
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Memory read faults: taxonomy and automatic test generation / Benso, Alfredo; DI CARLO, Stefano; Di Natale, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 157-163. (Intervento presentato al convegno IEEE 10th AsianTest
Symposium (ATS) tenutosi a Kyoto, JP nel 19-21 Nov. 2001) [10.1109/ATS.2001.990275].

Original

Memory read faults: taxonomy and automatic test generation

Publisher:

Published
DOI:10.1109/ATS.2001.990275

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499859 since: 2016-09-16T17:09:29Z

IEEE Computer Society

Memory read faults: taxonomy
and automatic test generation
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P.,

Published in the Proceedings of the IEEE 10th AsianTest Symposium (ATS), 19-21 Nov. 2001, Kyoto,

JP.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275

DOI: 10.1109/ATS.2001.990275

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275
http://dx.doi.org/10.1109/ATS.2001.990275
http://dx.doi.org/10.1109/ATS.2001.990275

Memory Read Faults: Taxonomy and Automatic Test Generation

ALFREDO BENSO, STEFANO DI CARLO, GIORGIO DI NATALE, PAOLO PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24 - I-10129, Torino, Italy
Email: { benso, dicarlo, dinatale, prinetto }@polito.it

http://www.testgroup.polito.it

Abstract
This paper presents an innovative algorithm for the

automatic generation of March Tests. The proposed
approach is able to generate an optimal March Test for an
unconstrained set of memory faults in very low
computation time. Moreover, we propose a new complete
taxonomy for memory read faults, a class of faults never
carefully addressed in the past.

1. Introduction

Memory devices play a crucial role in terms of
availability and serviceability of electronic systems. They
can appear in a variety of sizes, technologies (SRAMs,
DRAMs, RamBus, etc.), and packaging (IP cores, chips,
dedicated boards). The increasing scale of integration and
the reduction of circuits’ size and power supply levels
make memories one of the most sensitive devices to
permanent and transient faults caused by production
process variations, environmental stresses, and
interferences. This situation is mainly due to the reduced
circuits sizes that require less energy to be damaged or
change their state. The test of memory devices is therefore
necessary to ensure the correct behavior of these
components both at the end of production and during the
product life cycle.

Among the algorithms proposed in the past to test
random access memories (RAM), March Tests have
proven to be faster, simpler, regularly structured, and
linear in complexity [1].

March Tests are able to cover a wide range of memory
faults such as Stuck-at-Faults (SAF), Transition Faults
(TF), Stuck-Open Faults (SOF), Inversion and Idempotent
Coupling Faults (CFin and CFid), Address Fault (AF), and
Data Retention Faults (DRF). Several March Tests of
variable complexity have been proposed in literature, each

optimally covering a different set of memory faults.
Despite this rich literature, the problem of detecting
memory read faults, i.e., faults caused by a read operation
on a memory cell, has never been analyzed in detail.

This paper presents a new methodology to automatically
generate March Tests able to detect all known memory
faults including read faults. Moreover, a new complete
taxonomy for read faults is presented.

The paper is structured as follows: Section 2 summarizes
the state of the art. Section 3 presents the model used to
represent the good and fault memory behavior, whereas
Section 4 details all the steps of the automatic March Test
generation process. Section 6 presents experimental results
reporting a set of new March Tests able to cover read
faults. Section 7 summarizes the main contributions and
future developments of this research.

2. State of the Art

In this section we focus on the detection of memory read
faults only, since the problem has not been clearly
addressed in the past.

A read fault is caused by a read operation performed on
a memory cell. With the increasing scale of integration
and the reduction of circuits’ size and power supply levels,
the importance of these kinds of faults is becoming more
and more relevant. In [2] read faults have been split into
the following two categories:

• Read Disturb Faults (RDFs): the content (d) of a
memory cell (c) is inverted during a read operation,
i.e. a read operation on a cell c containing the value
d returns del value d , and changes the content of
the cell c from d to d . This fault class can be
further split into two subclasses: (i) RDF↑ when the
initial state of the memory cell is 0 and the read
operation change it to 1, (ii) RDF↓ when the initial
state is 1 and the read operation change it to 0;

• Deceptive Read Disturb Faults (DRDFs): the
content (d) of the memory cell (c) is inverted as a
result of a read operation, i.e. a read operation on a
cell c containing the value d returns the correct
value d but the content of the cell c is corrupted to
d at the and of the operation. Since the faulty
transition happens after the read operation, this fault
class is not directly detected by the initial read but it
needs additional operations to be covered. Once
again, there are two subclasses of these faults: (i)
DRDF↑ and (ii) DRDF↓ depending on the initial
state of the memory cell.

