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Abstract

An algorithmic fault detection scheme for linear digital
state variable systems is proposed. The proposed scheme
eliminates the necessity of observing the internal states of
the system for concurrent fault detection by utilizing an
accumulation-based approach. Observation merely of the
inputs and the outputs results in significantly reduced area
overhead and no performance penalty. Experimental re-
sults verify that 100% concurrent fault detection is attain-
able for linear digital state variable systems.

1. Introduction
With increasing levels of electronic penetration, it be-

comes all the more important to try to withstand possible
hardware failures, lest they cascade throughout highly in-
terconnected domains. Nonetheless, cost issues as always
loom paramount. We propose a highly cost-effective ap-
proach for the concurrent detection of faults in linear digi-
tal systems. As DSPs constitute an integral part, if not the
central locus, of a large number of electronic applications,
a variety of concurrent error detection schemes, mostly re-
liant on algorithmic approaches, have been previously sug-
gested, such as for digital filters [1], FFT networks [4, 7, 6],
QR factorization [6] and linear digital systems [2].

The primary concurrent fault detection approach for the
fundamental operations of digital systems, proposed by
Huang and Abraham [3], provides error detection and cor-
rection for matrix operations through checksum codes. As
noninteger implementations may cause individual check-
sum comparisons to fail due to rounding effects, real-
number codes have been proposed as an alternative [5].
Utilizing the approaches proposed for embedding fault tol-
erance into matrix operators [3, 5], fault tolerant linear
digital state variable systems have been subsequently out-
lined [2]. While high fault coverages are therein attained,
access to internal states does increase the cost of error de-
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tection hardware appreciably. Recently, a time-extended
invariant-based concurrent fault detection scheme has been
proposed for FIR and IIR filters [1]. The time-extended na-
ture of the invariant utilized obviates the internal state ob-
servation necessity of previously suggested schemes, thus
appreciably reducing the hardware overhead.

In this work, we propose a concurrent error detection
scheme for a general set of linear digital systems. The pro-
posed scheme requires access solely to inputs and outputs
of the system; a time-extended invariant is continuously
checked. Even though lack of access to the internal states
of the system introduces uncertainty to the invariant, high
fault detection is achieved through accumulation of fault ef-
fects, nonetheless. Accumulation of fault effects results in
an inverse correlation between fault magnitude and latency,
a positive outcome as it implies that faults which may im-
pact the system significantly are caught expeditiously. The
superior fault detection capabilities of the scheme are shown
analytically and are verified experimentally herein.

Section 2 defines the class of systems for which the pro-
posed scheme is applicable. Derivation of the invariant
and its hardware implementation is provided in section 3.
While section 4 verifies analytically that the simple invari-
ant checking mechanism indeed provides exceedingly high
fault coverage, section 5 confirms the same fact experimen-
tally. Section 6 discusses the significance of the results ob-
tained in this work.

2. System Definition
While digital linear systems can be written as a set of

equations in various ways, a state variable description is the
most general representational form. A canonical form is
given in equations 1 and 2, showing the next state and out-
put functions, respectively; with n inputs, m outputs and k
internal states;A, B, C, andD denote matrices of dimen-
sionsk � k, k � n, m� k, andm� n, respectively.

st+1 = Ast + But (1)

yt = Cst + Dut (2)
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Throughout this paper, we uses to denote the internal
states of the system, whileu andy denote the inputs and the
outputs of the system, respectively. Superscripts of column
vectors denote a particular time instance, while bold capital
letters are reserved for matrices and bold lowercase letters
for column vectors.

3. Concurrent Test Implementation
Error detection schemes that access solely inputs and

outputs result in low-cost implementations. We propose an
accumulation-based approach, wherein the effect of the in-
ternal states in the long run is shown to be minimal, thus
enabling their construal as part of a tolerance factor. On
the other hand, all fault effects are guaranteed to accumu-
late over time to exceed this tolerance factor introduced
through lack of state observation. Detailed derivation of
the input/output relation that is independent of the internal
states is provided in the following subsection, followed up
with a subsection dedicated to proving an upper bound in
the tolerance term of the invariant checking equation.

