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Abstract

Recently, it has been observed that embedded cores in a high-speed SoC circuit have the problem of
broken scan chains that cannot shift properly. Also, scan chain intermittent faults caused by hold-
time violations and crosstalk noises are pervasive. In this research, an efficient method is proposed to
identify the faulty scan chain(s) at the core level. That is, the core where the scan chain is defective
can be identified, even if the scan chain is broken. The result can be used to tune up the fabrication
process or to guide the fine-grained scan cell identification process. Here, weight-based m-out-of-n
codes, which can generate a large number of codewords, with small hardware overhead and high
fault detection capability are used to generate the scan chain diagnostic patterns for permanent and
intermittent faults. An efficient codeword generation method is proposed to maximize the number
of codewords, minimize the aliasing probabilities and test application cost. Aliasing probabilities
are analyzed thoroughly for code sequences that are shifted to the scan chain in an overlapped
manner. The idea of multiple m-out-of-n codes is also proposed to guarantee that sufficient number
of codewords are generated to perturb the scan chains and the associated combinational circuits.
A test pattern broadcast architecture is incorporated to support the proposed testing method. The
complexity of control signal generation and scan chain test is greatly reduced by adopting this
architecture. Further, by adding a test pattern alignment scheme, it is possible to share the control
signals for all checkers and to support the broadcast architecture as well. Therefore, the hardware
overhead of the test architecture is also reduced. Finally, a totally self-checking checker is designed
to support the application of multiple weight-based codes. Simulation results demonstrate the
feasibility of the proposed method as the aliasing probability is zero in almost every code sequence.
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Chapter 1

Introduction

With the advent of deep sub-micron technologies, a large number of transistors can be
integrated to a single chip. Hence, system-on-chip (SoC) design is becoming a more popular and
cost-effective solution than traditional PCB designs. A modern SoC may contain memories, DSP
cores, baseband controllers, analog components and peripherals, which are intellectual properties
(IP’s) bought from different vendors. A simple SoC is shown in Fig. 1.1 where UDLs are user-
defined logic blocks, DSP is a digital signal processing core, and USB is a universal serial bus
core [1]. These complex core blocks facilitate design reuse which results in shorter design cycles.
Testing SoC circuits through scan chains is gaining popularity because scan testing gives core users
flexibility to test the internal logic of each individual core. Since a core might be deeply embedded
in the SoC circuit, a test access structure called test access mechanism (TAM) is generally designed
to wrap the core [2]. The TAM circuit is used to transport test patterns from a pattern source to
the scan chains of the core. Similarly, the test responses stored in the scan chains of the core are
transported to a response monitor by the TAM circuit. It has been reported in [3] that the logic
circuitry associated with the scan path may occupy as much as 30% of the total area of the circuit.
Hence, it is of utmost importance to ensure the proper functioning of the scan chain before pro-
ceeding to test the associated combinational logic circuits. An internal fault in the combinational
circuit can get masked due to a faulty scan chain. It is also possible that desired patterns to be
applied to the combinational logic can never be shifted in.

Basically, the faults that might occur at a scan chain can be categorized as permanent
faults and intermittent faults. Scan chain fault diagnosis is the process of identifying the defec-
tive scan cell in a scan chain. Fault diagnosis for scan chain permanent faults assumes that the
fault occurring in the scan chain is permanent, e.g., stuck-at fault, transition fault and hold-time
fault. Fault diagnosis for scan chain permanent faults can be divided into two classes: (1) The
scan chain is added extra circuits through special scan cell design or additional circuitry [4] [5]
[6] [7], and (2) The scan chain is diagnosed by sequential test pattern generation or random test
pattern simulation without adding any extra circuitry [3] [8] [9] [10]. In contrast to permanent
fault diagnosis, intermittent fault diagnosis for scan chains are investigated only recently [11] [12].
Unlike permanent faults that can be modeled deterministically, intermittent faults occur stochasti-
cally and this makes fault diagnosis extremely difficult. According to [12], intermittent scan chain
hold-time faults are pervasive in deep sub-micron technologies due to following reasons. First, in
deep sub-micron technologies, it is very difficult to estimate the wire delay between the adjacent
scan cells due to fabrication process variations. This might make the hold-time margin estimated
too small. Second, noisy signals (at the wire between a pair of scan cells) caused by crosstalk
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Figure 1.1: A SoC design with self-checking checkers.

or IR-drop might cause hold time fault in the scan cell especially when the hold-time margin is
small. In summary, shrinking the feature size, increasing the operating speed, reducing the supply
voltage etc. are the root causes of intermittent faults. In today’s technologies, wire delays are
becoming prominent as they are larger than gate delays. The problem with wire delay is that it is
unpredictable, as it also depends on the signal running through it and through its adjacent wires.
Even worse, inductive coupling between adjacent wires is taking over capacitive coupling, and its
effect is hard to predict. The reason comes from the fact that the inductive coupling effect depends
on the return current path, which in turn depends on the circuit topology as well as on the signal
transition types (rising or falling) in victim and aggressor wires. The inductive coupling effect gives
rise to overshoot/undershoot, oscillation, ringing and other transmission line effects that are hard
to predict [13].

The challenging task is to activate and identify intermittent faults in the scan chain. This
is possible only if proper test patterns, which can create maximum noises in the circuit, are fed to
the scan chain at chip speed. Traditional permanent fault models and deterministic test methods
cannot capture the uncertainties involved in the deep sub-micron scenario [12]. This work considers
the fault diagnosis problem of scan chains for permanent and intermittent faults at the core level,
instead of the scan cell level. That is, we try to identify the core whose scan chain(s) is faulty,
even if the scan chain is broken and cannot shift properly. The basic idea is to add a self-checking
checker to the tail of each scan chain in every core as shown in Fig. 1.1. The purpose of scan chain
fault diagnosis at the core level are two-fold. First, identification of the defective scan chain in a
specific core gives the manufacturer hints to tune-up the fabrication process. Since the cores of
a SoC are purchased from vendors, the designer cannot modify the circuit layout. However, the
manufacturer can fix some fabrication parameters such that the fabrication errors can be corrected.
Second, identification of the defective scan chain in a specific core enables the test engineer to more
efficiently identify the faulty scan cell. This can be achieved by restructuring the core wrappers
such that scan chains of some cores can be bypassed. Thus, fine-grained scan cell identification

2



techniques such as [11] [12] can be applied with shorter scan chains (thus shorter diagnosis time).
Traditional 01010...10 or 00110011...0011 patterns are not suitable for activating the intermittent
faults as the number of valid codewords for such codes are very small. For example, the 0101..
test pattern has only two valid codewords, namely 01 and 10. Similarly, 0011... has only four
valid codewords, namely 0011, 0110, 1100, 1001. The small number of codewords cannot activate
the intermittent faults due to a limited number of rising/falling transitions generated. In this
work, weight-based m-out-of-n codes, which can generate a large number of codewords, with small
hardware overhead and high fault detection capability are used to generate the scan chain diagnostic
patterns for permanent and intermittent faults. A codeword generation method is proposed with
the objectives of (1) maximizing the number of codewords, (2) minimizing the aliasing probabilities
of bidirectional and multi-directional errors caused by permanent or intermittent defects, and (3)
minimize the diagnostic pattern application time by codeword overlapping. The idea of multiple
m-out-of-n codes is also proposed to guarantee that sufficient number of codewords are generated to
perturb the scan chains and the associated combinational circuits. To further reduce the hardware
overhead, a broadcast test architecture is adopted to enable all checkers to share the same control
signals. Simulation results demonstrate the feasibility of the proposed method which achieves the
above three objectives successfully.

This thesis is organized as follows:

Chapter 2 reviews the basic concepts of weight-based m-out-of-n codes, self-checking checkers,
and their applications to on-line testing such as bus crosstalk faults and power supply noises.

Chapter 3 deals with the codeword generation method.

Chapter 4 discusses the order of codeword application to the scan chains using a graph model.

Chapter 5 analyzes the aliasing probabilities of both bidirectional and multi-directional errors.

Chapter 6 discusses the merging of multiple m-out-of-n codes and the corresponding totally self-
checking checker design.

Chapter 7 is dedicated to the test architecture that can support the proposed testing method.
The test pattern alignment problem is also dealt with so that shared control lines can be used for
all checkers and the broadcast test architecture can be incorporated.

