
�����������

�	�
�	

�
	���	��

�

���

〒 ��������

奈良県生駒市高山町 ������

奈良先端科学技術大学院大学

情報科学研究科

���������������	

���� ��
�����

��������� 	��
 ��
�����
�

�� ������������

����

��
� ������

����� ������ �	
�� ���	
����

�	�����	 �	��	�	��	� �����	 �����	���

��
 �����	 �������

����� ����

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ����������

 �
	�� ��!�����" �!���" ���� 	#���
�
" $�%��

Universal Test Complexity of Field-Programmable
Gate Arrays

Tomoo Inoue, Hideo Fujiwara, Hiroyuki Michinishi, Tokumi Yokohira, and Takuji Okamoto

Abstract— A field-programmable gate array (FPGA) can implement ar-
bitrary logic circuits in the field. In this paper, we consider universal test
such that when applied to an unprogrammed FPGA, it ensures that all the
corresponding programmed logic circuits on the FPGA are fault-free. We
focus on testing for look-up tables in FPGAs, and present two types of pro-
gramming schemes; sequential loading and random access loading. Then
we show test procedures for the FPGAs with these programming schemes
and their test complexities. In order to make the test complexity for FPGAs
independent of the array size of the FPGAs, we propose a programming
scheme called block-sliced loading, which makes FPGAs C-testable.

Keywords— C-testable, field-programmable gate array (FPGA), pro-
gramming scheme, test complexity, test procedure, universal test.

I. INTRODUCTION

�
IELD-PROGRAMMABLE gate arrays (FPGAs) are digital
devices that can implement logic circuits required by users

in the field [1], [2]. Because of their short turnaround time, low
manufacturing cost and programmability in the field, there has
been an increasing interest in system prototyping and system re-
configuration using FPGAs. There are many different architec-
tures of FPGAs driven by different programming technologies.
One important class is the SRAM-based FPGAs (e.g. Xilinx [1],
[2], [3]), also called the look-up table FPGAs, which can be re-
programmed any number of times. A novel feature of these FP-
GAs is that each basic block can implement any logic function
that satisfies the I/O constraints of the basic block. The inter-
connections between the basic blocks consist of metal segments
joined by program controlled pass transistors. In this paper, we
shall consider look-up table FPGAs.

Testing for FPGAs, as well as conventional digital ICs, is
one of the important problems. Several works on testing FP-
GAs have been reported [4], [5]. Hermann and Hoffmann [4]
presented fault models and test generation for one-time pro-
grammable FPGAs (e.g. Actel’s [1], [2]). Durate and Nicolaidis
[5] reported a test methodology for cellular-based FPGAs (e.g.
Algotronix’s [1], [2]). For reprogrammable FPGAs, two types
of testing can be considered; one is testing for unprogrammed
FPGAs, and the other is testing for programmed FPGAs. An
unprogrammed FPGA can realize many different programmed
FPGAs by loading different programs. Therefore, to test the un-
programmed FPGA, we might have to test all the programmed
FPGAs obtained from the unprogrammed FPGA. However, it is
too time-consuming to test such a large number of programmed
FPGAs. In order to resolve this intractable problem, we have
to consider alternative approaches to testing for unprogrammed
FPGAs.

In this paper, we shall introduce universal test such that when

T. Inoue and H. Fujiwara are with the Graduate School of Information Science,
Nara Institute of Science and Technology, Ikoma, Nara 630-01, Japan. E-mail:
inoue@is.aist-nara.ac.jp.

H. Michinishi, T. Yokohira, and T. Okamoto are with the Faculty of Engineer-
ing, Okayama University, Okayama 700, Japan.

��
��
�
�
�
�
�
�
�
�
��
��
�
�
�
�

����������

�
�
�
�
�
��
�
�
�

��
��
��
��
��
����
��
��
���

I/O Block

Configurable
Logic Block

Interconnect
Structure

Fig. 1. Architecture of FPGA.

applied to a given unprogrammed FPGA, it ensures that all pro-
grammed FPGAs corresponding to the unprogrammed FPGA
are fault-free. Here, we focus on testing for look-up tables in
FPGAs. Testing for other components in an FPGA can be con-
sidered in the same way as testing for look-up tables. Then we
shall present test complexity of FPGAs, where test complexity of
an FPGA refers to the time required to test the FPGA. We shall
present two types of programming schemes; sequential loading
and random access loading, and show that the test complexities
of FPGAs with these programming schemes are O�Nn logn� and
O�Nn�, respectively, where N is the array size of FPGAs or the
number of configurable logic blocks, and n is the size of look-
up tables or the number of configuration memory cells for each
look-up table. The test complexities of these FPGAs depend
on the array size N, and thus they might not be C-testable [6].
If we can make FPGAs C-testable, we can considerably reduce
the test complexity. Therefore, we shall propose a new program-
ming scheme, called block-sliced loading, which makes FPGAs
C-testable. The test complexities of test procedures for FPGAs
with block-sliced sequential loading and block-sliced random
access loading are O�n log2 n� log3 n� and O�n� logn�, respec-
tively.