3.1. Derivation of the Invariant
Derivation of an invariant between the inputs and the

outputs of a linear time invariant system requires a relation
that is independent of the internal states. While the original
output function depends both on the inputs and the inter-
nal states of the system, by solving the recursive next state
equation (equation 1), we obtain:

st = Ats0 +
t�1X
k=0

At�1�kBuk (3)

Equation 3 shows that, given the internal state of the sys-
tem at time0 and the set of inputs from time0 to t � 1,
the internal state of the system at timet can easily be deter-
mined. By substituting the expression forst into equation 2,
the result can be extended to the output at timet.

yt = CAts0 + C
t�1X
k=0

At�1�kBuk + Dut (4)

While equation 4, assuming that all initial states are zero,
provides a relation between the inputs and outputs, checking
this relation is essentially equivalent to replicating the origi-
nal system. An alternative cost-effective relation needs to be
attained to ensure viability of the scheme we propose. The
desired complexity reduction of the relation in equation 4
can be achieved by taking the summation of both sides of
the equation over the time range1 to T and manipulating
the resultant equation. In performing the summation,y0 is
added to the left hand side of the equation andCs0 + Du0

is added to the right hand side of the equation.
TX
t=0

yt = C

TX
t=0

Ats0 + C

TX
t=1

t�1X
k=0

At�1�kBuk +

TX
t=0

Dut (5)

By changing the order of summation for the second term
of the right hand side of equation 5 and manipulating the
summation index, we arrive at:

TX
t=0

yt = C

TX
t=0

Ats0 + C

T�1X
k=0

T�k�1X
m=0

AmBuk +

TX
t=0

Dut (6)

The second term can be split into 3 parts:
TX
t=0

yt = C

TX
t=0

Ats0 +

TX
t=0

Dut + C

TX
k=0

TX
m=0

AmBuk �

C

TX
m=0

AmBuT � C

T�1X
k=0

TX
m=T�k

AmBuk (7)

In the above equation, omitting all but the second and
third terms provides an invariant with no reliance on inter-
nal states. Omitted terms do not affect the invariant signif-
icantly and thus can be construed to constitute a tolerance
term. Such observations lead to the following relation be-
tween the accumulated inputs and the outputs:

TX
t=0

yt = (C
TX

m=0

AmB + D)

TX
t=0

ut + � (8)

where the tolerance,� , can be given as:

� = C

TX
t=0

At
�

s0 � BuT
�
� C

T�1X
k=0

TX
m=T�k

AmBuk (9)

The term,
P

T

t=0
At, converges in the limit to(I � A)�1

for largeT . Convergence of the summation necessitates that
jAj < 1, which poses no extra constraint as it is in any case
a required condition for the stability of linear digital sys-
tems. By utilizing this result, equation 8 can be simplified
to produce:

TX
t=0

yt = I

TX
t=0

ut + � (10)

whereI denotes

I = C(I � A)�1B + D (11)

Equation 10 provides a simple relation between the in-
puts and outputs within a tolerance,� , that can be utilized
for concurrent error detection. Letting�max denote the
maximum magnitude of the tolerance, the following con-
dition1 provides a simple error checking mechanism.






TX
t=0

�
yt � Iut

�




 � �max (12)

1We use the notationkAk to denote a matrix whose entries are made
up of the absolute value of the corresponding entries in the A matrix. The
same notation is used for column vectors as in equation 12.
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Figure 1. Online Fault Detection Hardware

Implementation of the error detection hardware based on
equation 12 is shown shaded in figure 1. The concurrent
error detection scheme for a system with one input and one
output necessitates only a multiplier, a subtractor, an adder,
a register, and a comparator.

3.2. Upper Bound on Tolerance Magnitude
Linearity of equation 9 guarantees that the upper and

lower bound of the tolerance is equal in magnitude if the in-
put range to the system is symmetrical about the origin. In
linear systems, the dynamic range is usually chosen so that
the negative and positive ranges are equal. This observation
simplifies the consequent analysis of tolerance bounds by
necessitating derivation only of the maximum value of the
tolerance. The first term of equation 9 can easily be maxi-
mized for largeT :

kC(I � A)�1ksmax + kC(I � A)�1Bkumax (13)

An upper bound on the second part of the equation can be
found by applying the triangle inequality after changing the
order in which summations are performed. The reliance on
T can be obviated in the last step of the following equation
by utilizing the identity

P
1

m=1
mkAkm = kAk(I�kAk)�2.

C

T�1X
k=0

TX
m=T�k

AmBuk �

TX
m=1

kCAmBk

T�1X
k=T�m



uk




�

TX
m=1

m kCk kAkm kBk umax

� kCkkAk(I � kAk)�2kBkumax (14)

While equation 14 provides aconstantupper bound on
the second term of the tolerance equation, it is quite pes-
simistic due to repetitive applications of the triangle in-
equality during its derivation. While the constant upper
bound provided by equation 14 is not tight, it nonetheless is
useful in guaranteeing that the second term of the tolerance
in equation 9 is also bounded. Consequently, the overall
tolerance,� , can be bounded by:

� � �max =


C(I � A)�1



 smax+


C(I � A)�1B



 umax+

kCkkAk(I � kAk)�2kBkumax (15)

A tight but time-dependentupper bound can be attained
by directly maximizing the second term of the tolerance
equation 9. The result of the maximization is given in equa-
tion 16.

