POLITECNICO DI TORINO
Repository ISTITUZIONALE

Memory read faults: taxonomy and automatic test generation

Original

Memory read faults: taxonomy and automatic test generation / Benso, Alfredo; DI CARLO, Stefano; Di Natale, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 157-163. (Intervento presentato al convegno IEEE 10th AsianTest
Symposium (ATS) tenutosi a Kyoto, JP nel 19-21 Nov. 2001) [10.1109/ATS.2001.990275].

Availability:
This version is available at: 11583/1499859 since: 2016-09-16T17:09:29Z

Publisher:
IEEE Computer Society

Published
DOI:10.1109/ATS.2001.990275

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

24 April 2024

Politecnico di Torino

Memory read faults: taxonomy
and automatic test generation

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P,,

Published in the Proceedings of the IEEE 10th AsianTest Symposium (ATS), 19-21 Nov. 2001, Kyoto,
JP.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275

DOI: 10.1109/ATS.2001.990275

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990275
http://dx.doi.org/10.1109/ATS.2001.990275
http://dx.doi.org/10.1109/ATS.2001.990275

Memory Read Faults: Taxonomy and Automatic Test Generation

ALFREDO BENSO, STEFANO D1 CARLO, GIORGIO DI NATALE, PAOLO PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24 - I-10129, Toxino, Italy

Email: { benso, dicarlo, dinatale, prinetio j@polito.it
http.'//www.testgm%p.p '

K @
Abstract itimallyy covering a diff, % emory faults.

eSpite this rich liter: blem of detecting
i sed by a read operation
" a memory cell h analyzed in detail.
This paper pr¢ s@s 2 » methodology to automatically
lo generate Marcgh\ Tésts/able to detect all known memory
rchu read faults. Moreover, a new complete
d faults is presented.

This paper presents an innovative algorithm for th
automatic generation of March Tests. The pr e
approach is able to generate an optimal March Tes
unconstrained set of memory faults in
computation time. Moreover, we propose
taxonomy for memory read faults, a
carefully addressed in the past.

54
>

fault memory behavior, whereas
¢ steps of the automatic March Test
n 6 presents experimental results
arch Tests able to cover read

Memory devices p a crucial ! tizes the main contributions and
availability and serviceability of eles . sments of this research.

1. Introducti

DRAMs, RamBus, etc.),
dedicated boards). The i
the reduction of cireuils\ size and ‘power supply levels
A the most sensitive devices to
£ caused by production
¢fvironmental stresses, and
ation is mainly due to the reduced
at “require less energy to be damaged or
change thejr§tate. The test of memory devices is therefore
necessary {0 ensure the correct behavior of these
components both at the end of production and during the
product life cycle.

Among the algorithms proposed in the past to test
random access memories (RAM), March Tests have
proven to be faster, simpler, regularly structured, and
linear in complexity [1].

March Tests are able to cover a wide range of memory

+this section we focus on the detection of memory read
faults only, since the problem has not been clearly
addressed in the past.
A read fault is caused by a read operation performed on
a memory cell. With the increasing scale of integration
and the reduction of circuits’ size and power supply levels,
the importance of these kinds of faults is becoming more
and more relevant. In [2] read faults have been split into
the following two categories:
* Read Disturb Faults (RDFs): the content (d) of a
memory cell (c) is inverted during a read operation,
i.e. a read operation on a cell ¢ containing the value
d returns del value 4 , and changes the content of
the cell ¢ from d to 4 . This fault class can be

faults such as Stuck-at-Faults (SAF), Transition Faults further split into two subclasses: (i) RDFt when the
(TF), Stuck-Open Faults (SOF), Inversion and Idempotent initial state of the memory cell is 0 and the read
Coupling Faults (CFin and CFid), Address Fault (AF), and operation change it to 1, (ii) RDF| when the initial
Data Retention Faults (DRF). Several March Tests of state is 1 and the read operation change it to 0;

variable complexity have been proposed in literature, each

¢ Deceptive Read Disturb Faults (DRDFs): the
content (d) of the memory cell (¢) is inverted as a
result of a read operation, i.e. a read operation on a
cell ¢ containing the value d returns the correct
value 4 but the content of the cell ¢ is corrupted to
d at the and of the operation. Since the faulty
transition happens after the read operation, this fault
class is not directly detected by the initial read but it
needs additional operations to be covered. Once
again, there are two subclasses of these faults: (i)
DRDF? and (ii) DRDF| depending on the initial
state of the memory cell.