II. ARCHITECTURE OF FPGA

The architecture of field-programmable gate arrays (FPGAs)
considered in this paper is illustrated in Fig. 1. An FPGA con-
sists of an array of programmable logic blocks, programmable
I/O blocks, and a programmable interconnect structure. Each
logic block consists of a single look-up table (LUT). These
blocks and the interconnect structure are configured by static
RAMs called configuration memory cells. This FPGA is re-
ferred to as a look-up table FPGA.

An LUT implements combinational logic as a 2k�1 memory
composed of configuration memory cells, where k is the num-

(a) (b) (c)

Fig. 2. Configurable components. (a) Look-up table. (b) Pass transistor. (c)
Multiplexer.

Fig. 3. Configurable logic block.

ber of input lines of the LUT. When an input pattern is applied
to an LUT , the LUT selects a configuration memory cell ad-
dressed by the input pattern, and the output of the cell provides
the value of the function. An LUT can therefore implement any
of 2n functions of its inputs, where n � 2k. When the FPGA is
programmed, the memory is loaded with the bit pattern corre-
sponding to the truth table of the function. Fig. 2 (a) shows a
block of a three-input LUT.

A pass transistor controlled by a configuration memory cell,
as shown in Fig. 2(b), configures a connection of wiring seg-
ments in an interconnect structure. The wire segments on each
side of the transistor are connected or not, depending on the
value in the memory cell. A multiplexer, as shown in Fig. 2(c),
also controls a connection of wiring segments. Multiplexers
may be of any width, with more configuration memory cells for
wider multiplexers. Fig. 3 shows the building blocks from Fig.
2 combined into a configurable logic block (CLB) with wiring.
The CLB in Fig. 3 includes a single three-input LUT surrounded
by wiring channels. Each wiring channel contains several seg-
ments. Segments have connections to the CLB and to each other
through pass transistors and multiplexers.

A look-up table FPGA is programmed by loading a program
composed of a bit sequence into its configuration memory cells.
Each bit of the program is stored in the corresponding configura-
tion memory cell, and consequently LUTs and interconnections
are configured. Accordingly a logic function or a configuration
is implemented on the FPGA. The FPGA must include circuitry
to load a program. Here we consider two types of programming
schemes as follows.
Sequential loading: When an FPGA is programmed, the pro-
gram is shifted into the FPGA, and each bit of the program is
stored in the corresponding configuration memory cell. This
type of loading scheme is called sequential loading, and an
FPGA with this type of loading is called a sequentially loadable
FPGA (SL-FPGA). Whenever an SL-FPGA implements config-
urations, it loads all configuration memory cells.
Random access loading: Each configuration memory cell is
directly addressable. When an FPGA is programmed, each bit

is loaded by means of its address, and stored in the correspond-
ing cell. This type of loading scheme is called random access
loading, and an FPGA with this type of loading is called a ran-
dom access loadable FPGA (RAL-FPGA). An RAL-FPGA can
implement a configuration by loading only the bits which differ
from those of the previous one.

III. UNIVERSAL TEST

We can consider testing for FPGAs as two types of testing;
one is testing for unprogrammed FPGAs and the other is test-
ing for programmed FPGAs. As testing for unprogrammed FP-
GAs, we introduce universal test such that when applied to an
unprogrammed FPGA, it ensures that all the configurations im-
plemented on the corresponding FPGA are fault-free.

An LUT is one of the important and characteristic config-
urable components in a look-up table FPGA. A k-input LUT
consists of 2k configuration memory cells, and each memory cell
has its own address. When an input pattern is applied to the LUT
from its k input lines, the LUT decodes the input pattern and
reads out the memory cell corresponding to the input pattern.
Hence, an LUT can be considered as a random access memory
(RAM). However, since the decoder for writing (or program-
ming) is different from that for reading, conventional methods
for testing of RAMs [7], [8] to such LUTs can not be applied.

A. Fault Model

Let k be the number of input lines of an LUT. Let n � 2k

be the number of configuration memory cells of an LUT. Let
A � �a0�a1� ����an�1� denote a set of input patterns for an LUT,
i.e., a set of addresses of configuration memory cells of the LUT.
Let M � �m0�m1� ����mn�1� denote a set of configuration mem-
ory cells in an LUT. The decoding function of an LUT can be
modeled as a mapping from A to 2M. The function of a fault-free
(i.e. correct) LUT is expressed as f �ai� � �mi� for 0� i� n�1.
Note that the range of the fault-free decoding function f is a sin-
gleton for all ai.

Then, we define four fault models as follows.
Stuck-at fault (SAF): The value that is read out from the mem-

ory cell mi corresponding to input pattern ai is always either 0
or 1, irrespective of configurations. This type of fault is called
a stuck-at fault (SAF). Note that an SAF is independent of the
decoding function.