T�1X
k=0






C
TX

m=T�k

AmB






 umax (16)

For the elliptic filter coefficients in table 1, equation 15
determines the constant overall upper bound to be[11:10].
In case equation 16 is utilized for the upper bound of the
second term, however, the overall bound is determined to
be only[3:63] atT = 1; 000; 000.

4. Fault Detection Analysis
In an accumulation-based concurrent error detection

scheme, the fault detection capabilities of the system de-
pend on the average behavior of the accumulated fault ef-
fects on the output. For average fault behavior analysis, we
utilize the superposition principle. Independent of the fault
model, the effect of a fault in a linear system can be modeled
as an external input to the system at an appropriate point. A
fault in the matrix vector multiplication for the next state
function, either in theAst or theBut term, can be modeled
as an additive external input,fs, a k � 1 column vector, to
the system. A fault in the matrix vector multiplication of the
output function can also be modeled as an external input,fo,
ak � 1 column vector, to the system.

The modified equations for the system considering the
external inputsfs andfo become:

st+1 = Ast + But + f ts (17)

yttotal = Cst + Dut + f to (18)

whereyttotal = yt + ytf . By utilizing the superposition prin-

ciple, the incremental fault effect at the output,y t

f , can be
determined by setting the system inputs and initial states to
zero. In order to derive the average effect on the output, we
follow the steps in section 3.1 and arrive at:

TX
t=0

ytf = C

TX
t=1

t�1X
k=0

At�1�k f ks +

TX
t=0

f to (19)

By taking expectations of both sides of the previous
equation, the following result can be derived:

E

 
TX
n=0

ynf

!
= C

TX
n=1

n�1X
k=0

AkE(fs) + TE(fo)

= TC(I � A)�1E(fs)�

CA(I � A)�2E(fs) + TE(fo) (20)

The linearity of the system, frequently invoked in the
derivation through the superposition principle, ensures that
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Figure 2. Augmented Output Function

average fault effects that propagate to component outputs
are propagated to system outputs unaltered expect for being
multiplied by a constant that depends on the system param-
eters, as can also be seen through equation 20.

A term by term analysis of equation 20 shows that the
second term is constant and can thus be ignored for the pur-
poses of fault detection analysis. The first term governs the
faults in the next state function, while the third term governs
the faults in the output function. We analyze faults on the
next state function and output function separately.

The third term of equation 20 indicates that the fault ef-
fects accumulate over time unless the average value of the
fault effects at the point of activation is zero. For faults with
monotonic2 effects, the average value will be non-zero. Fur-
thermore, the effect of numerical inaccuracies on the fault
detection scheme can be eliminated by utilizing unbiased
rounding schemes3. Merging equations 12 and 20 through
superposition results in the following sufficiency condition
for the detection of faults in the output logic.

jTE(fo)j > �max (21)

Equation 21 indicates that the detection latency of the
faults in the output function is directly proportional to the
tolerance and inversely proportional to the fault effects.
Therefore, the higher the fault effect, the sooner will the
faults be detected by the proposed scheme.

The first term of equation 20 indicates that detection of
faults in the next state function depends on both the average
value of the faults at the point of activation and the system
parametersC andA. The average value of the fault effects
is multiplied by thefault detection vector, C(I �A)�1. De-
tection of faults in the next state function requires that none
of the terms of the fault detection vector be zero. The fault
detection vector, depending on the system parameters, may
not satisfy this criterion. In such cases, an additional output
function may be provided to improve concurrent fault de-
tection, as shown in equation 22. An implementation that
incorporates this augmentation is given shaded in figure 2.

yta = yt + Cast (22)

2Monotonic implementations of RT components for linear digital filters
have been previously shown [1].

3Digital filter implementations with unbiased rounding schemes have
been previously shown [1].

Invariant Tolerance Detection Vector
I Tmax C(I �A)�1

[0.9441] [3.63] [0.80 1.12 0.03 0.02]
[0.1778] [2.21] [0.19 -0.63 0.02 -0.03]
[0.1779] [0.79] [0.00 0.00 -0.08 0.34]

Table 4. System Parameters

The condition for fault detection, with the augmented
output, becomes

(C+ Ca)(I � A)�1 6= 0 (23)

It is desirable that a highly sparseCa matrix be selected
to reduce additional hardware overhead. While augment-
ing the output function for error detection increases the area
overhead, utilizing terms from the multiplication ofAst in
the next state function reduces the additional hardware re-
quirement. Intermediate multiplication results fromAst can
always be utilized as there are no restrictions onCa. Uti-
lizing intermediate results from the next state function re-
duces the additional hardware requirement solely to adders
by eliminating the need for the additional multipliers.

