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Abstract asS,(a;,...,a;,...,a;). Forn variables2"+! — 2 totally

A new technique for synthesizing totally symmetric symmetric functions (excluding constant functions 0 and 1)

Boolean functions is presented that achieves complete ro-can be constructed.

bust path delay fault testability. We apply BDDs for the A co_mbigaftional CE%*B iernplemlenting a fuhnctiogmca? n
syr&the5|s_ of symmetric fugcgons. Ohr]Iy O“fo%%'/d |'?:|>onﬁ1 I[|)n[?ut fuencrzgg}]e\\;ﬁth r:\omu?tiplexor yTLeig %Cdﬂ?plgigr cnaon %eoing ©
and one inverter are needed to achieve 6 Path Delay . : ! -
Fault (PDF) testability. The size of the circuit is guaranteed” Plémented by basic gates over the standard library consist-
to be at most quadratic in the number of inputs. The test Ng of prlma% input and output ports, the 2-input/1-output
vectors for any PDF can be generated in linear time. Ex- AND- and OR-gate and the 1-input/1-output inverter NOT

Perimental results underline t ehefficiﬁncy ohf the approacl:h. (see [2]).

n contrast to previous approaches, the technique can also . )

be applied to rﬂuni_outpuﬁ)?unctions_ q 3. I?_DD based Synthesis of Symmetric Func-
1ons

1. Introduction

_ Correct operation of a circuit is a major issue. Therefore ) o
circuits are tested for functional and temporal behavior. One  For a totally symmetric function itis well known that the
\(/F?B/FR/(I))V\{ﬁgtLIEI;\I];g\L/J\/E [[Tgoddgeg ;Tg%gn%eéa%gﬁﬂtf%?geﬁ] size of the BDD is bounded by (n?). This is due to the ob-
Binary Decision Diagram¢BDDs) are known to be an ?ervann tiat for fl:]nclgonstyrgggtnct:rgm,.xj )l.the tﬁqlt“'?
efficient representation of Boolean functions [3]. They can 10N foiz;, = fz,2; holds. For S this implies that tor
be used for synthesis by mapping the BDDs to a multiplexor two symmetric variables the left son of the right son of the
circuit. The testability of such circuits has already been in- root is the right son of the left son of the root. Thus, BDDs
vestigated in [1, 2]. Here, we propose a technigue that pro-representing totally symmetric functions grow in each level
vides a structural way for test vector generation in polyno- at most by one node. At the end, there are- 1 terminal

3.1. BDDs for Symmetric Functions

mial time. vertices0, 1, ...,n. An n-variables symmetric function is
_ Symmetric Boolean functions often appear in logic de- denoted as,(a;, ..., qa;,...,a;). So the terminal vertices
sign, and are widely used in cryptology. To synthesize for 4, ... a;,...,a; are 1, and all others are 0. BDDs are re-

delay fault testabilictjy, several approaches were proposedyced by application of reduction rules [3]
such as constrained two-level minimization procedures [9], '

three- or four-level circuits [12], the unate decomposition 3 2. BDD Transformation
[8], or the cellular logic array [5]. The new approach is ~ "
more efficient, because for symmetric functionsho¥ari- Analogously to the “standard aﬁproach" from [2] the cir-
ables, the size of the circuit is i0(n?) and test patterns for ~ cuit is generated by traversing the BDD and substituting
any single PDF can be generatediitn). Moreover in con- ~ €ach node with a MUX cell. But, the methods differ when
trast to previous approaches the new approach is capable ofO%Cehsmg"? ?ﬁ@sctgg‘é hﬁ;’ﬁaﬁ”‘ihcg K\ANS Sg}ﬁéssti?nt%?égal
synthesizing multi-output functions. The approach can alsoE ifthe O-input is c’onnectgd to constant 0. the MUX ceil
be extended to non-symmetric functions [4[1)’ but then no up- &3P Tt d 4nd can be substituted by an AND gate
per bounds on the circuit size and complexity of test pattern p 0 Dy gate.
generation can be guaranteed. Here, all nodes - also the ones pointing to terminals -
are substituted by complete multiplexor cells. The terminal