Incorrect access fault (IAF): For some input pattern ai � A,
whenever memory cell mi is to be accessed by input pattern ai,
another memory cell mj which does not correspond to ai is ac-
cessed. That is,

f �ai� � �mj� �� �mi��

This type of fault is called an incorrect access fault (IAF).
Non-access fault (NAF): For some input pattern ai � A, when-

ever memory cell mi is to be accessed by input pattern ai, no
memory cell is accessed. That is,

f �ai� � φ�

This type of fault is called a non-access fault (NAF). The output
value for the input pattern ai becomes the same as the output
value before applying the input pattern.

Multiple access fault (MAF): For some input pattern ai � A,
whenever only memory cell mi is to be accessed by input pattern
ai, more than one memory cells are accessed. That is,

� f �ai�� � 2�

This type of fault is called a multiple-access fault (MAF). The
output value under an MAF is formed by the bitwise OR or
AND function, which depends on the device technology, over
the memory cells that are accessed by ai. over the memory cells
in the set f �ai�.

Hereafter, we consider universal test for these faults of LUTs
provided that there exists only one fault in an FPGA 1.

B. Universal Test Procedure

The universal test for look-up table FPGAs can be performed
by repeating implementation of a configuration and application
of an input sequence to the configuration alternately. Hence,
a universal test procedure for an FPGA is represented by a se-
quence of pairs of a configuration and an input sequence applied
to the configuration. Thus, a universal test procedure TP is ex-
pressed as

TP � 	�C1�S1���C2�S2�� � � � ��Cnc �Snc�

where Ci is the i-th configuration, Si is the input sequence which
is applied to the i-th configuration Ci, and nc is the number of
configurations in test procedure TP.

When a configuration on an SL-FPGA is changed to another
one, the program bits to be loaded into all the configuration
memory cells in the FPGA are required. In general, the number
of configuration memory cells in an FPGA is large, and hence
SL-FPGAs require that the number nc of configurations in a uni-
versal test procedure is small. On the other hand, when a con-
figuration on an RAL-FPGA is changed to another one, only the
bits which differ from those of the previous configuration can
be loaded. Hence, RAL-FPGAs require that the differences be-
tween a configuration and the consecutive one in a universal test
procedure are small. Therefore, we have to consider two univer-
sal test procedures severally. In the following, we first consider
universal test procedures for a single LUT, and next we modify
them into those for all the LUTs in an FPGA.

B.1 Universal Test Procedure for Single LUT

First, we consider a universal test procedure for a single LUT.
Let k be the number of input lines of an LUT. Let n � 2k be the
number of configuration memory cell of an LUT. For the sake of
simplicity, we assume that input pattern a j for an LUT denotes
a binary representation of decimal number j for 0 � j � n� 1
without loss of generality. Let b�a j� l� be the l-th bit of pattern
a j. Let Load�mj�v� denote loading a value v into memory cell
mj. Note that this operation Load�� can be skipped if the pro-
gramming scheme of the FPGA is random access loading and if
the value to be loaded into a memory cell is the same as that in
the previous configuration. Let Input�a j� denote applying input

1This assumption is for the sake of simplicity. We can show that the test pro-
cedures presented in the rest of paper can detect any multiple fault that consists
of SAFs, IAFs, NAFs and MAFs provided that the number of faulty LUTs is at
most one in an FPGA.

1: TP1() {

2: for(i = 1; i <= 2k; i++) { /* Ci: i-th config. */

3: for(j = 0; j < n ; j++) {

4: if(i <= k) {

5: Load(mj, b�aj �k� i�);

6: } else {

7: Load(mj, b�aj �2k� i�);

8: }

9: }

10: for(j = 0; j < n; j++) {

11: Input(aj);

12: }

13: if(i == 1) {

14: Input(a0);

15: }

16: }

17: }

Fig. 4. Test procedure: TP1.

pattern a j to read out the value in the corresponding memory
cell mj.

Fig. 4 shows a universal test procedure for a single LUT. This
test procedure is called TP1. As shown in this figure, in test pro-
cedure TP1, memory cell mj is loaded with the �k� i�-th bit of
a j at the i-th configuration Ci for 1 � i � k, and is loaded with
the complement of the �2k� i�-th bit of a j at the i-th configura-
tion Ci for k� 1 � i � 2k. Then, all memory cells are read out
by applying all the input patterns for each configuration. At the
first configuration C1, input pattern a0 is applied not only as the
first input pattern but also as the last one to detect an NAF for a0

(Lines 13 to 15 in Fig. 4).
Let r�i� j� be the output value of the LUT for the j-th input

pattern at the i-th configuration. For 0 � j � n� 1, let R1� j�
and R2� j� be the sequences obtained by arranging all the output
values corresponding to the j-th input patterns at the i-th con-
figurations Ci for 1 � i � k and for k�1 � i � 2k, respectively.
That is,

R1� j� � �r�1� j��r�2� j�� � � � �r�k� j��

R2� j� � �r�k�1� j��r�k�2� j�� � � � �r�2k� j��

When the LUT is fault-free, the sequences R1� j� and R2� j�
have the following properties for 0 � j � n�1.