Chapter 8 concludes the thesis with suggested future work on a more powerful test pattern
alignment for broadcast test architecture, identification of fine-grained faulty scan cell, development
of a built-in self-test methodology to exercise an at-speed test of the scan chain, and development
of a simulator that can evaluate the power of codewords applied.
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Chapter 2

Background

2.1 Weight-Based Codes

The weight-based m-out-of-n coding method is a generalization of Berger codes [14]. Weight-
based codes are obtained by assigning different weights wi to the information bits. All codewords
which belong to a weighted m-out-of-n code satisfies:

m =
∑l

i=1 wivi, and
n =

∑l
i=1 wi

where wi ∈ W is the weight of ith bit, vi is the value of ith bit, W is the the set of weights, and l is
the cone size (i.e., the number of bits in each codeword). It should be noted that m may be larger
than the n value of the ordinary m-out-of-n code, where the weight of each bit is one.

The weight-based m-out-of-n coding still possesses the property of detecting all unidirec-
tional errors. Additionally, it can detect all bidirectional errors involving a pair of bits i and j

if wi 6= wj . In fact, in the case of a bidirectional error involving such bits, we have mnew = m

±(wi − wj), so that a checker can detect the error. If all wi values differ from each other, it is
evident that all single bidirectional errors can be detected. This constraint can be achieved if wi

= i, but such a large weight set will increase the hardware overhead of the checker circuit. As will
be shown by the analysis presented in the next section, a small set of weights can be used without
deteriorating the error detection ability in our case. Moreover, the value of each wi should be kept
small to reduce the checker design complexity.

2.2 Self-Checking Checker

A self-checking checker basically verifies the correctness of the incoming code. It detects
an error as soon as it occurs, and prevents the error propagation throughout the system [14]. For
such a system, totally self-checking (TSC) is the main property to ensure reliable operations in
the presence of faults. A TSC checker must have two outputs and, hence, four combinations (i.e.,
00, 01, 10, 11). Two of these output combinations, (01,10), are considered valid. A nonvalid
checker output, (00,11), indicates either a noncodeword at the input of the checker or a fault in the
checker itself. The reason why a checker needs two outputs is: if there is only one output and the
normal output value is 1 (0), then a stuck-at-1 (0) fault at the checker output cannot be detected
during normal operation. Also, combinations (00,11) are not selected as valid outputs because a
unidirectional multi-bit error may change 00 to 11 and vice versa (and cannot be detected) [15].
However, single-output TSC checkers have been proposed in [16], [17] and [18]. They generally
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work with the help of a clock signal. They produce 10 or 01 in one clock period during fault-free
conditions, and 00 or 11 during faulty conditions. The main advantage of a single-output checker
over its counterpart is low power consumption and small hardware overhead. In the following, we
describe the properties that are used to define TSC circuits. Fig. 2.1 illustrates the properties of
the following definitions.

Fault-secure: A circuit is fault-secure with respect to a set of faults F, if for any single fault in
F, the circuit never produces an incorrect output codeword for any input codeword. That is, the
circuit produces the correct codeword or a non-codeword for any valid input codeword.

Self-testing: A circuit is self-testing with respect to a set of faults F, if for every single fault in
F, the circuit produces a noncodeword at the output for atleast one input codeword.

Code-disjoint: A circuit is code-disjoint if it maps codewords (noncodewords) at the input to
codewords (noncodewords) at the output.

Totally self-checking: A circuit is totally self-checking if it is both fault secure and self-testing.
So, a circuit is TSC if all single faults are detectable by at least one codeword, and when a given
input does not detect the fault, the output is the correct codeword (i.e., 01 or 10).

Input

Codewords

Total Set of

Inputs

Total Set of

Outputs

Valid Output

Codewords

Correct

Output

Codewords

Self−Testing

Fault Free

Totallt Self−Checking

Fault Secure

Circuit

Valid

Figure 2.1: Illustration of the concepts of self-testing, fault-secure, and totally self-checking [19].

2.3 Applications of Weight-Based Codes

Weight-based codes are proposed in [20] to perform concurrent error detection of multilevel
circuits. Each output bit of the multilevel combinational circuit is assigned a weight, and the check
bits represent the sum of weights of the output bits which have logic value 1. Aliasing can be
minimized by guidelines such as: (1) The weights should be mutually prime, and the sum of two
weights should not be a multiple of the third; (2) Output bits are partitioned into clusters such that
there is minimum sharing of logic between outputs in the same cluster, and outputs in the same
cluster are assigned the same weight [20]. The aliasing probability is reported to be smaller than
traditional error detection codes. An efficient design for the corresponding totally self-checking
checker is also proposed. The idea of weight-based codes are extended to modulo weight-based
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codes in [21] for concurrent error detection of arbitrary multilevel circuits. The major purpose
of the modulo weight-based codes is to reduce the check bits required by taking the sum modulo
of the weights for the output bits that have logic value 1. The algorithm to assign weights and
the corresponding self-checking checker design are also presented. In [14], weight-based codes are
applied to detect crosstalk faults by concurrent error detection of buses. Based on the knowledge
of the layout structure, a graph can be generated to represent the most likely crosstalk faults
in the bus. The problem of weight selection is then modeled as the well-known graph-coloring
problem. By the weights selected, a low-cost weight-based m-out-of-n code can be found to detect
the crosstalks that might cause bidirectional errors. Other self-checking detection and diagnosis
schemes for different faults (e.g., transient, delay faults) and devices (e.g., buses, sequential circuits)
can be found in [22] [23] [24].
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Chapter 3

Codeword Generation for Scan Chain

Testing

In this chapter, we will present the codeword generation methodology for weight-based
m-out-of-n codes for scan chain testing.

3.1 Codeword Generation

Before proceeding with the codeword generation method, we present few common terms
that will be frequently used in this work.

• Weight set is a set of weights by which a weighted m-out-of-n code is generated.

• Number of codewords denotes the total number of codewords found for a given weighted
m-out-of-n coding method.

• Cone size (i.e., l) is the number of bits in each codeword of a given weighted m-out-of-n code.

• Weight configuration represents a way of (repeatedly) selecting l weights from the weight set
without permutation such that the required n can be satisfied. For example, if the weight set is
{1,2,3} and n = 10, then we have two weight configurations: [1,2,2,2,3] and [1,1,2,3,3]. However,
we have only one weight configuration for weight set {1,2} and n = 6, namely, [1,1,1,1,2].

• Weight sequence or distribution denotes the weight assigned to each bit of a codeword such
that required n is satisfied. Consider an example with weight set = {1,2} and cone size = 5.
One possible weight distribution to get n = 6 is 1-2-1-1-1. Here, we can verify that n =

∑

wi

= 1+2+1+1+1 = 6 based on the weight configuration [1,1,1,1,2]. Note that weight distribution
is different from weight configuration. A new weight distribution can be obtained simply by per-
muting the weights of the current weight distribution, but the similar logic is not valid for weight
configuration.

• Code sequence denotes the order by which codewords are shifted into the scan chain. Assume
we have cone size = 5, weight set = {1,2}, n = 6, and weight sequence = 1-1-1-2-1. A valid
code sequence for m = 2 can be 11000 → 10001 → 00010 → 00101 → 10100 → 01001 → 01100.
Note that each of the codewords has m =

∑

wi ∗ vi =2. Generally, the codewords are ordered in
such a way that there is maximum overlapping between each pair of adjacent codewords, hence all
codewords can be shifted into the scan chain using the minimum number of clock cycles.
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• Shift sequence is the number of shifts required to reach one codeword from another. Consider
the codewords of the above example again. Code sequence 11000→ 10001 → 00010 → 00101 →
10100 → 01001 →01100 requires the shift sequence of 1→ 1 → 1 → 2 → 1 → 3 →1. The following
illustrates how the next codeword can be obtained by shifting new bits into the current codeword.
Note that the shifting operation is performed in the right-to-left fashion, while the left-to-right
shifting can be discussed similarly.

(11000)-1→ (10001) − 0 → (00010) − 1 → (00101) − 00 → (10100) − 1 → (01001) − 100 →
(01100) − 0 → back to first codeword.

• Transition count is the total number of 0 → 1 or 1 → 0 transitions generated by a particular
m-out-of-n code sequence. Consider the example of 2-out-of-6 code again, the transition count for
code sequence 11000→ 10001 → 00010 → 00101 → 10100 → 01001 → 01100 →11000 is 30. Note
that, there is only one (left) shift between codeword 11000 & 10001 and that there are one 0→1
(rightmost bit) and one 1→0 (fourth bit from right) transitions generated when 10001 is applied
after 11000. But, there are two shifts between codeword 00101 & 10100, and there are three words
involved, namely, 00101, 01010 and 10100. The number of transitions generated between 00101
& 01010 is 4 and the number of transitions generated between 01010 & 10100 is again 4 giving
rise to a total of 8 transitions between 00101 & 10100. The number of transitions between other
codewords can be calculated similarly. The total transition count is the sum of transition counts
generated by each pair of adjacent codewords.