As a matter of fact, despite the automatic generation of
March Tests has already been faced in [3], [4], and [5],
only few papers deal with read faults. In [6] the authors
mainly target the diagnosis of memory faults and use a
fault description that allows modeling all possible single
cell and two cells faults that occurs in memory arrays.
This approach uses exhaustive search to find the best
march test and thus it is very time expensive.

3. Memory Model

The problem of the automatic generation of March Tests
needs the definition of a formal model able to represent
the behavior of both the good and the faulty memory. This
section presents a formal model to describe classical
memory faults.

As proposed in [7] and [8], a n one-bit cells memory can
be represented using a deterministic Mealy Automata

),,,,(λδYXQM = , where Q is the set of possible
memory states, X is the input alphabet composed by all the
possible memory operations, Y is the output alphabet, and
finally δ and λ are the state transition and the output
transition function, respectively.
Using the proposed model, a fault free two cells RAM can
be represented by the Finite State Machine (FSM) shown
in Figure 1, conventionally named M0 from now on. In M0,
the letters i and j are used to identify the first and the
second cell, respectively. The use of an FSM for modeling
the memory behavior allows easily describing a faulty
RAM. A faulty memory can be modeled using an FSM
differing from M0 in the output and/or the transition
function. The set of states used to represent a faulty
memory is a subset of the whole set Q since only the cells
involved in the fault should be represented.

This consideration makes possible to use the proposed
model also for very large memories. The given

representation is general enough to be used to model all
known faults, including memory read faults. In the
remainder of this section we propose a new classification
of memory read faults using the above described
behavioral memory model.

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

Figure 1: M0 FSM representing a fault free RAM

The parameters used to define a class of read fault can
be obtained by extending some well-known concepts:

• Target Cell: is the cell were the fault effect can be
observed. It can be the cell on which the read
operation is performed (Single-Cell Read Fault), or
a different cell (Read Coupling Fault);

• Excitation Value: is the value of the read cell able to
excite the fault. The fault can appear if the read cell
value is equal to 0, to 1 or in both cases (Any);

• Fault effect: is the effect caused by the fault on the
faulty cell. The cell can be inverted, forced to 0,
forced to 1 or not changed;

• Read Value: is the value returned by the read
operation. It can be 0, 1, the correct value (when the
fault effect is inside another cell), the value of the
cell before the fault effect (deceptive), or the value
of the cell after the fault effect.

Combining these four independent parameters, it is
possible to define the complete classification of the read
fault classes shown in Table 1 and Table 2. Table 1
summarizes read faults from [2], whereas Table 2 shows
some new faults classes.

Name of the fault Target cell Excitation Value Fault Effect Read Value
RDF Same Any Inverted Cell value after fault effect

DRDF Same Any Inverted Cell value before fault effect
RDF↑ Same 0 Inverted Cell value after fault effect
RDF↓ Same 1 Inverted Cell value after fault effect

DRDF↑ Same 0 Inverted Cell value before fault effect
DRDF↓ Same 1 Inverted Cell value before fault effect

Table 1: Read faults from [2]

Name of the fault Target
cell

Excitation
Value

Fault
Effect Read Value

Read Error 0 (RE0) Same Any Nothing 0
Read Error 1 (RE1) Same Any Nothing 1
Read Stuck-At (RSA) Same Any 0/1 Cell value after fault effect
Deceptive Read Stuck-At (DRSA) Same Any 0/1 Cell value before fault effect
Read Coupling Inversion (RCIn) Another Any Inverted Correct value
Read Coupling Idempotent (RCId) Another Any 0/1 Correct value
Read Coupling Idempotent 0 (RCId0) Another Any 0 Correct value
Read Coupling Idempotent (RCId1) Another Any 1 Correct value

Table 2: New read faults

Considering as an example the Read Coupling

Idempotent (RCId0) Fault, we obtain the FSM shown in
Figure 2. As previously mentioned, since the fault
involves two cells, only, the cardinality of Qi is four. The
difference between the M0 and M1 machine is in the
δ function, as pointed out by the four-bolded edges shown
in Figure 2.