R1� j� � a j (1)

R2� j� � �r�k�1� j��r�k�2� j�� � � � �r�2k� j��

�
�

r�1� j��r�2� j�� � � � �r�k� j�
�

� R1� j�

� a j (2)

where x denotes the bitwise complement of x.
Table I shows an example of the configurations in test proce-

dure TP1 for the number of input lines k � 2.
For universal test procedure TP1, we have the following lem-

mas.

TABLE I

EXAMPLE: TP1 FOR k � 2.

memory cell configuration
address C1 C2 C3 C4

m0 00 0 0 1 1
m1 01 0 1 1 0
m2 10 1 0 0 1
m3 11 1 1 0 0

Lemma 1: TP1 can detect any SAF.
Proof: Suppose that the output value from a memory cell

mj is stuck at 0 (1). Output value r�i� j� = 0 �1� for all i, and
consequently

R1� j� � R2� j� � 00 � � �0 �11 � � �1��

This is inconsistent with Equations (1) and (2).
Lemma 2: TP1 can detect any IAF.

Proof: Suppose that an input pattern a j selects a memory
cell ms (s �� j). The sequence R1� j� is expressed as

R1� j� � as�

This is inconsistent with Equation (1) because there is no pair of
addresses as and a j such that a j � as.

Lemma 3: TP1 can detect any NAF.
Proof: Suppose that an input pattern a j selects no memory

cell.
(Case where j � 0): At the first configuration C1, memory cells
m0 and mn�1 are loaded with 0 and 1, respectively. Hence, if the
LUT is fault-free,

r�1�n� �� r�1�n�1�� (3)

Memory cell m0 is to be selected by address a0 which is the last
input pattern of the sequence S1 at the first configuration C1 after
memory cell mn�1 is read out (line 14 in Fig. 4). If a0 selects
no memory cell, r�1�n� � r�1�n� 1�. This is inconsistent with
Equation (3).
(Case where 1 � j � n�1): At the k-th configuration Ck, 0
and 1 are loaded into all memory cells alternately. Hence, if
the LUT is fault-free,

r�k� l� �� r�k� l�1� (4)

for 1 � l � n�1. If an input pattern a j selects no memory cell,
r�k� j� � r�k� j�1�. This is inconsistent with Equation (4).

Lemma 4: TP1 can detect any MAF.
Proof: Suppose that an input pattern a j selects ms and mt

(s �� t). From Equations (1) and (2), the sequences R1� j� and
R2� j� are expressed as

R1� j� � as �at and

R2� j� � as �at �

respectively, where � denotes either bitwise AND or bitwise OR
function depending on technology. Hence,

R1� j� �� R2� j��

1: TP2() {

2: if (Outputs under MAFs are formed by AND) {

3: v = 0;

4: } else { /* by OR */

5: v = 1;

6: }

7: for (i = 1; i <= n; i++) { /* Ci: i-th config. */

8: for (j = 0; j < n; j++) {

9: if (j == i - 1) {

10: Load(mj, v);

11: } else {

12: Load(mj, v);

13: }

14: }

13: j = i - 1;

15: Input(aj);

16: if (b�aj �0� == 0) {

17: l = j+1;

18: else {

19: l = j-1;

20: }

21: Input(al);

22: }

23: }

Fig. 5. Test procedure: TP2.

This is inconsistent with Equation (2).
From Lemmas 1 through 4, we have the following theorem.

Theorem 1: Universal test procedure TP1 can detect any fault
in an LUT.

Next we present another universal test procedure for a single
LUT, called TP2. Fig. 5 shows universal test procedure TP2. In
test procedure TP2, at the i-th configuration, only the �i� 1�-
th memory cell mi�1 is loaded with v and the others are loaded
with v’s, where value v is determined by technology. Let l� j�x�
denote the configuration number when memory cell mj that is
loaded with x is read out, and it can be expressed as

l� j�v� � j�1

l� j�v� �

�
j�2 if j is even
j otherwise (odd)

for all j. When the LUT is fault-free, the output values for test
procedure TP2 are expressed as

r�i�0� � v (5)

r�i�1� � v

� r�i�0� (6)

for all i.
Table II shows an example of the configurations in test proce-

dure TP2 for the number of input lines k � 2.
For test procedure TP2, we have the following lemmas.
Lemma 5: TP2 can detect any SAF.

Proof: Suppose that the output value that is read out from
a memory cell mj is stuck at v (v). The output values for input
pattern a j are expressed as

r�l� j�v��0� � r�l� j�v��1� � v �v�

TABLE II

EXAMPLE: TP2 FOR k � 2.

memory cell configuration
address C1 C2 C3 C4

m0 00 v v v v
m1 01 v v v v
m2 10 v v v v
m3 11 v v v v

This is inconsistent with Equation (5) or (6).
Lemma 6: TP2 can detect any IAF.