• Test application cost denotes the total number of shifts required to apply all the codewords of
a m-out-of-n code to the scan chain. In the above example for shift sequence, the test application
cost is 1+1+1+2+1+3+1 = 10.

The function of the codeword enumerator (in software) is to select proper m, n, weight set
and weight distribution, and to generate the corresponding codewords. A program is developed in
C++ for finding the codespace, cost and aliasing for a specific weighted m-out-of-n coding scheme.
The experimental steps are as follows:

1. Fix the weight set, e.g., {1,2} and cone size.

2. Fix the n value.

3. Find a weight configuration and its weight distributions. For example, given n = 6 and cone
size = 5, there in only one weight configuration [1,1,1,1,2] and the weight distributions are
1-1-1-1-2, 1-1-1-2-1, 1-1-2-1-1, 1-2-1-1-1 and 2-1-1-1-1. Another example is to have weight set
= {1,2,3}, cone size = 5, and n = 10. The possible weight configurations are [1,1,2,3,3] and
[1,2,2,2,3].

4. Fix a m value.

5. For the m value, find the codewords for a specific weight distribution. Following the above
example, for m = 2 and weight sequence 1-1-1-2-1, the codewords are 11000, 10001, 00010,
00101, 10100, 01001, 01100.

6. Arrange the codewords such that the test application cost is minimum. The aim is to apply
all codewords into the scan chain by minimum number of (left) shifts. In our experiments,
exhaustive search is exercised to find the arrangement corresponding to the minimum test
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application cost. For example, code sequence 11000 → 10001 → 00010 → 00101 → 10100 →
01001 → 01100 gives the minimum test application cost for the above example (step 4). For
a weighted m-out-of-n code with N codewords, an algorithm to accomplish the codeword
ordering with complexity O(l ·N2) will be presented in Chapter 4. Note that l (i.e., cone size)
is generally a small number compared to N .

7. Find the bidirectional and multi-directional aliasing probabilities for the weighted m-out-of-n
code.

8. Rearrange the weight sequence and repeat steps 5 and 7 until all weight sequences are tried.
For example, a new experiment with weight sequence 1-1-2-1-1 can be repeated.

9. Find a new m value and repeat steps 5 to 8 until all m values are tried.

10. Repeat steps 3 to 9 until all weight configurations are exhausted.

11. Among all weighted m-out-of-n codes generated, select the one which yields the maximum
number of codewords, the minimum cost and aliasing probabilities. If there exists none which
satisfies all requirements, try to trade-off among number of codewords, test application cost
and test aliasing probabilities.

12. If necessary, try more n values and weight sets and repeat steps 3 to 11 until a satisfactory
weighted m-out-of-n code is found.

choose m

choose a weight distribution
find codewords

Order the codewords and
find test application cost

transitions
find aliasing and number of

choose n value

Select a weight configuration

Yes

No

All
m value tried?

Yes

not satisfactory

tried?
weight distributions

All

Yes

No

No

and cone size
Select a weight set

All
weight conf

tried?

Figure 3.1: Flow for codeword enumeration.

The entire flow for the selection of m, n and weight set is depicted in Fig. 3.1. We have
performed software simulation with cone size of 5 and different weight sets. The simulation results
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for different cardinalities of weight sets, m and n values are presented in Tables 3.1, 3.2, 3.3 and
3.4.

Table 3.1: Results for weight set {1,2}.

m/n # code-
words

cost Weight
sequence

Code sequence Shift sequence

1/6 4 5 1-1-1-1-2 10000 → 00010 → 00100 → 01000 → 2 → 1 → 1 → 1
→

2/6 7 10 1-1-1-2-1 11000 → 10001 → 00010 → 00101 → 10100
→ 01001 → 01100 →

1 → 1 → 1 → 2
→ 1 → 3 → 1 →

3/6 8 12 1-1-2-1-1 10100 → 00101 → 01011 → 01100 → 11001
→ 10011 → 00110 → 11010 →

3 → 1 → 2 → 1
→ 1 → 1 → 2 →
1 →

1/7 3 4 2-1-1-1-2 01000 → 00010 → 00100 → 2 → 1 → 1 →
2/7 5 6 1-2-1-2-1 01000 → 10001 → 00010 → 00101 → 10100

→
1 → 1 → 1 → 2
→ 1 →

3/7 7 10 1-1-2-2-1 10100 → 00011 → 01100 → 11001 → 10010
→ 00101 → 01010 →

3 → 2 → 1 → 1
→ 1 → 1 → 1 →

1/8 2 4 2-1-1-2-2 01000 → 00100 → 3 → 1 →
2/8 4 4 1-2-2-2-1 01000 → 10001 → 00010 → 00100 → 1 → 1 → 1 → 1
3/8 6 10 2-1-1-2-2 11000 → 00101 → 01010 → 10100 → 01001

→ 00110 →
3 → 1 → 1 → 1
→ 2 → 2 →

4/8 6 10 2-1-2-1-2 10100 → 10001 → 00101 → 01011 → 01110
→ 11010 →

2 → 2 → 1 → 2
→ 2 → 1 →

1/9 1 3 2-2-1-2-2 00100 → 3 →
2/9 4 5 1-2-2-2-2 01000 → 00001 → 00010 → 00100 → 2 → 1 → 1 → 1

→
3/9 4 9 2-2-1-2-2 10100 → 00110 → 01100 → 00101 → 3 → 1 → 3 → 2

→
4/9 6 10 2-1-2-2-2 10100 → 10001 → 00011 → 00110 → 10010

→ 00101 →
2 → 1 → 1 → 3
→ 1 → 2 →

3.2 Analysis for the Number of Codewords

Let the weight set be {w1, . . . , wr}, where r = cardinality of the weight set. Given a m-out-
of-n code with a specific n value, we have following equation:

n = x1
kw1 + x2

kw2 + · · · + xr
kwr (3.1)

where xi
k = integer coefficients for weight wi. This also means that there are xi

k number of wi’s in the
weight distribution, and k = 1 to s where s represents the total number of possible configurations
that satisfy the given n value. Similarly, we can have

m = y1
k,jw1 + y2

k,jw2 + · · · + yr
k,jwr (3.2)
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Table 3.2: Results for weight set {2,3}.

m/n # code-
words

cost Weight
sequence

Code sequence Shift sequence

2/11 4 5 2-2-2-2-3 10000 → 00010 → 00100 → 01000 → 2 → 1 → 1 → 1
→

3/11 1 3 2-2-3-2-2 00100 → 3 →
4/11 6 10 2-2-2-3-2 11000 → 10001 → 00101 → 10100 → 01001

→ 01100 →
1 → 2 → 2 → 1
→ 3 → 1 →

5/11 4 9 2-2-3-2-2 10100 → 00110 → 01100 → 00101 → 3 → 1 → 3 → 2
→

2/12 3 4 3-2-2-2-3 01000 → 00010 → 00100 → 2 → 1 → 1 →
3/12 2 4 2-2-3-3-2 00100 → 00010 → 3 → 1 →
4/12 3 6 2-3-2-3-2 10100 → 10001 → 00101 → 2 → 2 → 2 →
5/12 6 10 2-2-3-3-2 10100 → 00011 → 01100 → 10010 → 00101

→ 01010 →
3 → 2 → 2 → 1
→ 1 → 1 →

6/12 2 2 2-3-2-3-2 01010 → 10101 → 1 → 1 →
2/13 2 4 3-2-2-3-3 01000 → 00100 → 3 → 1 →
3/13 3 4 2-3-3-3-2 01000 → 00010 → 00100 → 2 → 1 → 1 →
4/13 1 2 3-2-3-2-3 01010 → 2 →
5/13 6 10 3-2-2-3-3 11000 → 00101 → 01010 → 10100 → 01001

→ 00110 →
3 → 1 → 1 → 1
→ 2 → 2 →

6/13 3 6 3-2-3-2-3 10100 → 10001 → 00101 → 2 → 2 → 2 →
2/14 1 3 3-3-2-3-3 00100 → 3 →
3/14 4 5 2-3-3-3-3 01000 → 00001 → 00010 → 00100 → 2 → 1 → 1 → 1

→
5/14 4 9 3-3-2-3-3 10100 → 00110 → 01100 → 00101 → 3 → 1 → 3 → 2

→
6/14 6 10 3-2-3-3-3 10100 → 10001 → 00011 → 00110 → 10010

→ 00101 →
2 → 1 → 1 → 3
→ 1 → 2 →

where yi
k,j = integer coefficients for weight wi. This also means that, under weight configuration

k, there are yi
k,j number of wi’s in each codeword, and j = 1 to t where t denotes the total number

of possible configurations that satisfy the given m value.

