
BDD based Synthesis of Symmetric Functions with Full Path-Delay Fault
Testability

Junhao Shi Görschwin Fey Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{junhao,fey,drechsle}@informatik.uni-bremen.de

Abstract
A new technique for synthesizing totally symmetric

Boolean functions is presented that achieves complete ro-
bust path delay fault testability. We apply BDDs for the
synthesis of symmetric functions. Only one additional input
and one inverter are needed to achieve 100% Path Delay
Fault (PDF) testability. The size of the circuit is guaranteed
to be at most quadratic in the number of inputs. The test
vectors for any PDF can be generated in linear time. Ex-
perimental results underline the efficiency of the approach.
In contrast to previous approaches, the technique can also
be applied to multi-output functions.

1. Introduction
Correct operation of a circuit is a major issue. Therefore

circuits are tested for functional and temporal behavior. One
very powerful fault model is thePath Delay Fault Model
(PDFM) that allows to detect static and dynamic faults [7].

Binary Decision Diagrams(BDDs) are known to be an
efficient representation of Boolean functions [3]. They can
be used for synthesis by mapping the BDDs to a multiplexor
circuit. The testability of such circuits has already been in-
vestigated in [1, 2]. Here, we propose a technique that pro-
vides a structural way for test vector generation in polyno-
mial time.

Symmetric Boolean functions often appear in logic de-
sign, and are widely used in cryptology. To synthesize for
delay fault testability, several approaches were proposed,
such as constrained two-level minimization procedures [9],
three- or four-level circuits [12], the unate decomposition
[8], or the cellular logic array [5]. The new approach is
more efficient, because for symmetric functions ofn vari-
ables, the size of the circuit is inO(n2) and test patterns for
any single PDF can be generated inO(n). Moreover in con-
trast to previous approaches the new approach is capable of
synthesizing multi-output functions. The approach can also
be extended to non-symmetric functions [4], but then no up-
per bounds on the circuit size and complexity of test pattern
generation can be guaranteed.

2. Preliminaries
Let f(x1, x2, . . . , xn) denote a switching function of

n Boolean variables. A minterm is a product of vari-
ables in which every variable appears once. The weight
w of a mintermm is defined as the number of uncomple-
mented variables that appear inm. A switching function
f(x1, x2, . . . , xn) is said to be totally symmetric with re-
spect to the variables(x1, x2, . . . , xn) if it is invariant under
any permutation of the variables. Total symmetry can be ex-
pressed in terms of a set of integers (called a-numbers [8])
A = {ai, . . . , aj , . . . , ak}, whereA ⊆ {0, 1, 2, . . . , n}; all
the vertices with weightw ∈ A will appear as true minterms
in the function. An-variable symmetric function is denoted

asSn(ai, . . . , aj , . . . , ak). Forn variables,2n+1−2 totally
symmetric functions (excluding constant functions 0 and 1)
can be constructed.

A combinational circuit implementing a functionf can
be retrieved from a BDD by replacing each node of the
function with a multiplexor. This multiplexor can be im-
plemented by basic gates over the standard library consist-
ing of primary input and output ports, the 2-input/1-output
AND- and OR-gate and the 1-input/1-output inverter NOT
(see [2]).

3. BDD based Synthesis of Symmetric Func-
tions

3.1. BDDs for Symmetric Functions

For a totally symmetric function it is well known that the
size of the BDD is bounded byO(n2). This is due to the ob-
servation that for functions symmetric in(xi, xj) the equa-
tion fxixj = fxixj holds. For BDDs this implies that for
two symmetric variables the left son of the right son of the
root is the right son of the left son of the root. Thus, BDDs
representing totally symmetric functions grow in each level
at most by one node. At the end, there aren + 1 terminal
vertices0, 1, . . . , n. An n-variables symmetric function is
denoted asSn(ai, . . . , aj , . . . , ak). So the terminal vertices
ai, . . . , aj , . . . , ak are 1, and all others are 0. BDDs are re-
duced by application of reduction rules [3].

3.2. BDD Transformation

Analogously to the “standard approach” from [2] the cir-
cuit is generated by traversing the BDD and substituting
each node with a MUX cell. But, the methods differ when
reaching nodes that have one or two pointers to terminal
nodes. In this case, usually the MUX cell is simplified.
E.g. if the 0-input is connected to constant 0, the MUX cell
can be simplified and can be substituted by an AND gate.

Here, all nodes - also the ones pointing to terminals -
are substituted by complete multiplexor cells. The terminal
node 0 is then substituted by a new primary inputt (=test).
Furthermore,t is connected to the 1-terminal of the BDD
by an inverter.

Example 1. If the approach from [2] is applied to the func-
tion S2(1, 2), the BDD circuit in Figure 1(a) results (shown
without simplification). While the transformation described
above generates the circuit in Figure 1(b).

If t is set to constant 0, the circuit computes the original
function. If t is set to 1, the complement is computed. It
is important to observe, that by changing the value oft all
“internal” signals, i.e. signals corresponding to edges in the
BDD, change their value (see [4]).