Proof: Suppose that an input pattern a j selects a memory
cell ms (s �� j). At the � j�1�-th configuration, ms � v. Hence,
the output value for input pattern a j is expressed as

r� j�1�0� � v

This is inconsistent with Equation (5).
Lemma 7: TP2 can detect any NAF.

Proof: Suppose that an input pattern a j selects no memory
cell. At the l� j�v�-th configuration, input pattern a j is applied
as the second pattern after the value v is read out. The previous
output value v is kept due to the NAF, i.e.,

r�l� j�v��1� � r�l� j�v��0�

� v

This is inconsistent with Equation (6).
Lemma 8: TP2 can detect any MAF.

Proof: Suppose that an input pattern a j selects ms and mt

(s �� t). The output value for input pattern a j can be expressed
as

r�l� j�v��0� � d�ms��d�mt�

where d�ms� is the value that is loaded into ms, and � denotes
either AND or OR function depending on technology. For each
configuration, there is not more than two memory cells that are
loaded with v’s. Hence,

d�ms��d�mt� � v

for any pair of ms and mt such that s �� t. Thus,

r�l� j�v��0� � v�

This is inconsistent with Equation (5).
From Lemmas 5 through 8, we have the following theorem.

Theorem 2: Universal test procedure TP2 can detect any fault
in an LUT.

B.2 Universal Test Procedure for All LUTs

Here we consider universal test procedures for all LUTs in
an FPGA. If we use any number of primary inputs/outputs for
universal test, we can perform universal test procedure such as
TP1 and TP2 for all LUTs in an FPGA concurrently. An FPGA,
however, has a restricted number of I/O blocks, and hence in-
put sequences cannot be applied to all the LUTs directly and
simultaneously while the corresponding output values from all
the LUTs are being observed. Therefore, for all LUTs in an

FPGA, we have to consider universal test procedures under such
a constraint of the limited number of I/O blocks.

First, we modify test procedure TP1 into that for all LUTs.
Suppose a set of k LUTs such that the i-th LUT implements a
function fi�x� � b�x�k� i� for 1 � i � k. If an input pattern a j

is applied to each of those LUTs concurrently, the output pat-
tern obtained from the k LUTs is the same as the input pattern
a j, i.e., � f1�a j�� f2�a j�� � � � � fk�a j�� � a j. Note that the function
fi�x� corresponds to the function that is implemented at the i-th
configuration, Ci, in test procedure TP1 for 1 � i � k. Hence if
the input sequences that are the same as those in test procedure
TP1 are applied those LUTs, then the k LUTs can be tested si-
multaneously while the resulting output sequences are applied
to another set of k LUTs as input sequences, and consequently
all LUTs in an FPGA can be tested.

Based on the above-mentioned method, we present a univer-
sal test procedure for all LUTs in an FPGA, called TPALL

1 . Test
procedure TPALL

1 configures iterations of functional blocks such
that each block consists of k LUTs and has k inputs and k out-
puts. Such a block is referred to as a test block. Let Ll denote
the l-th LUT in each test block. The function implemented by
LUT Ll at the i-th configuration in test procedure TPALL

1 is the
same as that by the LUT at the ���i� l � 2� mod k� � 1� and
�k���i� l�2� mod k��1� in test procedure TP1 for 1 � i � k
and k�1� i� 2k, respectively. In test procedure TPALL

1 , all test
blocks are connected with one another in a cascade. Test proce-
dure TPALL

1 applies the input sequence that is the same as that of
test procedure TP1 to the first test block in the cascade at each
configuration. The output sequences from the first test block is
applied to the second one. Similarly, the input sequences are ap-
plied to all the test block, and consequently all LUTs are tested
simultaneously. Fig. 6 shows an example in case of k � 2. Fig.
6(a) illustrates 4 �� 2k� configurations for all LUTs in an FPGA.
Here, two LUTs are combined into a single test block, shown
outlined, and test blocks are cascaded from left to right. In this
cascade, connections between test blocks are configured to gen-
erate the input/output sequences of Fig. 6(b). Note that the order
of input sequences for even test blocks is the reverse of that for
odd test blocks at configurations Ck�1 through C2k. However,
all the input patterns a0�a1� � � � �an�1 are applied to all LUTs at
each configuration, and NAFs of which detection depends on
the order of applied input sequences can be tested at the first k
configurations. Therfore, in the same way as test procedure TP1,
we have the following theorem.