2. Preliminaries node O is then substituted by a new primary inp(ttest).
. _ Furthermore¢ is connected to the 1-terminal of the BDD
Let f(x1,22,...,2,) denote a switching function of by an inverter.

nblBoo_Ieanhyak:iables. A rtr)llinterm is a produglt_hof va_ri-h
ables In which every variable appears once. The welghtgyample 1. If the approach from [2] is applied to the func-
w Of a mintermsm is defined as the number of uncomple- tion S2(1,2), the BDD circuit in Figure 1(a) results (shown

mented variables that appearsnn A switching function . 21 B B . X A

: : PR thout simplification). While the transformation described
f(a1,2s,...,2,) is said to be totally symmetric with re- O SR O R e D
spect to the variabl€s:, xo, . . ., x,,) if itis invariant under 9 9 (®).

any permutation of the variables. Total symmetry canbe ex-  f + js set to constant 0, the circuit computes the original
pressed in terms of a set of integers (called a-numbers [8])f nction.” If ¢ is set to 1, the com Iementpis computed. It
A={a;,...,a4,...,a.}, whereA C {0,1,2,...,n}; all is important to observe, that by changing the value all

the vertices with weighv € A will appear as true minterms ~ “internal” signals, i.e. signals corresponding to edges in the
in the function. An-variable symmetric function is denoted BDD, change their value (see [4]).



Table 1. Path Delay Fault coverage of the circuit

name in [ out original optimized BDD method
NoP | lits [PDFC| NoP ] Tits [ PDFC| NoP ] Tits [ PDFC
S10(4,5) 10 1| 1252| 220 63 995 | 103 50 | 1366 133 100
511(3,4,5,6,7) | 11 1| 3716| 264 19.1 533 | 127 92.6 | 1543 137 100
S12(6,7) 12 1| 4717 | 312 63.6 | 2634 | 149 53.8| 5245| 189 100
S13(7,8) 13 1| 8435| 364 64.3 | 12966 | 183 25.9| 9667 | 217 100
S14(6,7) 14 1| 17873 420 63.9| 9216| 213 | 48.1| 20161 | 253 100
S5(1,2) 5 1 39 60 61.5 37| 25 67.5 43| 33 100
Se(3,4) 6 1 89 84 60.6 105| 45 52.3 91| 45 100
S7(2,3) 7 1 152 | 112 63.1 191 | 65 58.1 169 | 61 100
Ss(3,4) 8 1 334 | 144 62.2 403 | 75 41.4 355| 85 100
So(5,6) 9 1 580 | 180 63.7 472 | 90 51.5 652 | 105 100
rds3 5 3 1447 182 97.2 IS5 39 48.7 123 61 100
rd73 7 3 840 | 741 97.3 681 | 220 | 49.4 528 | 116 100
rd84 8 4| 3288| 1442| 55.7| 1211| 380 57.2| 1066 | 163 100
9sym 9 1 522 | 655| 96.5 518 | 333 91.1 490 | 93 100
9symml 9 1 276 | 381 97.2 519 | 309 72.3 490 | 93 100

cell and the MUX cell with both constant inputs is substi-
tuted by a simple wire or an inverter. As can be seen, the
synthesis method is suited not only to one output symmetric
X2 MUX functions but also to the sg/mmetrlc circuits in LGSynth91.
For all the functions, 100% PDFC is ensured. In case of
the generated circuits, the BDD method is in the same order
X1 MUX of size as SIS, but guarantees testability. For most bench-
marks from LGSynth91, the size is even smaller. E.g. for
rd84 and 9sym the BDD circuit is much smaller than the

X2

X1

(a) (b) corresponding circuit produced by SIS.
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