the clock cycle time of a configuration implemented
in FPGA G. Thus, the universal test complexity of test proce-
dure TP for FPGA G isgiven by

Te(TP) TS(TP) +TE(TP)

Nc

3 (tec(i) +tsS(i))

i=1

(7)

A. Test Complexity for SL-FPGA

Whenever a configuration is changed to another one on an
FPGA, all the program bits to be loaded are required. Hence, the
time required to implement a configuration of a test procedure
TP for an SL-FPGA is expressed as

c(i)

for al i, where N, is the total number of configuration memory
cellsin FPGA G. From Fig. 4, the number of configurationsin
test procedure TP/t is expressed as

Nm

ne =2k =2logn
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Fig. 7. Example of test procedure TPy (k = 2). (8) Configurations. (b) Input/output sequences.

where k is the number of input linesof an LUT and nisthe size
of an LUT, i.e,, n = 2X. Hence,

TS (TP = 2tNmlogn. (8)

From Fig. 4, the length of input sequence for each configuration
is expressed as

s(1)=n+1
s(i)=n for 2<i<ng
Hence,
TSP = Stesl)
i=1
= ts(2nlogn+1). (9)

Note that Equation (9) holds independent of the programming
scheme of the FPGA. Therefore, from Equations (8) and (9),
the universal test complexity of test procedure TP for an SL-
FPGA is expressed as

Ta (TP =te(2Nmlogn) +ts(2nlogn+1)  (10)

Without loss of generality, the total number of configuration
memory cells in an FPGA is assumed to be proportional to the
array size of the FPGA (or the number of CLBS) and the size of
an LUT (or the number of memory cellsinan LUT), i.e,

Nm = O(Nn)

where N is the array size of the FPGA or the number of LUTs
in the FPGA. Hence,

To (TP = O(Nnlogn). (11)

In test procedure TPoLL, from Figs. 5 and 7, the number of
configurations is n; = n, and the length of input sequence for
thei-th configuration is

s(i) = 3 ifiisodd
1 2 otherwise

Hence, we have

TS (TPSMY) = Nt (12)
and
TS (TP = gnts (13)

Note that Equation (13) also holds independent of the program-
ming scheme of the FPGA as well as Equation (9). Therefore,
from Equations (12) and (13), the universal test complexity of
test procedure TPSLL for an SL-FPGA is expressed as

5
Nmntc + = nts

Ta (TR = ;

= O(Nn?) (14)
From Equations (10) and (14), we can see that for SL-FPGASs
the universal test complexity of test procedure TPt is smaller
than that of test procedure TP,L, and hence test procedure
TPLL is more appropriate than test procedure TP for SL-
FPGAs. Thus, we have the following theorem.

Theorem5: There exists a universal test procedure for SL-
FPGAs such that the universal test complexity is O(Nnlogn).

B. Test Complexity for RAL-FPGA

The number of bitsloaded to implement thefirst configuration
of atest procedure for an RAL-FPGA is expressed as
c(1) = Nm. (15)
Note that Equation (15) holds independent of the test procedure.
In test procedure TP, the number of configuration memory
cells that are different from those of the previous configuration
is expressed asn/2 for each LUT. The connection of the output
line of each LUT is changed at every configuration to feed the
output sequences from atest block to another one. Hence,

o) =N(2 4 2)

5 (16)



for 2 <i < nc. Accordingly,

2logn
T (TP = e+ 3, N(5+2)

:tc(Nm+N((n+4)I0gn—g—2). )
From Equations (17) and (9), we have
TraL (TP = O(Nnlogn). (18)

Intest procedure TP, only two configuration memory cells
inan LUT are changed at each configuration. Hence,

T (TPY) = te(Nm+ i 2N)
= tC(Nm+I2:N2(n—1)). (19)
From Equations (19) and (13), we have
Tral (TPAY) = to(Nm+2N(n— 1)) + 2nts
= O(Nn). (20)

From Equations (18) and (20), we can see that for RAL-FPGAS
the universal test complexity of test procedure TP, is smaller
than that of test procedure TP/, and hence test procedure
TPsL is more appropriate than test procedure TP for RAL-
FPGAs. Thus, we have the following theorem.