Theorem 3: Test procedure TPALL
1 can detect any fault of all

LUTs in an FPGA.
In the same way as TPALL

1 , we present a test procedure called
TPALL

2 which is derived from test procedure TP2. As shown
in Fig. 5, in test procedure TP2, only two input patterns that
are different in the last bit (i.e., � � �0 and � � �1) are applied at
each configuration. On the other hand, the output values for
the two input patterns are 0 and 1. Hence, the output values
0 and 1 that are obtained from an LUT can be applied to the
last input line of another LUT for all the configurations. That
is, if we consider one LUT to be a test block, all LUTs can
be tested simultaneously by connecting the output line of a test
block (or an LUT) to the last input line of another test block. Fig.
7 shows an example of test procedure TPALL

2 in case of k � 2.

m0
m1
m2
m3

input
output

2-input LUT

Test block

C1

x0

0
0
1
1

x1

0
0
1
1x0

x1

Input

0
1
0
1

0
1
0
1

Output

y0 y0'

y1 y1'

'

'

(a) (b)

C2

C3

C4

0
0
1
1

0
1
0
1

C1 0
0
1
1
0

0
1
0
1
0

0
0
1
1
0

0
1
0
1
0

0
0
1
1
0

0
1
0
1
0

0
0
1
1
0

0
1
0
1
0

x0x1 y0y1 x1' x0' y0'y1'

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0

0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0

In-
put

Out-
put

C
onfig.

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0
1
1
0
0

1
0
1
0

C2

x0

0
0
1
1

x1

0
0
1
1

x0

x1

Input

0
1
0
1

0
1
0
1

Output

'

'

y0 y0'

y1 y1'

C3

x0

1
1
0
0

x1

x0

x1

Input

1
0
1
0

Output

'

'

1
1
0
0

1
0
1
0

y0 y0'

y1 y1'
C4

x0

1
1
0
0

x1

x0

x1

Input

1
0
1
0

Output

'

'

1
1
0
0

1
0
1
0

y0 y0'

y1 y1'

Fig. 6. Example of test procedure TPALL
1 (k � 2). (a) Configurations. (b) Input/output sequences.

Fig. 7(a) illustrates 4 (� 2k) configurations for all LUTs in an
FPGA. Here, one LUT is a single test block, shown outlined,
and test blocks are cascaded from left to right. As shown in
this figure, in test procedure TPALL

2 , the function implemented
by each LUT at the i-th configuration is the same as that in test
procedure TP2. The first and the third columns of Fig. 7(b) show
the input sequences for the leftmost and the next test blocks,
respectively. Note that when input sequence �a j�al� (denoted at
Lines 15 and 21 in Fig. 5) is applied to the first test block at odd
configuration, the input sequence for even test blocks becomes
�al �a j�. In order to feed the sequence �a j�al� to even test blocks,
test procedure TPALL

2 applies the sequence �a j�al �a j� to the first
test block at odd configurations. Consequently, the sequence
�al �a j�al� which includes �a j�al� can be applied to even test
blocks. Thus, in the same way as test procedure TP2, we have
the following theorem.

Theorem 4: Test procedure TPALL
2 can detect any fault of all

LUTs in an FPGA.

IV. UNIVERSAL TEST COMPLEXITY

The universal test complexity of a universal test procedure for
an FPGA refers to the time required to perform the universal test
procedure for the FPGA. In this section, we consider the univer-
sal test complexities of the universal test procedures mentioned
above, TPALL

1 and TPALL
2 for SL-FPGAs and RAL-FPGAs.

Suppose a universal test procedure for an FPGA G such that

TP � 	�C1�S1���C2�S2�� � � � ��Cnc �Snc�

where nc is the number of configurations. Let c�i� be the number
of configuration memory cells that are loaded to implement the
i-th configuration Ci. Let s�i� be the length of input sequence Si

for the i-th configuration Ci. The time required to implement all

the configurations in test procedure TP for FPGA G is given by

TC
G �TP� �

nc

∑
i�1

tcc�i�

where tc is the time required to load one bit of a program into
configuration memory cell in FPGA G. The time required to
apply all the input sequences in test procedure TP for FPGA G
is given by

T S
G�TP� �

nc

∑
i�1

tss�i�

where ts is the clock cycle time of a configuration implemented
in FPGA G. Thus, the universal test complexity of test proce-
dure TP for FPGA G is given by

TG�TP� � TC
G �TP��TS

G�TP�

�
nc

∑
i�1

�tcc�i�� tss�i�� � (7)

A. Test Complexity for SL-FPGA

Whenever a configuration is changed to another one on an
FPGA, all the program bits to be loaded are required. Hence, the
time required to implement a configuration of a test procedure
TP for an SL-FPGA is expressed as

c�i� � Nm

for all i, where Nm is the total number of configuration memory
cells in FPGA G. From Fig. 4, the number of configurations in
test procedure TPALL

1 is expressed as

nc � 2k � 2logn

m0
m1
m2
m3

input
output

2-input LUT

OutputC1

x0

1
0
0
0

y0

x1

y0
x0

x1

Input

'

'

'

1
0
0
0

0
1
0
0

C2

x0

y0

x1

y0
x0

x1

Input

Output

'

'

'

0
1
0
0

OutputC3

x0

0
0
1
0

y0

x1

y0
x0

x1

Input

'

'

'

0
0
1
0

x0x1

C4
0
0
0
1

y0 y0
x0

x1

Input

Output

'

'

'

0
0
0
1

Test block

(a) (b)

C2

C3

C4

C1

x0x1 y0 x1' x0' y0'

In-
put

Out-
put

C
onfig.