Further, we have

x1
k + x2

k + · · · + xr
k = l (i.e., the cone size) (3.3)

and

yi
k,j ≤ xi

k, i = 1 to r, j = 1 to t, k = 1 to s. (3.4)

Let Qk represent the total number of possible codewords for each weight sequence of the
kth configuration of the given n value. We have

Qk =
∑t

j=1 (total number of ways of choosing weights for jth m configuration)

Assume we have weight configuration [1,1,1,2,2] (i.e., n = 7) and the cone size = 5. Given m = 3,
there are two m configurations: m = 3 · w1 + 0 · w2 and m = 1 · w1 + 1 · w2 where wi = i. Let
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us concentrate on the second m configuration. There are three choices to assign 1 to w1 and two
choices to assign 1 to w2. That is, the total number of codewords for the second m configuration is
C(3, 1) · C(2, 1) = 6, and the codewords are 10010, 10001, 01010, 01001, 00110, 00101. Thus, the
total number of codewords for each weight sequence under a specific weight configuration can be
represented by

Qk =
t

∑

j=1

(
r

∏

i=1

C(xi
k, y

i
k,j)) ,∀ k = 1 to s. (3.5)

Note that, for each configuration of n, we are concerned with only one weight sequence. For example,
given a weight set = {1,2}, cone size = 5, and n = 6, there is only one weight configuration (i.e.,
[1,1,1,1,2]) for the specific n value. We are concerned with only one weight sequence (e.g., 1-1-1-1-2)
from which a set of codewords can be generated. Note that the number of codewords generated by
any other weight sequence (e.g., 2-1-1-1-1) is the same as the one selected.

Example 1:
Let us consider a 3-out-of-6 code with weight set = {1,2} (i.e., r = 2) and cone size = 5. From
equation 3.1, we have n = 4 · 1 + 1 · 2 = 6 and this is the only weight configuration that can
satisfy the n value. This leads to x1

1 = 4, x2
1 = 1, and k = 1. Thus, the weight distributions

can be 1-1-1-1-2, 1-1-1-2-1, 1-1-2-1-1, 1-2-1-1-1, 2-1-1-1-1. We are interested in only (any) one of
them, since all different weight distributions generated from the same weight configuration have
the same number of codewords as will be proved later. From equation 3.2, there are two possi-
ble m configurations for m=3 (for any weight sequence). They are: m = 3 · 1 + 0 · 2 = 3, and
m = 1 · 1 + 1 · 2 = 3. So, we have y1

1,1 = 3, y2
1,1 = 0, y1

1,2 = 1, y2
1,2 = 1. From equation 3.5, we get

Q1 =
∑2

j=1(
∏2

i=1 C(xi
1, y

i
1,j)) = [C(4, 3) · C(1, 0)] + [C(4, 1) · C(1, 1)] = 4 + 4 = 8.
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Table 3.3: Results for weight set {1,2,3}.

m/n # code-
words

cost Weight
sequence

Code sequence Shift sequence

1/8 3 4 2-1-1-1-3 01000 → 00010 → 00100 → 2 → 1 → 1 →
2/8 4 6 1-2-1-3-1 01000 → 10001 → 00101 → 10100 → 1 → 2 → 2 → 1
3/8 5 10 1-1-3-1-2 00100 → 10001 → 00011 → 11010 → 01001

→
2 → 1 → 3 → 2
→ 2 →

4/8 6 12 1-1-3-2-1 10100 → 00101 → 01011 → 01100 → 10011
→ 11010 →

3 → 1 → 2 → 2
→ 3 → 1 →

1/9 2 4 2-1-1-1-3 01000 → 00100 → 3 → 1 →
2/9 4 6 1-2-1-3-1 01000 → 10001 → 00100 → 1 → 2 → 1 →
3/9 5 10 1-1-3-1-2 11000 → 10001 → 00010 → 00101 → 01100

→
1 → 1 → 1 → 3
→ 1 →

4/9 6 12 1-1-3-2-1 10100 → 01001 → 10011 → 00110 → 11010
→

1 → 1 → 1 → 2
→ 1 →

1/10 1 3 2-2-1-2-3 00100 → 3 →
2/10 3 4 1-2-2-2-3 01000 → 00010 → 00100 → 2 → 1 → 1 →
3/10 4 8 2-1-2-3-2 11000 → 00010 → 01001 → 01100 → 2 → 2 → 3 → 1

→
4/10 4 6 2-1-2-3-2 10100 → 10001 → 00101 → 01010 → 2 → 2 → 1 → 1

→
5/10 6 12 2-1-3-2-2 10100 → 00110 → 11001 → 00101 → 01011

→ 11010 →
3 → 2 → 2 → 1
→ 3 → 1 →

1/10 2 4 2-1-1-3-3 01000 → 00100 → 3 → 1 →
2/10 2 3 1-3-2-1-3 00100 → 10010 → 2 → 1 →
3/10 4 6 1-3-1-3-2 01000 → 10001 → 00010 → 00101 → 1 → 1 → 1 → 3

→
4/10 5 7 1-2-3-1-3 10100 → 10001 → 00011 → 00110 → 11010

→
2 → 1 → 1 → 2
→ 1 →

5/10 4 4 1-3-2-3-1 01100 → 11001 → 10011 → 00110 → 1 → 1 → 1 → 1
→

1/11 1 3 2-2-1-3-3 00100 → 3 →
2/11 2 4 1-2-2-3-3 01000 → 00100 → 3 → 1 →
3/11 4 6 1-3-2-3-2 01000 → 10001 → 00010 → 10100 → 1 → 1 → 3 → 1

→
4/11 3 5 1-2-3-3-2 10100 → 01001 → 10010 → 1 → 1 → 3 →
5/11 5 7 2-1-3-2-3 10100 → 10001 → 00011 → 00110 → 11010

→
2 → 1 → 1 → 2
→ 1 →

1/12 1 3 2-3-1-3-3 00100 → 3 →
2/12 1 3 1-3-2-3-3 00100 → 3 →
3/12 4 4 1-3-3-3-2 01000 → 10001 → 00010 → 00100 → 1 → 1 → 1 → 1

→
4/12 3 8 3-1-3-2-3 11000 → 01001 → 01100 → 4 → 3 → 1 →
5/12 3 8 3-1-3-2-3 10010 → 00011 → 00110 → 4 → 1 → 3 →
6/12 6 10 3-1-3-2-3 10100 → 10001 → 00101 → 01011 → 01110

→ 11010 →
2 → 2 → 1 → 2
→ 2 → 1-
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Table 3.4: Results for weight set {1,2,3,5}.

m/n # code-
words

cost Weight
sequence

Code sequence Shift sequence

1/12 2 4 2-1-1-3-5 01000 → 00100 → 3 → 1 →
2/12 2 3 1-3-2-1-5 00100 → 10010 → 2 → 1 →
3/12 3 6 1-2-1-5-3 11000 → 00001 → 01100 → 2 → 3 → 1 →
4/12 3 6 1-2-3-1-5 10100 → 00110 → 11010 → 3 → 2 → 1 →
5/12 3 7 2-3-1-1-5 11000 → 00001 → 01110 → 2 → 3 → 2 →
6/12 4 4 2-1-5-1-3 01100 → 11001 → 10011 → 00110 → 1 → 1 → 1 → 1

→
1/13 1 3 2-2-1-3-5 00100 → 3 →
2/13 2 4 1-2-2-3-5 01000 → 00100 → 3 → 1 →
3/13 3 6 1-3-2-5-2 01000 → 10001 → 10100 → 1 → 4 → 1 →
4/13 2 3 1-2-5-3-2 10010 → 01001 → 2 → 1 →
5/13 4 8 2-1-2-5-3 11100 → 10001 → 00010 → 00101 → 2 → 1 → 1 → 4

→
6/13 3 6 1-2-5-3-2 10100 → 10011 → 11010 → 2 → 3 → 1 →
1/14 1 3 2-3-1-3-5 00100 → 3 →
2/14 1 3 1-3-2-3-5 00100 → 3 →
3/14 3 4 1-3-3-5-2 01000 → 10001 → 00100 → 1 → 2 → 1 →
4/14 2 4 2-3-1-3-5 01100 → 00110 → 3 → 1 →
5/14 3 6 1-3-2-3-5 01100 → 00001 → 00110 → 3 → 2 → 1 →
6/14 4 6 1-3-5-2-3 10100 → 01001 → 10011 → 11010 → 1 → 1 → 3 → 1

→
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Chapter 4

Codeword Ordering

Once a set of codewords has been determined, the next problem is how to apply the code-
words to the scan chain such that the total test application length (time) can be minimized. The key
idea to reduce the test application length is to overlap consecutive codewords as much as possible.
Consider two codewords 11000 and 00101 applied to the scan chain. After the first codeword 11000
has been applied (starting from bit 1), the last two bits 00 of codeword 1 can be overlapped with
the first two bits (00) of the second codeword. Significant test application time can be reduced by
codeword overlapping. The problem of ordering the codewords in an optimal way (i.e., to find an
optimal code sequence) is the well-known traveling salesman problem, which is NP complete. If the
number of codewords is smaller than 20, we can find the optimal solution by exhaustive searching.
However, for larger number of codewords than 20, exhaustive searching is time-consuming. Hence,
we propose to use the coalesced simple paths algorithm (CSP) for ordering the codewords.