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0 ri / 1

(w1
i, w1

j, T) / -rj / 1
(w0

i, w1
j, T) / -

rj / 1

ri / 0 ri / 1

Figure 2: Read Coupling Idempotent 0 Fault

Representation

Looking at M1, we can split each fault into a set of Basic
Fault Effects (BFEs) [3] [6]. A BFEi can be described by a
Mi FSM with a state transition function that differs from
the one of M0 by one transition only, or with a λi function
that differs from the one of M0 by one output value only.
Using this formalism the example of Figure 2 generates

four different BFEs, as shown in Figure 3. For the sake of
simplicity only the relevant edges are represented.

00

01

10

11

ri / 0

00

01

10

11

rj / 0

00

01

10

11

ri / 1

00

01

10

11
rj / 1

BFE1 BFE2

BFE4BFE3
Figure 3: BFE model for Read Coupling Idempotent 0

Each BFEi can be covered by generating a Test Pattern
(TPi) defined as a triplet),,(OEITPi = where I is the
initial state of the memory, E is the operation needed to
excite the fault, and O is the operation needed to observe
the fault effects. For the proposed example, the four BFEs
can be tested by the following four TPs: ()ji rrTP 101 ,,01= ,

()ij rrTP 102 ,,10= , ()ij rrTP 113 ,,11= , ()ji rrTP 114 ,,11=

4. March Test Generation Algorithm

This section explains the algorithm used to automatically
generate a March Test starting from the memory model
proposed in Section 3. The algorithm, starting from an

unconstrained list of target BFEs, generates a non-
redundant March Test able to cover all of them.

The first phase analyzes the BFE list and, in particular,
the set of TPs needed to cover each one of them. The
analysis produces a strongly connected weighted graph
named Test Pattern Graph (TPG) where each TPG node is
associated with a TP. The weight of each edge represents
the number of memory operations needed to reach the
initialization state of the target node (ST) starting from the
observation state of the source node (SS), i.e., it represents
the Hamming distance between the initialization state and
the observation state.

Figure 4 shows the TPG generated starting from the
BFEs of Figure 3.

TPTP11 2

2

TPTP44 TPTP22

TPTP33

1

1

1

1

0

0

1
1

0

1

Figure 4: RCId0 TPG

From the TPG a Global Test Sequence (GTS) is built. A
GTS is a set of memory operations able to detect all the
target BFEs. Different GTSs can be obtained by simply
concatenating the different TPs in multiple ways, i.e.,
visiting the TPG in different ways. The total number of
possible GTS is !# VGTS = where V is the number of
nodes in the TPG.

Since the space of all the possible GTSs is not
manageable for very long fault lists, the algorithm exploits
some heuristics to find the GTS able to generate a non-
redundant March Test. In particular, the GTSs
corresponding to minimum weight graph visits are
selected; they are able to test the target faults with the
minimum number of memory operations. The use of GTSs
with minimum number of operation seems a good choice
since there is a tight correlation between the GTS length
and the March test complexity.

Using this heuristic, the generation of minimum length
GTSs is a typical instance of the Asymmetric Traveling
Salesman Problem (ATSP) [9]. The ATSP is a
combinatorial optimization (CO) problem, for which a lot

of heuristic and algorithms able to find solutions with a
low computation time (especially for very small problems
like the one discussed in this paper) can be found in
literature. Referring to Figure 4, a possible ATSP solution
produces the following GTS:

ijjijjiijiji
E rrwrrrrwrrwwGTS 100111111010 ,,,,,,,,,,,=

The GTSs obtained by the ATSP solution are able to test
all the addressed BFE but are not yet March Tests. A
March Test is a particular test sequence satisfying a set of
constraints [1]. A GTS must be modified to transform it
into an equivalent March Test.

The process of March Test generation from a GTS is
performed in 4 steps:

• GTS read-faults adjustment;
• GTS reordering;
• GTS minimization;
• March Test Generation.

The GTS reordering, the GTS minimization, and the
March Test Generation steps correspond to a different set
of Rewrite Rules [10]. Since the GTS can be considered as
a string where each symbol is a memory operation, the
rewrite rules can be effectively represented resorting to the
Regular Expression formalism [11].