As a matter of fact, despite the automatic generation of
March Tests has already been faced in [3], [4], and [5],
only few papers deal with read faults. In [6] the authors
mainly target the diagnosis of memory faults and use a

This approach uses exhaustive search to find the-bes
march test and thus it is very time expensive.

fault description that allows modeling all possible single
cell and two cells faults that occurs in memory arrays(§

3. Memory Model

section presents 2
memory faults.

memory states, X is the input al,
possible memory operatiops; }

transition functio

Using the propo

be represented by the Finite~State Machine (FSM) shown
in Figure hamed M, from now on. In M),
the letters used to identify the first and the

pectively. The use of an FSM for modeling
behavior allows easily describing a faulty
\wlty memory can be modeled using an FSM
differing from M, in the output and/or the transition
function. The set of states used to represent a faulty
memory is a subset of the whole set Q since only the cells
involved in the fault should be represented.

This consideration makes possible to use the proposed
model also for very large memories. The given

representation is general enough to be used to model all
known faults, including memory read faults. In the
remainder of this section we propose a new classification
of memory read faults using the above described
behavioral memory model.

r/1
r/0
(w1i! Woi; T)/'

(r,ri)/1
(w1i! w1j! T) /-

i j‘ qd Coupling Fault),
e:_is\the value of the read cell able to

rion_ vq
value, 1 nalto 0, to 1 or in both cases (Any);

% xcly, 1s the effect caused by the fault on the

A cell."The cell can be inverted, forced to O,
orced to 1 or not changed;

Read Value: is the value returned by the read
operation. It can be 0, 1, the correct value (when the
fault effect is inside another cell), the value of the
cell before the fault effect (deceptive), or the value
of the cell after the fault effect.

Combining these four independent parameters, it is
possible to define the complete classification of the read
fault classes shown in Table 1 and Table 2. Table 1
summarizes read faults from [2], whereas Table 2 shows
some new faults classes.

Name of the fault | Target cell | Excitation Value | Fault Effect Read Value
RDF Same Any Inverted | Cell value after fault effect
DRDF Same Any Inverted | Cell value before fault effect
RDF? Same 0 Inverted Cell value after fault effect
RDF| Same 1 Inverted Cell value after fault effect
DRDF1? Same 0 Inverted Cell value before fault effect
DRDF| Same 1 Inverted Cell value before fault effect
Table 1: Read faults from [2]
Name of the fault Tzclzlglet Ex\c}::::;on E?fﬁyi/\ Read Value
Read Error 0 (RE0) Same Any Nothiag \[0 PN %
Read Error 1 (RE1) Same Any Nothing \ ¥ \
Read Stuck-At (RSA) Same Any O {1\ \ | Cell value after faulyeffect B
Deceptive Read Stuck-At (DRSA) Same Any <\ \@(l_./ / Cell value be@ép; fabk effe\Qt)

Read Coupling Inversion (RCIn) Another | Any A~/ \ nvefied | Correct valye \ \\ \ >~/