4.1 Coalesced Simple Paths Algorithm

This algorithm uses a greedy approach to construct a tour edge-by-edge. It is similar to
Kruskal’s algorithm with the added simplicity of avoiding the complicated union-find data structure.
The algorithm begins by first constructing a completely connected graph G1 as shown in Fig. 4.2.
In this graph, the nodes represent the codewords of a given m-out-of-n code, while the weight of
each edge is the cost between the the corresponding pair of nodes (i.e., the number of (left) shifts
required to obtain the succeeding codeword from the current codeword). The algorithm starts with
removing the minimum-cost edge (u,v) of all edges, and adding it to connect nodes u and v in
graph G2 along with other previously added edges. Note that, G2 will be the optimal graph if
the minimum-weight edge is always removed from G1 and added between proper nodes in G2 in
each iteration. However, by repeating this process, there is a possibility that next time an edge of
minimum weight could be selected from G1 and added to G2 without connecting new nodes into
the tour in G2. Hence, the next task is to eliminate all such possibilities of looping that can arise
with the removal of edge (u,v). To accomplish this task, all edges emerging from node u and all
edges terminating to node v are removed in G1. Similarly, edge (v,u) is removed from G1 to avoid
any looping in G2. Also, edge (t,s) is removed from G1, where (t,s) is the terminal and source of
the partial tour created in G2 when edge (u,v) is added in it. For example, in Fig. 4.1, edges (D,C)
and (C,B) are already removed from graph G1. The partial tour in graph G2 consists of edges
(D,C) and (C,B). The terminal and source of this partial tour in G2 are B and D, respectively. If
(B,D) is not removed from graph G1, then this edge will be selected during the next iteration and
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Figure 4.1: Transitive edge removal due to partial tour.

the tour in G2 will be completed without connecting node A. That is the reason for removing edge
(t,s) from G1. The above process is repeated till the tour is completed in G2.

Example 2:
A complete example is shown in Fig. 4.2 for a 5-out-of-15 code with weight distribution 3-3-2-
3-3. The codewords 10100, 00110, 01100 and 00101 are represented as nodes A, D, C, and B,
respectively. Edge (D,C) is removed from G1 first as it has the minimum weight (step 2). It is
then added to graph G2 (step 2). Now, all edges from D, namely (D,A) and (D,B), are removed
from G1. Similarly, all edges to C, i.e., (B,C) and (A,C), are also removed from G1. Further, the
edge (C,D) is removed from G1 to avoid looping (step 3). The algorithm proceeds repeatedly with
selecting edges (B,A), (A,D) and (C,B) consecutively. The tour generated in this case is optimal.

Coalesced Simple Paths
Input: G1 (the complete graph for the codewords and cost for each pair of adjacent nodes).

G2 (the graph containing the codewords as nodes).
Output: G2 (a completed tour).
begin
1 Sort the edges in G1 with increasing order by weight;

do{
2 pick up an edge (u,v) from the top of sorted edge list of G1;
3 Remove all edges emerging from u from the sorted list of G1;
4 Remove all edges terminating to v from the sorted list of G1;
5 Remove edge (v,u) from the sorted list of G1;
6 Add edge (u,v) to G2;
7 Remove edge (t,s) from the sorted list of G1; //where (t,s) is the terminal and source of

//the partial tour in G2
} until a tour is generated in G2;

end

Step 1 in this algorithm is used to sort the edges in G1 with increasing order by weight.
In step 2, the edge with the lowest weight is removed from G1 for process. Steps 3, 4, 5 and 7
are performed to eliminate the possibilities of edge looping. The lowest-weight edge is inserted
into graph G2 in step 6 to form a tour. Steps 2 through 7 are performed repetitively till a tour is
generated in G2. This algorithm is known to perform better than the greedy algorithm because, at
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Table 4.1: Comparison of CSP over optimal ordering

Weight distribution code # of Nodes cost (CSP) cost (optimal)
2-1-1-2-2 3/8 6 10 10
3-2-3-3-3 6/14 6 10 10
2-1-3-2-2 5/10 6 12 12
2-3-5-3-3 8/16 6 12 12
1-1-1-2-1 2/6 7 10 10
1-1-2-2-1 3/7 7 10 10
1-1-2-1-1 3/6 8 12 12

1-1-1-1-1-2 2/7 11 18 18

every step, it always chooses the best from all available edges in the entire graph G1. However, the
greedy method chooses among edges connected to the current node only. We have experimented
the algorithm for different m and n values (with the number of nodes smaller than 20). The results
are depicted in Table 4.1. It can be observed that the results of the algorithm are optimal in all
cases. The run time of the algorithm is O(l ·N2) where N is the number of codewords, because of
constructing the completely connected graph. Further, l is the cone size and is taken into account
because of finding the weight of the edge between each pair of nodes. To do this, one has to perform
string matching (which is of complexity O(l)). Note that l is very small compared to N .
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Figure 4.2: Steps involved in coalesced simple path algorithm.
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Chapter 5

Aliasing Probability Analysis for

Overlapped Codewords

In this chapter, we analyze the aliasing probabilities for bidirectional and multi-directional
errors. Due to an error (or errors), a codeword might be changed into a non-codeword that can be
easily detected by a checker. However, if a codeword is changed to another codeword, then the error
cannot be detected. The aliasing probability of a codeword is the probability that the codeword
is changed into another codeword (and thus the error cannot be detected). In this analysis, first,
we assume that two bits in a codeword can be changed due to an error (i.e., bidirectional error).
For example, given a weight sequence 1-1-1-1-2, 10001 is a codeword for the 3-out-of-6 code with
cone size 5. However, if an error changes two bits such that 10001 is transferred to 01001, then
this error cannot be detected. The analysis will be extended to the case of multi-directional errors.
Figure 5.1 shows an example of a bidirectional error which cannot be detected. The bidirectional
error results from signal delay at lines out1 and out2 due to crosstalk between both lines.

As discussed in codeword ordering, the codewords can be applied to the scan chain in
an overlapped manner such that the test application time can be greatly reduced. The aliasing
probability analysis for overlapped and non-overlapped codeword applications are different. In fact,
the analysis for non-overlapped codeword application is much easier, and the aliasing probability
derived can be used as an upper bound for the overlapped analysis. Again, consider two codewords
11001 and 01101 applied to the scan chain, and assume that the weight sequence of both codewords
is 1-2-1-1-1. Obviously, both codewords are part of the 4-out-of-6 code. It can be observed that
bit pattern 01 can be overlapped when 11001 and 01101 are applied. Note that 11001 is applied
before 01101 and each codeword is applied from the leftmost bit. Assume bit pattern 01 in the first
codeword is changed to 10 due to a scan chain error. When the first codeword is scanned out of the
scan chain, the checker cannot detect this error if both codewords are applied in a non-overlapping
manner. However, the checker can easily detect the error if both codewords are applied in an
overlapped manner. The reason is that, though the checker cannot detect the first codeword 11010
(with m = 4) scanned out, the checker can find the m value of 10101 (the second codeword scanned
out) equal to 3 which is incorrect. From this example, we can see that overlapping codewords for
test application is more powerful than its non-overlapping counterpart in terms of test application
time and aliasing probability.

In this chapter, we would present the analysis of bidirectional and multi-directional errors
for overlapped codewords. Note that codeword and cone is used interchangeably in the following
discussions. Further, in the following analysis, we have to get another codeword from the current
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wire i

wire j

in1

Figure 5.1: Example illustrating bidirectional error.

codeword by moving backward or forward from the current codeword. By definition, a codeword
CW1 is obtained by moving backward (forward) from the current codeword CW2, if CW1 is applied
to the scan chain before CW2. For example, let CW1 = 11001 and CW2 = 01101 and CW1 be
applied before CW2. When both codewords are applied to the scan chain, we have the overall test
pattern 11001101 (the leftmost bit is applied first). If the current codeword under consideration is
01101 (11001), then codeword 11001 (01101) can be obtained from the current codeword by moving
backward (forward).

5.1 Bidirectional Aliasing Analysis

Before proceeding with the bidirectional aliasing analysis, we define several related terms
as follows.