0
0
0

0
1
0

1
0
1

0
0
0

1
0
1

0
1
0

0
0

1
0

1
0

0
0

1
0

1
1
1

1
1
1

1
1

1
1

0
1
0

1
0
1

1
0
1

0
1
0

1
0

1
0

1
0

1
0

1
0

Fig. 7. Example of test procedure TPALL
2 (k � 2). (a) Configurations. (b) Input/output sequences.

where k is the number of input lines of an LUT and n is the size
of an LUT, i.e., n � 2k. Hence,

TC
SL�TPALL

1 � � 2tcNm logn� (8)

From Fig. 4, the length of input sequence for each configuration
is expressed as

�
s�1� � n�1
s�i� � n for 2 � i � nc

Hence,

T S
SL�TPALL

1 � �
nc

∑
i�1

tss�i�

� ts�2n logn�1�� (9)

Note that Equation (9) holds independent of the programming
scheme of the FPGA. Therefore, from Equations (8) and (9),
the universal test complexity of test procedure TPALL

1 for an SL-
FPGA is expressed as

TSL�TPALL
1 � � tc�2Nm logn�� ts�2n logn�1� (10)

Without loss of generality, the total number of configuration
memory cells in an FPGA is assumed to be proportional to the
array size of the FPGA (or the number of CLBs) and the size of
an LUT (or the number of memory cells in an LUT), i.e.,

Nm � O�Nn�

where N is the array size of the FPGA or the number of LUTs
in the FPGA. Hence,

TSL�TPALL
1 � � O�Nn logn�� (11)

In test procedure TPALL
2 , from Figs. 5 and 7, the number of

configurations is nc � n, and the length of input sequence for
the i-th configuration is

s�i� �

�
3 if i is odd
2 otherwise

Hence, we have

TC
SL�TPALL

2 � � Nmntc (12)

and

T S
SL�TPALL

2 � �
5
2

nts� (13)

Note that Equation (13) also holds independent of the program-
ming scheme of the FPGA as well as Equation (9). Therefore,
from Equations (12) and (13), the universal test complexity of
test procedure TPALL

2 for an SL-FPGA is expressed as

TSL�TPALL
2 � � Nmntc�

5
2

nts

� O�Nn2� (14)

From Equations (10) and (14), we can see that for SL-FPGAs
the universal test complexity of test procedure TPALL

1 is smaller
than that of test procedure TPALL

2 , and hence test procedure
TPALL

1 is more appropriate than test procedure TPALL
2 for SL-

FPGAs. Thus, we have the following theorem.
Theorem 5: There exists a universal test procedure for SL-

FPGAs such that the universal test complexity is O�Nn logn�.

B. Test Complexity for RAL-FPGA

The number of bits loaded to implement the first configuration
of a test procedure for an RAL-FPGA is expressed as

c�1� � Nm� (15)

Note that Equation (15) holds independent of the test procedure.
In test procedure TPALL

1 , the number of configuration memory
cells that are different from those of the previous configuration
is expressed as n�2 for each LUT. The connection of the output
line of each LUT is changed at every configuration to feed the
output sequences from a test block to another one. Hence,

c�i� � N�
n
2
�2� (16)

for 2 � i � nc. Accordingly,

TC
RAL�TPALL

1 � � tc�Nm �
2 logn

∑
i�2

N�
n
2
�2��

� tc�Nm �N��n�4� logn�
n
2
�2�� (17)

From Equations (17) and (9), we have

TRAL�TPALL
1 � � O�Nn logn�� (18)

In test procedure TPALL
2 , only two configuration memory cells

in an LUT are changed at each configuration. Hence,

TC
RAL�TPALL

2 � � tc�Nm �
n

∑
i�2

2N�

� tc�Nm �2N�n�1��� (19)

From Equations (19) and (13), we have

TRAL�TPALL
2 � � tc�Nm�2N�n�1���2nts

� O�Nn�� (20)

From Equations (18) and (20), we can see that for RAL-FPGAs
the universal test complexity of test procedure TPALL

2 is smaller
than that of test procedure TPALL

1 , and hence test procedure
TPALL

2 is more appropriate than test procedure TPALL
1 for RAL-

FPGAs. Thus, we have the following theorem.
Theorem 6: There exists a universal test procedure for RAL-

FPGAs such that the universal test complexity is O�Nn�.
From Theorems 5 and 6, we can consider that RAL-FPGAs are
more easily-testable than SL-FPGAs.

C. C-testable FPGA

Since an FPGA consists of an array of logic blocks, it can be
considered to be one of iterative systems. C-testable [6] is a term
which expresses an important class of testable iterative systems.
Here we consider a C-testable FPGA.

Definition 1 (C-testable) An FPGA is said to be C-testable if
there exists a universal test procedure such that the universal test
complexity for the FPGA is independent of the array size.