Read Coupling Idempotent (RCId) Another | Amy \ \L N/1 N [Correct valde \ '\

Read Coupling Idempotent 0 (RCIdO) | Another Any \\ 0 CorrgCs Qﬂa]_@‘\ N~

Read Coupling Idempotent (RCId1) Anottisr | Ay) 1 Cdrrelt value—”/

Tdble2—Newréad faults @ % =
four different BF hown in Figure 3. For the sake of
Considering as an example th pling simplicity.Only the relevant edges are represented.
Idempotent (RCIdO) Fault, we obta shown in
Figure 2. As previously mert e the faul
involves two cells, only; t} Q; is four, /0
difference between the @ achine 1ig th @ U @ @
0 function, as poifte e Tour-bolded edges s 1 r/o
in Figure 2. @
(r,r)/0 2. @ /1 (\ / PR,
(Wois Woi, T)/- i (w1l, wol’ T)/-

r/0

Figure 2: Read Coupling Idempotent 0 Fault
Representation

Looking at M;, we can split each fault into a set of Basic
Fault Effects (BFEs) [3] [6]. A BFE; can be described by a
M; FSM with a state transition function that differs from
the one of M, by one transition only, or with a A; function
that differs from the one of M, by one output value only.
Using this formalism the example of Figure 2 generates

o L,

BFE,

Figure 3: BFE model for Read Coupling Idempotent 0

BFE,

Each BFE; can be covered by generating a Test Pattern
(TP)) defined as a triplet TP, =(I,E,0) where I is the

initial state of the memory, E is the operation needed to
excite the fault, and O is the operation needed to observe
the fault effects. For the proposed example, the four BFEs

can be tested by the following four TPs: TF, = (O Lr, ./)
TP, = (10,r) 1), TP, = (111 1), TP, = (11,1 1)

4. March Test Generation Algorithm

This section explains the algorithm used to automatically
generate a March Test starting from the memory model
proposed in Section 3. The algorithm, starting from an

unconstrained list of target BFEs, generates a non-
redundant March Test able to cover all of them.

The first phase analyzes the BFE list and, in particular,
the set of TPs needed to cover each one of them. The
analysis produces a strongly connected weighted graph
named Test Pattern Graph (TPG) where each TPG node is
associated with a TP. The weight of each edge represents
the number of memory operations needed to reach the
initialization state of the target node (Sr) starting from the
observation state of the source node (Ss), i.e., it represents
the Hamming distance between the initialization state and
the observation state.

Figure 4 shows the TPG generated starting from the
BFEs of Figure 3.

target BFEs. Different GTSs
concatenating the differe

! the GTS able to generate a non-
redundant Test. In particular, the GTSs

i to minimum weight graph visits are
oy are able to test the target faults with the
minimum number of memory operations. The use of GTSs
with minimum number of operation seems a good choice
since there is a tight correlation between the GTS length
and the March test complexity.

Using this heuristic, the generation of minimum length
GTSs is a typical instance of the Asymmetric Traveling
Salesman Problem (ATSP) [9]. The ATSP is a
combinatorial optimization (CO) problem, for which a lot

of heuristic and algorithms able to find solutions with a
low computation time (especially for very small problems
like the one discussed in this paper) can be found in
literature. Referring to Figure 4, a possible ATSP solution
produces the following GTS:
GTSy = wywl o1y owiar il owe o

The GTSs obtained by the ATSP solution are able to test
all the addressed BFE but are not yet March Tests. A
March Test is a particular test sequence satisfying a set of
constraints [1]. A GTS must be modified to transform it
into an equivalent, March Test.

ch Test generation fr TS is
teps:
faults adjustmen
O%

ordering;

K symbol is a memory operation, the
can be ctively represented resorting to the
sion form

read operation needed to excite a read fault (read-
excite operation);

* End Symbol Operator: § marks the symbol s as not
further modifiable (terminal symbol);

* Red Operator: [S marks the symbol s with the

red color;

* Blue Operator: [S:L marks the symbol s with the

blue color.

The use of colored symbols is useful during the March
Test generation phase to identify the boundaries of the
different March Elements. The next subsections
summarize the rewrite rules used during the three different
phases.