1. Current double error cone (CDC) This is the codeword which is under consideration for
bidirectional error analysis and contains two erroneous bits i and j. All bidirectional aliasing
cases will be analyzed based on the CDC.

2. Left singular error cone (LSC) This is the codeword which is obtained from the CDC by
moving backwards from the CDC and contains the left one (i.e., i) of the erroneous bits.

3. Right singular error cone (RSC) This is the codeword which is obtained from the CDC
by moving forwards from the CDC and contains the right one (i.e., j) of the erroneous bits.

4. Left double error cone (LDC) This is the codeword which is obtained from the CDC by
moving backwards from the CDC and contains both (i.e., i and j) erroneous bits.

5. Right double error cone (RDC) This is the codeword which is obtained from the CDC
by moving forwards from the CDC and contains both (i.e., i and j) erroneous bits.
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Note that there can be many LSC’s, RSC’s, LDC’s and RDC’s for a particular CDC.
Actually, all cones applied before the CDC are potential LSC’s or LDC’s whereas all cones applied
after the CDC are potential RSC’s or RDC’s. Consider a 2-out-of-6 code with weight set = {1,2}
and weight sequence = 1-1-1-2-1. The code sequence is given by 11000 → 10001 → 00010 →
00101 → 10100 → 01001 → 01100. The entire sequence is depicted in Fig. 5.2. The codewords
are shifted into the scan chain in a right-to-left fashion. From now on, unless otherwise stated, the
shifting is always performed in a right-to-left fashion (bit 1 is applied first in Fig. 5.2). Let C1 be
the CDC. For the bidirectional error at locations shown by x1 and x2, C7 is a LSC because it is
at the left side of the CDC and contains bit x1. Each of C3 and C4 is a RSC because it is at the
right side of the CDC and contains bit x2. C2 is a RDC because it contains both x1 and x2. Now,
assume C4 is the new CDC with a bidirectional error at locations x2 and x3. In this case, C1 is a
LSC, C5 is a RSC and C2 is a LDC.

1 0 0 0

C3

1

C2C1 C4 C5 C6C6 C7C7

x1

0

x3x2

1 1 0 0

Figure 5.2: 2-out-of-6 code sequence.

The power of applying overlapped codewords lies in the fact that most of errors of a CDC
can be detected by its neighboring codewords (if they cannot be detected by the CDC itself),
namely, by LSC, RSC, LDC, or RDC. In the following discussions, we describe six possible cases
that can arise while analyzing an undetectable bidirectional error for a particular CDC.

Case 1. For a bidirectional error in the CDC, there exists one or more LSC. As will be proved in
Theorem 1, the error can always be detected in this case.

Case 2. For a bidirectional error in the CDC, there exists one or more RSC. Again, it will be
proved in Theorem 1 that the error is always detected in this case.

Case 3. For a bidirectional error in the CDC, there exists one LDC where the weights of the
erroneous bits are different. In this case, the error can always be detected (refer to Theorem 2).

Case 4. For a bidirectional error in the CDC, there exists one RDC where the weights of the
erroneous bits are different. In this case, the error can always be detected (refer to Theorem 2).

Case 5. For a bidirectional error in the CDC, there exists one or more LDC and/or RDC but the
the error still cannot be detected.

Case 6. For a bidirectional error in the CDC, there is no LSC, RSC, LDC or RDC. The error gets
no chance of being detected as it is not contained in any neighboring cone.

For a given CDC, in Theorem 1, we prove that the bidirectional error of a CDC will be
detected by a LSC or RSC (if it exists) of the CDC. This theorem will, therefore, cover Cases 1
and 2 discussed above.

Theorem 1. A bidirectional error of a CDC can be detected if one of the erroneous bits involved
in the error is contained in a LSC or RSC.
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Proof: Suppose bits i and j of a cone cp are susceptible to a bidirectional error and both have
weight w. Also, bit i is contained by another cone cq. Assume that cone cq is a LSC. This is
illustrated in Fig. 5.3. Note that erroneous bits are marked by ”x” and that the bits are numbered
in a left-to-right manner. Now, if i (j) changes from 0 → 1 (1 → 0) or 1 → 0 (0 → 1), then this error
will be masked in cp; but, cq will undergo a weight increment (decrement). This is a unidirectional
error in cone cq. Similar logic is true when cq is a RSC and contains bit j as shown in Fig. 5.4.
Q.E.D

                      x                            x                                 
i j

CpCq

1 k

Figure 5.3: Bidirectional error detected by cone cq (LSC).

                      x                            x                                 
i j

Cp Cq

1 k

Figure 5.4: Bidirectional error detected by cone cq (RSC).

In Theorem 2, we would prove that the bidirectional error of a CDC can be detected by the
LDC or RDC, if it exists. The detection of this error depends on the weights of the erroneous bits
in the LDC or RDC. This theorem covers Cases 3 and 4 as explained previously.

Theorem 2. A bidirectional error can be detected if both bits involved in the error is contained
by a LDC or RDC and the weights of both bits are different.
Proof: Suppose bits i and j of cone cp are susceptible to a bidirectional error and both have
weight w. Also, bits i and j are contained in LDC cq which is s shifts away from cone cp. This is
illustrated in Fig. 5.5. The weights of i and j in cone cq will be w[i − s] and w[j − s] respectively
if cone cq is a LDC; but w[i + s] and w[k + s] respectively if the cone cq is a RDC (Fig. 5.6). If
their weights are not the same in cq, then the bidirectional error will contribute a weight change of
(w[i − s] − w[j − s]) ((w[i + s] − w[j + s])), if the cone cq is a LDC (RDC), which will be detected
immediately. Q.E.D

                      x                            x                                 
i j

CpCq

k1

Figure 5.5: Bidirectional error detected by cone cq (LDC).

In the following theorem, we prove that a bidirectional error cannot be detected if it is not
contained by any cone or it is contained by a neighboring cone (LDC or RDC) where the weights
of both erroneous bits are the same. This theorem covers Cases 5 and 6.

Theorem 3. A bidirectional error is masked, if it is not contained by any other cone or contained
by a cone where the weights of both bits are the same.
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                      x                            x                                 
i j

Cp

k1

Cq

Figure 5.6: Bidirectional error detected by cone cq (RDC).

Proof: Suppose bits i and j of cone cp are susceptible to a bidirectional error and both have
weight w. If i and j are not contained by any other cone, the error will only cause a weight change
of zero in cp which is not detectable. This case is illustrated in Fig. 5.7. Assume both bits are
contained in another cone cq (see Fig. 5.5) and the weights of both bits are w[i − s] and w[j − s]
(w[i+ s] and w[j + s]) respectively, when cone cq is a LDC (RDC). If the weights w[i− s] (w[i+ s])
and w[j − s] (w[j + s]) are the same, then the bidirectional error between i and j will not cause
any weight change in cq either, and the error will be masked. Q.E.D

                      x                            x                                 
i j

Cp

1 k

Figure 5.7: Bidirectional error not covered by a neighboring cone.

5.1.1 Total Number of Undetected Bidirectional Errors

Based on Theorems 1, 2 and 3, we present an algorithm to enumerate the bidirectional
aliasing. There are totally four search regions for each error at the CDC as illustrated in Fig.
5.8. Region 1 (region 2) is searched for LSC (RSC), while region 3 (region 4) is searched for LDC
(RDC). In Fig. 5.8, k is the cone size and i & j are the bit numbers which are susceptible to a
bidirectional error. Note that bits are numbered from left to right. If a LSC or RSC exists for a
bidirectional error in the CDC, then the error is immediately detected. Otherwise, the algorithm
checks if a LDC or RDC exists for the error and if the error can be detected. If not, the error is
counted as a bidirectional aliasing. In following paragraphs, we present an example to illustrate
various steps of the algorithm.

4

j

1

2

3

x                                                                               x                   
k1 i

Figure 5.8: Different regions for searching an adjacent cone.

Example 1. Let us consider an unoptimized codeword ordering of a 3-out-of-8 code sequence with
weight set {1,2} and cone size of 5 to illustrate the operation of algorithm BidirectionalDetect().

The codewords, bit numbers and the weight distribution for the 3-out-of-8 code are illus-
trated in Fig. 5.9. The corresponding bidirectional graph G is constructed where the nodes are the

24



codewords of the given 3-out-of-8 code. The clockwise directed edges are positive and represent
the number of bits required to shift to the succeeding codeword. The anticlockwise directed edges
are negative and represent the number of shifts required to reach the preceding codeword from
the current codeword. By traveling forwards, we can reach a RSC or RDC; whereas, by traveling
backwards we can reach a LSC or LDC. The bidirectional graph G for this example is shown in
Fig. 5.10.

bit numbers 0    1    2    3    4

C6
C5
C4

C3
C2
C1

weight distribution

Cone 1    1    2    2    2

1    0    0    0    1 

0    1    1    0    0 
1    0    0    1    0 

1    0    1    0    0 

0    1    0    0    1 

0    1    0    1    0 

Figure 5.9: Codewords of a 3-out-of-8 code.