As shown by Theorems 5 and 6, either SL-FPGAs or RAL-
FPGAs may not be C-testable. In each of test procedures TPALL

1
and TPALL

2 , however, if we regard each test block as a logic cell,
each configuration can be considered to be an iterative system.
Note that the length of input sequences applied to each config-
uration is independent of the array size of FPGAs (Equations
(9) and (13)). On the other hand, from Equations (8) and (19),
we can see that the time required to load programs for testing
FPGAs depends on the array size of the FPGAs. Therefore, if
an FPGA can load the same program into each test block si-
multaneously, the time required to load programs will be inde-
pendent of the array size. Such type of programming schemes
is called block-sliced loading, and SL-FPGAs and RAL-FPGAs
with block-sliced loading are referred to as BSSL-FPGAs and
BSRAL-FPGAs, respectively.

Let tb be the time required to load the same bit into the cor-
responding configuration memory cell of each test block. Then,
we have the following theorems.

Theorem 7: BSSL-FPGAs are C-testable.
Proof: In test procedure TPALL

1 , the number of LUTs in
a test block is k � logn. The number of configuration memory
cells of an LUT and the number of input and output lines of each
LUT are n � 2k and k�1 � logn�1, respectively (See Fig. 6).
Hence,

TC
BSSL�TPALL

1 � �
2 logn

∑
i�1

tb logn�n� logn�1�� (21)

From Equations (21) and (9), we have

TBSSL�TPALL
1 � � O�n log2 n� log3 n�� (22)

Theorem 8: BSRAL-FPGAs are C-testable.
Proof: The test block in test procedure TPALL

2 consists of
only one LUT. The number of configuration memory cells of an
LUT and the number of input and output lines of each LUT are
n� 2k and k�1� logn�1, respectively. �k�1� lines from I/O
blocks are connected to each test block. At each configuration,
only two configuration memory cells in an LUT are changed
(See Fig. 7). Hence,

c�i� �

�
n�2logn for i � 1
2 for 2 � i � n

(23)

Therefore,

TC
BSRAL�TPALL

2 � � tb�3n�2logn�2�� (24)

From Equations (24) and (13), we have

TBSRAL�TPALL
2 � � O�n� logn�� (25)

Thus, we can have C-testable FPGAs by the programming
scheme of block-sliced loading.

V. CONCLUSIONS

In this paper, we considered universal test such that when ap-
plied to an unprogrammed FPGA, it ensures that all the corre-
sponding programmed logic circuits on the FPGA are fault-free.
We presented two types of programming schemes; sequential
loading and random access loading, and showed test procedures
for the FPGAs with these programming schemes and their test
complexities. In order to make the test complexity for FPGAs
independent of the array size of the FPGAs, we proposed a pro-
gramming scheme called block-sliced loading, which makes FP-
GAs C-testable.

In this paper, we focused on testing for look-up tables in FP-
GAs. However, testing for other components, e.g. I/O blocks
and interconnect structures, are also important. These compo-
nents can be tested in the same way as testing for look-up ta-
bles. We will report in the near future on the testing for these
components as well as the whole of FPGAs.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Toshimitsu Masuzawa
and Dr. Michiko Inoue of Nara Institute of Science and Tech-
nology for their helpful comments and discussions on this work.

REFERENCES

[1] S.D. Brown, R.J. Francis, J. Rose, and S.G. Vranesic, Field-Programmable
Gate Arrays, Kluwer Academic Publishers, 1992.

[2] S.M. Trimberger, Ed., Field-Programmable Gate Array Technology,
Kluwer Academic Publishers, 1994.

[3] The Programmable Logic Data Book, Xilinx, 1994.
[4] M. Hermann and W. Hoffmann, “Fault modeling and test generation for FP-

GAs,” in Lecture Notes in Computer Science, Field Programmable Logic,
R.W. Hartenstein and M.Z. Servı́t, Eds. 1994, pp. 1–10, Springer-Verlag.

[5] R.O. Durate and M. Nicolaidis, “A test methodology applied to cellular
logic programmable gate arrays,” in Lecture Notes in Computer Science,
Field Programmable Logic, R.W. Hartenstein and M.Z. Servı́t, Eds. 1994,
pp. 11–22, Springer-Verlag.

[6] A.D. Friendman, “Easily testable iterative systems,” IEEE Trans. Comput.,
vol. C-22, no. 12, pp. 1061–1064, Dec. 1973.

[7] M.S. Abadir and H.K. Reghbati, “Functional testing of semiconductor ran-
dom access memories,” ACM Computing Surveys, vol. 15, no. 3, pp. 175–
198, Mar. 1983.

[8] A. Tuszynski, “Memory testing,” in VLSI Testing, T.W. Williams, Ed., pp.
161–228. Elsevier Science Publishers, 1986.

[9] Tomoo Inoue, Hideo Fujiwara, Hiroyuki Michinishi, Tokumi Yokohira, and
Takuji Okamoto, “Universal test complexity of field-programmable gate
arrays,” in the Forth IEEE Asian Test Symp., Nov. 1995, pp. 259–265.