For the sake of simplicity we define two subsets of
instructions:

• { }j
d

i
d www ,= is the set of possible memory write

operations;
• { }j

d
i

d rrr ,= is the set of possible memory read
operations.

The regular expression formalism is extended
introducing four new operators:

• Read Excite Operator: []Es marks the symbol s as
a read operation needed to excite a read fault (read-
excite operation);

• End Symbol Operator: ŝ marks the symbol s as not
further modifiable (terminal symbol);

• Red Operator: []Rs marks the symbol s with the
red color;

• Blue Operator: []Bs marks the symbol s with the
blue color.

The use of colored symbols is useful during the March
Test generation phase to identify the boundaries of the
different March Elements. The next subsections
summarize the rewrite rules used during the three different
phases.

Pattern Rewrite Rule

() ()∗∗ rwwwrw j
d

i
d |ˆ|ˆ j

d
i
d

Mj
d

i
d wwww ˆˆ1⎯→⎯

() ()∗∗ rwwwrw i
d

i
d |ˆ|ˆ i

d
i
d

Mi
d

i
d wwww ˆ2⎯→⎯

() ()∗∗ rwwwrw j
d

i
d |ˆ|ˆ j

d
i
d

Mj
d

i
d wwww ˆ3⎯→⎯

() ()∗∗∗∗ rwrwwwwwrrw i
d

s

j
d

j
d

s

j
d

j
d

i
d

i
d |)|()ˆ|ˆ|ˆ(ˆˆ|ˆ

21

 [] []BR
i

d
i

d
Mi

d
i

d ssrrrssr 21
4

21 ˆˆˆ ⎯→⎯

Table 3: Reordering Rewrite Rules

4.1. GTS Read-Faults Adjustment
This preliminary step is useful to mark the read

operations that excite a read fault. This operation is not
needed in case of a memory read fault-free model because
there are not read operations able to excite a fault. The
proposed algorithm reduces the complexity of the final
march test exploiting this feature. In fact, this step is
needed to avoid deleting excitation read during the
minimization step (see Section 4.3) where sequences of
consecutive read performed on the same cell are reduced
to a single operation. In case of read operations able to
excite a fault, this minimization must not be performed
(i.e., if the first read operation inverts the content of the
cell but the read value is correct, it is not possible to
remove the second read operation).

The actual GTS is modified to reflect this constraint.
Each read-excite operation followed by another read
operation of a different value is marked with the []E
operator. This operator will be taken into account during
the following steps. By applying this step on the GTS
proposed in Section 4 we obtain the following result:

[] [] ijji
E

jj
E

iijiji
E rrwrrrrwrrwwGTS 100111111010 ,,,,,,,,,,,=

4.2. GTS Reordering
The reordering phase reorders the GTS memory

instructions taking into account the constraints needed to
obtain a March Test [1]. In this phase each modification is
defined by a Pattern and by a Rewrite Rule (see Table 3).
The pattern is a regular expression that identifies all the
strings on which the rewrite rule must be applied. The
reordering process stops when all the GTS symbols are
modified into terminal ones. Appling the reordering rules
on the GTSE we obtain the following reordered sequence:

[] [] [] ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 111100 E
iij

B
j

R
ji

R rwrwrwGTS =
[] [] [] j

B
j

R
ji

E
jj rwrrrr 001111 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ

4.3. GTS minimization
The minimization phase deletes redundant subsequences

to consider the minimum set of needed operations only.
The rewrite rules applied in this phase consider the GTS
starting from left to right (see Table 4). This phase is

repeated until no further minimization can be applied. In
this context the $ symbol is used to denote the end of the
GTS and the color of the symbols (see Section 4) does not
affect the application of the rules.