Table 1. Path Delay Fault coverage of the circuit
name in out original optimized BDD method

NoP lits PDFC NoP lits PDFC NoP lits PDFC
S10(4, 5) 10 1 1252 220 63 995 103 50 1366 133 100
S11(3, 4, 5, 6, 7) 11 1 3716 264 19.1 533 127 92.6 1543 137 100
S12(6, 7) 12 1 4717 312 63.6 2634 149 53.8 5245 189 100
S13(7, 8) 13 1 8435 364 64.3 12966 183 25.9 9667 217 100
S14(6, 7) 14 1 17873 420 63.9 9216 213 48.1 20161 253 100
S5(1, 2) 5 1 39 60 61.5 37 25 67.5 43 33 100
S6(3, 4) 6 1 89 84 60.6 105 45 52.3 91 45 100
S7(2, 3) 7 1 152 112 63.1 191 65 58.1 169 61 100
S8(3, 4) 8 1 334 144 62.2 403 75 41.4 355 85 100
S9(5, 6) 9 1 580 180 63.7 472 90 51.5 652 105 100
rd53 5 3 144 182 97.2 155 39 48.7 123 61 100
rd73 7 3 840 741 97.3 681 220 49.4 528 116 100
rd84 8 4 3288 1442 55.7 1211 380 57.2 1066 163 100
9sym 9 1 522 655 96.5 518 333 91.1 490 93 100
9symml 9 1 276 381 97.2 519 309 72.3 490 93 100

0

1

1

X2

X1

X2

X1

t

MUX

MUX

MUX

MUX

(a) (b)

Figure 1. Example for transformation

3.3. Path Delay Fault Testability
Using the described transformation, full PDF-testability

can be obtained for any Boolean function and the test pat-
tern for a PDF can be generated in linear time.

Theorem 1. By one additional input and one inverter a cir-
cuit can be generated from a BDD that is 100% testable for
robust Path Delay Faults.

Theorem 2. In the resulting circuit for a symmetric func-
tion with n inputs, test pattern generation can be carried out
in timeO(n) for any single PDF.

4. Experimental Results
The technique described above has been implemented

using CUDD as the underlying BDD package [11] and all
experiments have been carried out on a SUN Sparc 20 with
64 Mbyte of main memory.

As benchmarksSn(ai, . . . , aj) were generated as cir-
cuits in blif-format. Also other totally symmetric bench-
marks were taken from the LGSynth91 [13]. For each cir-
cuit we report the number of literals(lits) (measured using
SIS[10]), the number of paths (NoP) that have to be tested
and the PDF coverage (PDFC) of the circuits in percent.

In Table 1 the name of the benchmark is given in the
first column followed by the number of inputs and outputs
in column two and three, respectively. Column "original"
gives numbers for the original circuits as given by the blif-
description. Column "optimized" gives the numbers for
the circuits that have been optimized by SIS usingscript.
rugged. As can be seen, the PDFC for the SIS circuits varies
from 25.9% to 92.6%. Column "BDD method" gives the re-
sults for the approach described in this paper, i.e. the new
testing input is connected to each constant input to a MUX

cell and the MUX cell with both constant inputs is substi-
tuted by a simple wire or an inverter. As can be seen, the
synthesis method is suited not only to one output symmetric
functions but also to the symmetric circuits in LGSynth91.
For all the functions, 100% PDFC is ensured. In case of
the generated circuits, the BDD method is in the same order
of size as SIS, but guarantees testability. For most bench-
marks from LGSynth91, the size is even smaller. E.g. for
rd84 and 9sym the BDD circuit is much smaller than the
corresponding circuit produced by SIS.

References
[1] P. Ashar, S. Devadas, and K. Keutzer. Path-delay-fault testa-

bility properties of multiplexor-based networks.INTEGRA-
TION, the VLSI Jour., 15(1):1–23, 1993.

[2] B. Becker. Synthesis for testability: Binary decision di-
agrams. InSymp. on Theoretical Aspects of Comp. Sci-
ence, volume 577 ofLNCS, pages 501–512. Springer Verlag,
1992.

[3] R. Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Trans. on Comp., 35(8):677–691, 1986.

[4] R. Drechsler, J. Shi and G. Fey. MuTaTe: An efficient design
for testability technique for multiplexor based circuits. In
Great Lakes Symposium on VLSI, 2003.

[5] D. H.Rahaman and B.B.Bhattacharya. A simple delay-
testable design of digital summation threshold logic (dstl)
array. Proc. of the 5th International Workshop on Boolean
Problems, pages 189–194, 2002.

[6] S. N.K.Jha, I.Pomeranz and R.J.Miller. Synthesis of milti-
level combinational circuits for complete robust path delay
fault testability. Proc.Int.Symp. Fault Tolerant Computing,
pages 280–287, 1992.

[7] I. Pomeranz and S. M. Reddy. Delay fault models for VLSI
circuits. INTEGRATION, the VLSI Jour., 26:21–40, 1998.

[8] D. S.Chakraborty, S.Das and B.B.Bhattacharya. Synthesis
of symmetric functions for path-delay fault testability.IEEE
Trans. Computer-Aided Design, 19:1076–1081, 2000.

[9] S.Devadas and K. Keutzer. Synthesis of robust delay-fault-
testable circuits: Practice.IEEE Trans. Computer-Aided De-
sign, 11:227–300, 1992.

[10] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. Technical report, University of Berkeley,
1992.

[11] F. Somenzi. CUDD: CU Decision Diagram Package Re-
lease 2.3.1. University of Colorado at Boulder, 2001.

[12] W.Ke and P.R.Menon. Delay-testable implementations of
symmetric fuctions.IEEE Trans. Computer-Aided Design,
14:772–775, 1995.

[13] S. Yang. Logic synthesis and optimization benchmarks user
guide. Technical Report 1/95, Microelectronic Center of
North Carolina, 1991.