5. Fault Model and Experiments
We utilize monotonic implementations of the RT com-

ponents which we previously outlined [1]; such implemen-
tations reflect the effect of the component internal stuck-at
faults monotonically to the outputs, thus necessitating only
examination of consequent input and output stuck-at faults.
Additionally, faults in the multipliers for both next state and
output functions can be modeled as if they affect directly
the output of the adders, as also noted in section 4. The
model we use consequently covers all stuck-at faults, un-
like previous work [2] that relied on a somewhat functional
bit flipping fault model.

Three elliptic filters are designed using Matlab
R. The
matrices for the state variable representation of the filters
are given in tables 1, 2, and 3. Fault simulations using ran-
dom patterns are performed on an RT level simulator de-
veloped in C. The invariant, the time varying tolerance at4

T = 1; 000; 000, and the fault detection vectors for the
three designs are all provided in table 4.

For the first elliptic filter, detailed fault coverage results
are given in figure 3 by splitting the filter into 4 parts, cor-
responding to multiplication byA, B, C, andD. The figure
indicates that the latency for theA and B pair and theC
andD pair are very close, which is in agreement with the
analysis outlined in section 4. The latency for theA andB
pair exceeds that of theC andD pair as the two terms of the
detection vector given in table 4 are quite small.

4T = 1; 000; 000 is selected as it exceeds comfortably consequent
latencies.
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A=

2
4 :419 �:419 :000 :000

:419 :876 :000 :000

�:015 1:845 :750 �:580
�:005 :612 :580 :808

3
5B=

2
4 :652:192

:797

:264

3
5

C=
�
�:003 :403 �:005 :023

�
D=[:174]

Table 1. Elliptic Filter 1

A=

2
4 :832 :471 :000 :000

�:472 :317 :000 :000

�:374 �:738 :821 :562

�1:174 �2:316 �:562 :765

3
5B=

2
4 :238

:666

:782

2:455

3
5

C=
�
�:293 �:578 �:015 �:019

�
D=[:613]

Table 2. Elliptic Filter 2

A=

2
4�:367 �:259 :633 �:259

:259 �:106 :259 :894

�:633 :259 :367 :259

�:259 �:894 �:259 :106

3
5B=

2
4 :582

:238

�:582
�:238

3
5

C=
�
:038 :325 :038 :326

�
D=[:213]

Table 3. Elliptic Filter 3
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Fault coverage results for all three designs are provided
in figure 4; they indicate that while the first two designs pro-
vide 100% coverage, the coverage level for the third design
reaches only up to 60%. Two elements of the fault detec-
tion vector for the third design are zero, causing the fault ef-
fects not to be accumulated, thus resulting in coverage loss.
Upon application of the augmented output scheme that we
have proposed in section 4 withCa = [0:1 0:1 0:0 0:0], we
are able to obtain complete coverage levels of 100% with an
additional overhead of two multipliers and two adders; this
is shown asFilter 3 updatedin the same figure 4. Complete
fault coverages are attained around 500,000 patterns, with
consequent latencies well below human response times at
current IC frequencies.

Figure 5 provides an analysis of the fault detection sites
in terms of their bit positions, with bit0 indicating the least
significant bit. The figure confirms that faults with large
magnitude effects are detected earlier. The separation of
the detection points into two regions is due to the fact that
faults in the output function are detected earlier than faults
in the next state function. While the errors at the output
function are propagated to the output with no attenuation,
the errors at the next state function are attenuated according
to the value of the detection vector.

6. Conclusion
A concurrent error detection scheme for linear digital

state variable systems is proposed. Through accumulation-
based algorithmic approaches, the scheme detects faults
concurrently by only observing system inputs and outputs.
Unlike previously suggested schemes, the proposed fault
detection scheme does not rely on access to internal states.
Lack of access to internal states of the system introduces
latency to fault detection, yet at the same time appreciably
reduces hardware overhead incurred by such schemes.

Thorough mathematical analysis indicates that the pro-
posed scheme is capable of providing concurrent error de-
tection with minimal access to the system. The fault de-
tection capability of the proposed scheme is also verified
through experiments performed on three systems. The re-
sults of the experiments indicate that 100% fault detection
is possible within a short time latency. The latency of detec-
tion is appreciably shorter for faults with larger magnitude
effects.

The results attained in this work provide a basis for a
low-cost fault tolerance scheme applicable to a wide range
of DSP algorithms. Minimal access to design internals cou-
pled with straightforward mathematical results for imple-
mentation makes the proposed scheme accessible to a large
community of IC designers.
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