Pattern

Rewrite Rule

AL AT

i Ml
WaWa > WyWy

i M2 i
WaWq > WWy

Poj_ M3 i
WWs W, Wy

d
sl 52

WP)RR 1] L) w0 1wl s (w L)
—_—

i i M4 ailai
Ty$18:0y > rd[rdjq[slsz]s

Table 3: Reordering Rewrite Rules

4.1. GTS Read-Faults Adjustment

This preliminary step is useful to mark the read
operations that excite a read fault. This operation is not
needed in case of a memory read fault-free model because
there are not read operations able to excite a fault. The
proposed algorithm reduces the complexity of the fina
march test exploiting this feature. In fact, this is
needed to avoid deleting excitation read duri

excite a fault, this minimization n
(i.e., if the first read operatio

operator. This operator
the following steps. By applying thi

t in this phase each modification is
and by a Rewrite Rule (see Table 3).

strings on ‘\wvhich the rewrite rule must be applied. The
reordering process stops when all the GTS symbols are
modified into terminal ones. Appling the reordering rules
on the GTSg we obtain the following reordered sequence:

GTS, = wiliy Lot |77 L
?lj’[fljJE’?li’lfljJR’[w({JB’?df
4.3. GTS minimization

The minimization phase deletes redundant subsequences
to consider the minimum set of needed operations only.
The rewrite rules applied in this phase consider the GTS
starting from left to right (see Table 4). This phase is

=

he symbols (seg"Sectio
tion of the rul®<\ @

~i AP [R i pipli __R2_ 4
WaW, _% Tala Ta
AN~ RTAJA A G R3 ind AT Aj

Wl g WiWy > WaWaly
fiﬁ/i VAV,' fjwj R3bis fiwi wi ;J‘
aWaWala Wy d"qgvd'd

Mblew Modification Rewrite Rules

ing several times the minimization rewrite rules on
the reordered GTSi (see Section 4.2) we obtain the
following minimal sequence:

i lad ~ j AN BN ~jlaj N EY ~ j Aj
R WL R [S T R A
I _ ~ifa ~ j N Y Aj ~j A j Aj
arsy, =i L Lovw [L L Lo w4
%(—/
GTS! =wi |7/ | |/
m = Woollo koM Js»
GTS™ =y |37 A I BN ~J A Y
= Woollo koI !t o JeolTt ko0 b 270
_ A /\j /\j Al Aj /\j Aj
GTS,, _W()’[ro H I]B,[n ,[1 HWO]BJO

4.4. March Test Generation

This last phase uses the minimized GTSy to generate a
March Test. Before applying any rules to convert the GTS
into a March Test, the minimized GTSy is modified
removing the marker []Jg. The new input sequence is then
analyzed from left to right and the March Elements are
generated according to the following rules:

d Rule 1: subsequences identified by

AL GRS .
regular expression close a March
Element and open a new one;

* Rule 2: subsequences identified by []R([W]B regular
expression are joined in a single March Element
despite they are execute on cell i or on cell j. The last
blue marked operation closes the March Element.

The addressing order is generated using the following
rules:

* Rule 3: March Elements starting with Colore
operation performed on i cells have addressing

* Rule 4: March Elements starting wit,
operation performed on j cells have addressi

® Rule 5: March Elements startin i
operations have address order {J

Applying the genera‘uon rules 6

been implemente
ATSP has been
exact solution t

correctness o1 them given the list of target BFE and able to
check the non-redundancy of the given test algorithm.
Table 5 and 6 show a set of March Test automatically
generated starting from different sets of memory fault
classes.

The fault simulator has been also used to gather
additional information about faults covered by the
algorithm but not directly inserted in the BFE list as
pointed out in Table 6. In the table the bigger bullets
identify the fault targeted by the generation algorithm,
whereas the smeller bullets show the additional faults
detected by the obtained March Test.