Rewrite Rules
i
d

Rj
d

i
d www ˆˆˆ 1⎯→⎯ i

d
Rj

d
i

d rrr ˆˆˆ 1⎯→⎯

i
d

Ri
d

i
d www ˆˆˆ 2⎯→⎯ i

d
Ri

d
i

d rrr ˆˆˆ 2⎯→⎯

j
d

i
d

i
d

i
d

Rj
d

j
d

j
d

i
d

i
d

i
d rwwrwwrwwr ˆˆˆˆˆˆˆˆˆˆ 3⎯→⎯

$ˆˆˆˆ$ˆˆˆˆˆ 3 j
d

i
d

i
d

i
d

bisRj
d

j
d

i
d

i
d

i
d rwwrwrwwr ⎯⎯ →⎯

[] [] []Ei
d

R
E

j
dE

i
d rrr ˆˆˆ 4⎯→⎯

[] []Ei
d

Rj
dE

i
d rrr ˆˆˆ 5⎯→⎯

[] []Ej
d

bisR
E

j
d

i
d rrr ˆˆˆ 5⎯⎯ →⎯

[] []Ei
d

R
E

i
d

i
d rrw ˆˆˆ 6⎯→⎯ [] [] []Ei

d
bisR

E
i

dB
i
d rrw ˆˆˆ 6⎯⎯ →⎯

Table 4: Modification Rewrite Rules

Appling several times the minimization rewrite rules on
the reordered GTSR (see Section 4.2) we obtain the
following minimal sequence:

[] [] [] [] [] [] j
B

j
R

ji
E

jj
E

iij
B

j
R

ji
R rwrrrrrwrwrwGTS 001111111100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

[] [] [] [] [] [] j
B

j
R

j
E

j
E

iij
B

j
R

jiI
M rwrrrwrwrwGTS 0011111100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

[] [] [] [] [] j
B

j
R

j
E

iij
B

j
R

jiII
M rwrrwrwrwGTS 001111100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

[] [] [] [] [] j
B

j
R

j
E

ij
B

j
R

jiIII
M rwrrrwrwGTS 00111100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

[] [] [] [] [] j
B

j
R

j
E

i
B

j
R

ji
M rwrrwrwGTS 0011100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

R5 R5

R4

R6

R6bis

4.4. March Test Generation
This last phase uses the minimized GTSM to generate a

March Test. Before applying any rules to convert the GTS
into a March Test, the minimized GTSM is modified
removing the marker []E. The new input sequence is then
analyzed from left to right and the March Elements are
generated according to the following rules:

• Rule 1: subsequences identified by
)ˆ|ˆ)(ˆ|ˆ(j

d
j

d
j

d
i
d rwrw regular expression close a March

Element and open a new one;

• Rule 2: subsequences identified by [] []()∗BR wr ˆˆ regular
expression are joined in a single March Element
despite they are execute on cell i or on cell j. The last
blue marked operation closes the March Element.

The addressing order is generated using the following
rules:

• Rule 3: March Elements starting with colored
operation performed on i cells have addressing order ⇑;

• Rule 4: March Elements starting with colored
operation performed on j cells have addressing order ⇓;

• Rule 5: March Elements starting with non-colored
operations have address order .

Applying the generation rules on the GTSM (see Section
4.3) we obtain the following 7n non-redundant March
Test: 0011100 rwrrwrwM ⇓⇑⇓=

5. Experimental Results

This section reports experimental results in generating
March Tests using the proposed approach, considering sets
of both well known faults and read faults never used in
previous researches on memory testing. The algorithm has
been implemented in about 5000 lines of C code. The
ATSP has been solved using a Fortran code able to give an
exact solution to the problem [12]. The computation time
needed to generate the March Tests is not reported since it
is negligible (all the experiments last less than 1 second).

All generated March Tests have been verified using an
ad hoc memory fault simulator able to validate the
correctness of them given the list of target BFE and able to
check the non-redundancy of the given test algorithm.
Table 5 and 6 show a set of March Test automatically
generated starting from different sets of memory fault
classes.

The fault simulator has been also used to gather
additional information about faults covered by the
algorithm but not directly inserted in the BFE list as
pointed out in Table 6. In the table the bigger bullets
identify the fault targeted by the generation algorithm,
whereas the smeller bullets show the additional faults
detected by the obtained March Test.

6. Conclusion

Memories are among the most critical devices in terms
of availability and serviceability of electronic systems.
The number of possible defects that can appear in a
memory array increases with the advances in the
manufacturing technology. The high scale of integration
and the reduction of the power supply levels make
memories very sensitive to permanent and transient faults.
Many fault models, such as Stuck-at-Faults, Transition
Faults, Stuck-Open Faults, Coupling Faults, Address
Fault, and Data Retention Faults, have been introduced to
cover the wide range of possible defects.