C2

C3

C4

C5

C6

4

2

23

3

4

−4

−2

−2−3

−3

−4

C1

Figure 5.10: The corresponding bidirectional graph G.

C6 C6C5C4C3C2C1

1      0      1       0       0       1       1       0       0       1       0       1       0      0      0      1      0       0  

Figure 5.11: Equivalent errors in two cones.

Now, for each codeword, the potential bidirectional aliasing error locations are identified.
A bit pair is susceptible to a bidirectional aliasing if they are of same weight, and their bit values
are complementary to each other. All error locations for each codeword in this example are given
as follows.
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C1 - (0,1), (2,3), (2,4)
C2 - (0,1), (2,3), (2,4)
C3 - (0,1), (2,3), (3,4)
C4 - (0,1), (2,3), (3,4)
C5 - (0,1), (2,4), (3,4)
C6 - (0,1), (2,4), (3,4)

Totally, the number of errors equal 18.

It can be observed that, when the codewords are shifted in an overlapped manner, some
of the errors are shared by two or more cones (i.e. LDC’s or RDC’s). Such errors are equivalent
to each other. It is, therefore, necessary to remove the redundant error at cone x if the error has
already been accounted in another cone y. For example, error in bits (2,3) in CDC C2 is also error
in bits (0,1) in RDC C3 as shown in Fig. 5.11. Therefore, error (2,3) is dropped from C2 because
it will be accounted as an error (0,1) in C3 or vice versa. After removing all equivalent errors, the
reduced error list is

C1 - (0,1), (2,3), (2,4)
C2 - (0,1), (2,4)
C3 - (0,1), (3,4)
C4 - (0,1), (2,3)
C5 - (0,1), (2,4)
C6 - (0,1), (2,4), (3,4)

Totally, the number of errors after dropping equals 14.

Table 5.1: Error detection for a 3-out-of-8 code sequence.

codeword error detected case

C1 (0,1) yes 1
(2,3) no 5
(2,4) yes 2

C2 (0,1) yes 1
(2,4) yes 2

C3 (2,3) no 6
(3,4) yes 4

C4 (0,1) yes 1
(2,3) yes 1

C5 (0,1) no 6
(2,4) yes 2

C6 (0,1) no 6
(2,4) yes 2
(3,4) yes 2

Each error at every codeword (after error dropping) is analyzed to check whether it can be
detected by a possibly existent LSC, RSC, LDC or RDC. For example, let C1 is the CDC as shown
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in Fig. 5.11. We try to analyze error (0,1) from the reduced error list. Using graph G to travel
backwards, we can observe that C6 is the LSC which is 4 shifts away to the left side of C1 and
contains the 0th error bit. This is clearly illustrated in Fig. 5.11. Therefore, this error is detectable.
Further, let us consider error (2,4) in CDC C1. Using graph G, we go backwards to see if any LSC
exists. Since no LSC covers the error at the 2nd bit, we travel forwards in graph G to see if any
RSC exists. From Fig. 5.11, it is obvious that C2 is a RSC and contains the 2nd erroneous (i.e., bit
4) bit of C1. Therefore, error (2,4) is detectable. Similarly, assume C3 is the CDC and we analyze
error (3,4). We can observe that, by going backwards (forwards) from C3 in graph G, we cannot
get any LSC (RSC). Next, by moving backwards from C3 in G, we cannot find any LDC. Finally,
we move forwards and find RDC C4 where the weights of erroneous bits are 1 and 2, respectively.
Hence, the error is detectable. From Table 5.1, it is evident that out of 14 reduced errors, a total
of 10 errors are detected. Hence, the total number of errors that are masked is 4.

The function GenerateErrorList() in algorithm BidirectionalDetect() picks one cone at a
time and finds out each pair of potential locations (in the cone) that are susceptible to a bidirectional
error. Each pair of such locations must have equal weight and the bit values of both locations must
be complementary to each other.

The function Drop() in algorithm BidirectionalDetect() picks up one cone at a time, and
for each of its errors checks if the error will be analyzed by the succeeding cone or not. If it will be
analyzed by the succeeding cone, then the current error is redundant and can be dropped from the
list. For example, in Fig. 5.5, error pair (i, j) is already analyzed in CDC cp but it is also covered
in LDC cq. So, it will be analyzed again when cq arrives. Hence, this error can be kept in one of
the covering cones and dropped from the other cone.

Once the reduced error list is available, the next task is to check if each error can be
detected by any of its neighboring cones. Since Cases 1 and 2 are computationally least expensive,
the algorithm first checks for a LSC or RSC for the error in the CDC. If such a cone exists, then the
error is detectable, and next error is picked for analysis. Otherwise, the algorithm proceeds with
detecting the error by LDC’s or RDC’s of the CDC (which contains the error). Case 1 through 6
are shown in algorithm BidirectionalDetect().

Algorithm BidirectionalDetect ()
begin
Input: A cyclic graph G where nodes are the cone (codeword) numbers and edges represent

number of shifts;
Output: Number of bidirectional aliasing cases;
GenerateErrorList();
Drop();
for (each error from the reduced error list)
do

begin
move backwards in region 1 of graph G; //see Fig. 5.8
if (cone exist)

then print ”bidirectional error is detectable” and exit; // Case-1
move forwards in region 2 of graph G;
if (cone exist)
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then print ”bidirectional error is detectable” and exit;// Case-2
move backwards in region 3 of graph G;
if (no cone found)

then no overlap flag1 = 1;
else

for (each cone a found above)
do

begin
x = weight[i + shift]a;
y = weight[j + shift]a;
if (x != y)

then print ”bidirectional error is detectable” and exit; // Case-3
end

move backwards in region 4 of graph G;
if (no cone found)

then no overlap flag2 = 1;
else

for (each cone b found above)
do

begin
x = weight[i - shift]b;
y = weight[j - shift]b;
if (x != y)

then print ”bidirectional error is detectable” and exit; // Case-4
end

if (no overlap flag1 == 1 && no overlap flag2 == 1)
then print ”no cone overlaps these affected bits” and

increment bidirectional count; // Case-6
else

print ”more than one cone overlaps these affected bits” and
increment bidirectional count;// Case-5

end
end

5.1.2 Total Number of Two-Bit Errors

The algorithm BidirectionalDetect() enumerates the number of bidirectional aliasing cases.
To find the bidirectional probability, we must calculate the total number of possible two-bit error
cases in the particular m-out-of-n code sequence. In the case of a non-overlapped code sequence, the
total number of possible two-bit errors are simply Q x C(l,2) where Q is the number of codewords
and l is the cone size. However, this is not true in the case of an overlapped code sequence
because some of the two bit errors are counted multiple times due to overlap of codewords. We
must, therefore, use the inclusion-exclusion principle to eliminate such cases and calculate the exact
number of two-bit error cases.

Assume there are Q codewords in a m-out-of-n code (k1, k2, ..., kQ) which are optimally
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ordered for overlapping. Using the inclusion-exclusion principle, the total number of ways of picking
two bits for bidirectional error is given by,

N(k1 ∪ k2 ∪ ... ∪ kQ)2 = S12 − S22 + ... + (−1)i+1Si2 + ... + (−1)Q+1SQ2 (5.1)

where,

S12= N(k1)2 + N(k2)2 + ... + N(kQ)2
=

(k
2

)

+
(k
2

)

+ .... +
(k
2

)

= Q x
(k
2

)

, where k is the cone size.
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)

.

It is evident from equation 5.1 that the total number of terms are very large (actually,
exponential w.r.t. the number of codewords). However, it was found that most of the terms can be
simply eliminated because they can never exist in a given a m-out-of-n code. Further, the equation
can be simplified since each term containing intersection of three or more cones can be reduced to a
term containing intersection of two cones. We present two theorems (4 and 5) to simplify equation
5.1.

123Ki

Ki1234

12Ki

1Ki 2Ki 4Ki3Ki

Figure 5.12: Four overlapping cones.

In Theorem 4, we prove that a term containing intersection of three or more cones can be
reduced to a term containing intersection of two cones. Consider four overlapped cones ki1 , ki2 , ki3

and ki4 as shown in Fig. 5.12. Let ki12 be the common bits between cones ki1 and ki2 , ki123 be the
common bits between cones ki1 , ki2 , and ki3 , while ki1234 be the common bits between ki1 , ki2 , ki3 ,
and ki4 . It can be observed from Fig. 5.12 that ki1234 is equal to ki14(ki1&ki4) regardless of the
amount of overlap involved by ki2 and ki3 .