Theorem 6: There exists a universal test procedure for RAL-
FPGAs such that the universal test complexity is O(Nn).
From Theorems 5 and 6, we can consider that RAL-FPGAs are
more easily-testable than SL-FPGAS.

C. C-testable FPGA

Since an FPGA consists of an array of logic blocks, it can be
considered to be one of iterative systems. C-testable[6] isaterm
which expresses an important class of testable iterative systems.
Here we consider a C-testable FPGA.

Definition 1 (C-testable) An FPGA issaid to be C-testable if
there exists auniversal test procedure such that the universal test
complexity for the FPGA isindependent of the array size.

As shown by Theorems 5 and 6, either SL-FPGAs or RAL-
FPGAs may not be C-testable. In each of test procedures TP/
and TP, however, if we regard each test block asalogic cell,
each configuration can be considered to be an iterative system.
Note that the length of input sequences applied to each config-
uration is independent of the array size of FPGAs (Equations
(9) and (13)). On the other hand, from Equations (8) and (19),
we can see that the time required to load programs for testing
FPGAs depends on the array size of the FPGAs. Therefore, if
an FPGA can load the same program into each test block si-
multaneously, the time required to load programs will be inde-
pendent of the array size. Such type of programming schemes
is called block-diced loading, and SL-FPGAs and RAL-FPGAs
with block-sliced loading are referred to as BSS.-FPGAs and
BSRAL-FPGAS, respectively.

Let t,, be the time required to load the same bit into the cor-
responding configuration memory cell of each test block. Then,
we have the following theorems.

Theorem 7: BSSL-FPGASs are C-testable.

Proof: In test procedure TP, the number of LUTs in
atest block is k = logn. The number of configuration memory
cellsof an LUT and the number of input and output lines of each
LUT aren=2Xand k+ 1 = logn + 1, respectively (See Fig. 6).
Hence,

2logn
Tsea (TPMH) = Y thlogn(n+logn+1). (21)
i=1
From Equations (21) and (9), we have
Tese (TPPYY) = O(nlog?n+log®n). (22)
|

Theorem 8: BSRAL-FPGAs are C-testable.

Proof: The test block in test procedure TP, consists of
only one LUT. The number of configuration memory cells of an
LUT and the number of input and output lines of each LUT are
n=2andk+1=logn+ 1, respectively. (k— 1) linesfrom 1/0
blocks are connected to each test block. At each configuration,
only two configuration memory cells in an LUT are changed
(SeeFig. 7). Hence,

fori=1

C(i):{ 2+2logn for2<i<n (23)
Therefore,
Tégral (TPMY) = t5(3n + 2logn — 2). (24)
From Equations (24) and (13), we have
TesraL (TPOMY) = O(n+logn). (25)
|

Thus, we can have C-testable FPGAS by the programming
scheme of block-sliced loading.

V. CONCLUSIONS

In this paper, we considered universal test such that when ap-
plied to an unprogrammed FPGA, it ensures that all the corre-
sponding programmed logic circuits on the FPGA are fault-free.
We presented two types of programming schemes; sequential
loading and random access | oading, and showed test procedures
for the FPGAs with these programming schemes and their test
complexities. In order to make the test complexity for FPGAs
independent of the array size of the FPGAs, we proposed a pro-
gramming scheme called block-sliced loading, which makes FP-
GAs C-testable.

In this paper, we focused on testing for look-up tablesin FP-
GAs. However, testing for other components, e.g. /O blocks
and interconnect structures, are also important. These compo-
nents can be tested in the same way as testing for look-up ta-
bles. We will report in the near future on the testing for these
components as well as the whole of FPGAs.
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