In this paper a general model to represent memory faults
is presented. It includes a complete classification of
memory read faults, a class of faults never carefully
addressed in previous researches. Moreover, the papers
presents an automatic March Test generation process able
to cover all of them. Experimental results are reported to
demonstrate the effectiveness of the approach in
generating March Tests in a very low computation time.

7. References

[1] A. J. van de Goor, “Testing Semiconductor Memories:
theory and practice” Wiley, Chichester (UK), 1991.

[2] S. Hamdioui, Ad. van de Goor, “March Tests for Word-
Oriented Two-Port Memories”, 8th Asian Test
Symposium, 1999, pp. 53-60.

[3] K. Zarrineh, S. J. Upadhyaya, S. Chakravarty, “A New
Framework for Generating Optimal March Tests for
Memory Arrays”, IEEE International Test Conference,
pp. 73-82, 1998

[4] A. J. van de Goor, B. Smit, “Automatic the Verification
of March Tests”,IEEE VLSI Test Symposium, pp. 312-
318, 1994

[5] A. J. van de Goor, B. Smit, “The Automatic Generation
of March Tests”, IEEE International Workshop Memory
Technology, pp. 86-91, 1994

[6] D. Niggemeyer, M. Redeker, E. M. Rudnick, “Diagnostic
Testing of Embedded Memories based on Output
Tracing”, IEEE International Workshop Memory
Technology, pp. 113-118, 2000

[7] J.A. Brzozowski, H. Jurgensen “A Model for Sequential
Machine Testing and Diagnosis” J. Electronic Testing:
Theory and Application, Vol. 3, No. 3, pp. 219-234,
August 1992

[8] J.A. Brzozowski, B.F. Cockburn “Detection of Coupling
Faults in RAMs” J. Electronic Testing: Theory and
Application, Vol. 1, No. 2, pp. 151-162, May 1990.

[9] A. Gibbons, “Algorithmic Graph Theory”, Cambridge
University Press 1985.

[10] S. Even, I. Kohavi, A. Paz, “On minimal module-2 sum
of products for switching functions”, IEEE Trans.
Electron. Comput., vol. EC-16, pp. 671-674, Oct. 1967.

[11] G. Rozemberg, “Handbook of Graph Grammars and
Computing by Graph Transformation”, Vol. I:
Foundation, World Scientific, 1997.

[12] G.Carpaneto, E. Dell’Amico, I. Toth, “A Branch-and-
Bound Algorithm for large scale Asymmetric Traveling
Salesman Problems”, Technical Report Dipartimento di
Economia Politica, Facoltà di Economia e Commericio,

Modena University 1990,
ftp://netlib2.cs.utk.edu/toms/index.html ,”ACM Collected
Algorithms no. 750”, 1994.

Fault List

SAF TF ADF CFin CFid

Generated March Tests and their
complexity

Equivalent Known
March Test

• { }0011 rwrw ⇓⇓⇑ 4n MATS (4n)
• • { }10011 wrwrw ⇓⇑⇑ 5n MATS+ (5n)
• • • { }001100 rwrwrw ⇑⇓⇑⇑ 6n MATS++ (6n)
• • • • { }100110 wrwrww ⇑⇓⇓⇑ 6n MarchX (6n)
• • • • • { }1100110011 rwrwrwrwrw ⇓⇓⇓⇑⇑⇑ 10n March C- (10n)
 • { }00100 rwwrw ⇓⇑⇑ 5n Not Found

Table 5: Experimental Results

Fault List Generated March Test
RSA DRSA RDF DRDF RCIn RCId RCId0 RCId1 Complexity

• • { }1100 rwrw⇑ 4n

• • • • { }111000 rrwrrw⇑ 6n

 • • { }00rw⇑ 2n

 • { }000 rrw⇑ 3n
• • • { }11000 rwrrw ⇓⇓⇑⇑ 5n
• • • • • • • • { }000111100 rrwrrrwrw ⇓⇑⇓⇑⇑ 9n
• • • • { }0011000 rwrwrrw ⇓⇓⇑⇑ 7n

• • • • { }1100111 rwrwrrw ⇓⇓⇑⇑ 7n

Table 6: Experimental Results