S -c
reac faults, a class
ressed> in\previous res

6. Conclusion

Memories are among the most critical devices in terms
of availability and serviceability of electronic systems.
The number of possible defects that can appear in a
memory array increases with the advances in the
manufacturing technology. The high scale of integration
and the reduction of the power supply levels make
memories very sensitive to permanent and transient faults.
Many fault models, such as Stuck-at-Faults, Transition
Faults, Stuck-Open Faults Couphng Faults Address
Fault, and Da
cover the wide

thig ‘) | efal model to repye

nts an automatic
cover all of them.

ration process able
erimental results are reported to

emonstrate iveneSs of the approach in
generating very low computation time.
7. Re

A. J. van de Goor, “Testing Semiconductor Memories:
theory and practice” Wiley, Chichester (UK), 1991.

S. Hamdioui, Ad¢Van de Goor, “March Tests for Word-
Or1ented Two-Poit Memories”, 8th Asian Test
5. \pp. 53-60.

adhyaya, S. Chakravarty, “A New

[3] K. Zaryipeh,§. I~
e @ Geherating Optimal March Tests for
v Arrays”, IEEE International Test Conference,

ot l‘arch Tests” IEEE VLSI Test Symposium, pp. 312-

18,1994

A.J. van de Goor, B. Smit, “The Automatic Generation

of March Tests”, IEEE International Workshop Memory

Technology, pp. 86-91, 1994

[6] D. Niggemeyer, M. Redeker, E. M. Rudnick, “Diagnostic
Testing of Embedded Memories based on Output
Tracing”, IEEE International Workshop Memory
Technology, pp. 113-118, 2000

[7] J.A. Brzozowski, H. Jurgensen “A Model for Sequential
Machine Testing and Diagnosis” J. Electronic Testing:
Theory and Application, Vol. 3, No. 3, pp. 219-234,
August 1992

[8] J.A. Brzozowski, B.F. Cockburn “Detection of Coupling
Faults in RAMs” J. Electronic Testing: Theory and
Application, Vol. 1, No. 2, pp. 151-162, May 1990.

[9] A. Gibbons, “Algorithmic Graph Theory”, Cambridge
University Press 1985.

[10] S. Even, I. Kohavi, A. Paz, “On minimal module-2 sum
of products for switching functions”, IEEE Trans.
Electron. Comput., vol. EC-16, pp. 671-674, Oct. 1967.

[11] G. Rozemberg, “Handbook of Graph Grammars and
Computing by Graph Transformation”, Vol. I
Foundation, World Scientific, 1997.

[12]

G.Carpaneto, E. Dell’Amico, 1. Toth, “A Branch-and- Modena

Bound Algorithm for large scale Asymmetric Traveling
Salesman Problems”, Technical Report Dipartimento di

Economia Politica, Facolta di Economia e Commericio,

University

ftp://metlib2 cs.utk.edu/toms/index.html ,”ACM Collected
Algorithms no. 750, 1994.

Fault List Generated March Tests and their Equivalent Known
complexity March Test
SAF | TF | ADF | CFin | CFid
. W Uy Ur | 4n | MATS (4n)
. . ot rw, Urow | o) 5n [MATS+ G
. . . {twe trw §rwy 11} ‘\ | 6n | MATS++ (6n) <~! (5
. . . . Iwe W brwg e] 0\ o0 | MarehX 62\ N\
. . . . o [Hrw trw rw d A&\\g\\l\@%j 10n Maﬁe?;\C&(\@n») e
: v B P& NS N> | 5 | ot Found ~—7

Table 5: Ex@ esults

(&

Fault L}s-t—\\\) /\>

RSA | DRSA | RDF

DRDF R&d& \@Id RCIdO }{ 1

N

enerated March Test

Complexity

(/2/\,)\/

4n

AN

XA—\
COINS] Wprromin
?\\/(> x% WoTot, wlrlrl/t

\A\ 6n

N

RSN 2n

PN

'é%;a
e

S ki) 5
&N U 5n
O’\ * 'ﬁ> ﬂ\w}}owlm nfrwer, | ro} 9n

-
~

ZBN
\Z

* \ \iﬂj)% try I row Urlworo} 7n

NN
\

° ﬁwlﬂrlurlwo

Urowlrl} 7n

<

Table 6: Experimental Results