Theorem 4: For a code sequence k1 → k2 → ... → kQ of a m-out-of-n code, we have (ki1 ∩ ki2 ∩
...∩kip) = (ki1 ∩kip) where ki1 , ki2 , ..., kip are any combination of p cones (from left to right) out of
Q available cones, and ki1 is the leftmost cone in the code sequence while kip is the rightmost cone.
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123Ki
12Ki

3Ki2Ki1Ki

Figure 5.13: Overlapping cones.

Proof. This theorem can be proved using mathematical induction. The equation is valid for two
cones. Now, consider three cones, ki1 , ki2 and ki3 which overlap each other as shown in Fig. 5.13.

(ki1 ∩ ki2 ∩ ki3) = ((ki1 ∩ ki2) ∩ ki3) = (ki12 ∩ ki3) = (ki123) = (ki1 ∩ ki3) (5.2)

Let us assume that the proposition is true for t overlapping cones. Therefore,

(ki1 ∩ ki2 ∩ ... ∩ kit) = (ki1 ∩ kit) (5.3)

We now prove that the proposition is true for (t + 1) cones.
(ki1 ∩ ki2 ∩ ... ∩ kit ∩ kit+1

) = (ki1 ∩ kit ∩ kit+1
) (from equation 5.3)

= (ki1 ∩ kit+1
) (from the equation 5.2)

Since the proposition is valid for (t + 1) number of overlapped cones, it is valid for any number of
overlapped cones. Therefore,

(ki1 ∩ ki2 ∩ ... ∩ kip) = (ki1 ∩ kip) (5.4)

Q.E.D.

Theorem 5: For a code sequence k1 → k2 → ... → kQ of a m-out-of-n code, we have (ki1 ∩ ki2 ∩
... ∩ kip) = 0, if cones ki1 and kip are l shifts away from each other where l is the cone size.
Proof. From Theorem 1, we have (ki1 ∩ ki2 ∩ ... ∩ kip) = (ki1 ∩ kip). If two cones ki1 and kip are
more than l shifts away from each other, then there is no overlap between them. Hence, (ki1 ∩ kip)
= 0. Q.E.D.

Using Theorems 1 and 2, it is possible to simplify the calculation of two-bit error cases as
most of the terms will either cancel out or turn out to be zero.

Example 2. Consider a 5-out-of-12 code with weight set {1,2,5} and weight distribution of 2-1-2-
2-5. The code sequence is shown in Fig. 5.14.

C4 C4C3C2

01

C1

1 010000111

Figure 5.14: A 5-out-of-12 code sequence.

We have the following equations.
N(k1)2 = N(k2)2 = N(k3)2 = N(k4)2 = C(5,2) = 10,

30



(k1 ∩ k2) = 2,
(k1 ∩ k3) = 0 (from theorem 5),
(k1 ∩ k4) = 0 (from theorem 5),
(k2 ∩ k3) = 1,
(k2 ∩ k4) = 0, (from theorem 5)
(k3 ∩ k4) = 1,
(k1 ∩ k2 ∩ k3) = (k1 ∩ k3) = 0 (from theorem 4),
(k1 ∩ k2 ∩ k4) = (k1 ∩ k4) = 0 (from theorem 4),
(k1 ∩ k3 ∩ k4) = (k1 ∩ k4) = 0 (from theorem 4),
(k2 ∩ k3 ∩ k4) = (k2 ∩ k4) = 0 (from theorem 4),
(k1 ∩ k2 ∩ k3 ∩ k4) = (k1 ∩ k4) = 0 (from theorem 4),

From equation 5.1, we have
N(k1 ∪k1 ∪ ...∪k4)2 = [N(k1)2 + N(k2)2 + N(k3)2 + N(k4)2] - N(k1 ∩k2)2 - N(k2 ∩k3)2 - (k3 ∩k4)2
= 4 x C(5,2) - C(2,2) - C(1,2) - C(1,2) = 40 - 1 - 0 - 0 = 39.

5.1.3 Bidirectional Aliasing Probability

Based on the above discussions, the aliasing probability for bidirectional errors of a code
sequence can be represented by

pb = Total number of undetectable bidirectional error cases
Total number of ways of picking two bits at a time .

Example 3. Consider Example 1 again. We have the total number of bidirectional aliasing cases
= 4, while the total number of two-bit error cases = 52. Therefore, the aliasing probability is pb =
4
52 = 0.08.

5.1.4 Results

The bidirectional aliasing probabilities for a few minimum cost code sequences, correspond-
ing to different m-out-of-n codes and weight sets, are presented in Tables 5.2, 5.3, 5.4 and 5.5.
The first column in the tables shows the m and n values for each particular m-out-of-n code. The
second column shows the sum of all undetectable bidirectional errors in each codeword that exist
for the given m-out-of-n code before and after performing the Drop() function. For example, the
sum of all undetectable bidirectional errors for the 3-out-of-8 code of Example 1 is 18 (14) before
(after) Drop() function. The third column depicts the total number of errors detected by LSC’s
or RSC’s (i.e., Cases 1 and 2). The fourth column shows the total number of errors detected by
LDC’s or RDC’s (i.e., Cases 3 and 4). The fifth column shows the total number of errors that
are undetectable because none of the neighboring cones contains them (Case 6). The sixth col-
umn shows the total number of errors that are contained in other cones but are still undetectable
(Case 5). The seventh column contains the total number of bidirectional errors that are finally
undetectable. It is obvious that this column is the summation of columns 5 and 6. The eighth
column shows the total number of two-bit errors for each m-out-of-n code sequence. This value is
calculated using equation 5.1. From Table 5.6, it is evident that a large proportion of bidirectional
errors are detectable by LSC’s and RSC’s. Therefore, significant amount of computation can be
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saved by eliminating the computation of errors that are detectable by LDC’s and RDC’s. Note
that we do not calculate the total number of two-bit errors for those m-out-of-n codes which has
the number of undetected errors equal 0. The reason is that the aliasing probability pb each of
those codes is 0 anyways. From Tables 5.2 to 5.5, it can be observed that the aliasing probabilities
of most m-out-of-n codes are 0, and this demonstrates that the proposed method is very powerful
in identifying erroneous scan chains.

Table 5.2: Results for weight set {1,2}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
two-bit errors

pb

1/6 6/6 5 1 0 0 0 - 0
2/6 20/20 20 0 0 0 0 - 0
3/6 18/18 18 0 0 0 0 - 0
1/7 4/4 4 0 0 0 0 - 0
2/7 4/4 4 0 0 0 0 - 0
3/7 14/14 14 0 0 0 0 - 0
1/8 2/2 1 1 0 0 0 - 0
2/8 6/4 4 0 0 0 0 - 0
3/8 18/14 12 1 1 0 1 35 0.03
4/8 12/8 8 0 0 0 0 - 0
1/9 0/0 0 0 0 0 0 - 0
2/9 12/6 5 1 0 0 0 - 0
3/9 12/12 10 2 0 0 0 - 0
4/9 24/20 18 2 0 0 0 - 0

5.2 Multidirectional Aliasing Analysis

In this analysis, first, we assume that more than two bits in a codeword can be changed due
to an error. For example, given a weight sequence 1-1-1-1-2, 10001 is a codeword for the 3-out-of-6
code with cone size 5. However, if an error changes three bits such that 10001 is transferred to
11100, then this error cannot be detected. The following condition is necessary and sufficient for
the occurrence of a multi-directional error

p
∑

r=1

wr(−1)vr = 0 (5.5)

where vr is the value of the rth erroneous bit, wr is the weight of the rth erroneous bit, and p (the
total number of erroneous bits) ≥ 3. In the above 3-out-of-6 code example, the weight of each
erroneous bit is w1 = 1, w2 = 1, and w3 = 2, and their values are v1 = 0, v2 = 0, and v3 = 1,
respectively. Therefore, the L.H.S of equation 5.5 is w1(−1)v1 + w2(−1)v2 + w3(−1)v3 = 1 + 1 - 2
= 0. So, the error is masked.

Before proceeding with the multi-directional aliasing analysis, we redefine LSC and RSC
and add three more terms as follows

1. Current multiple error cone (CMC) This is the codeword which is under consideration
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Table 5.3: Results for weight set {2,3}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
two-bit errors

pb

2/11 6/6 5 1 0 0 0 - 0
3/11 0/0 0 0 0 0 0 - 0
4/11 20/20 18 2 0 0 0 - 0
5/11 12/12 10 2 0 0 0 - 0
2/12 4/4 4 0 0 0 0 - 0
3/12 2/2 1 1 0 0 0 - 0
4/12 4/4 4 0 0 0 0 - 0
5/12 18/14 12 1 0 1 1 35 0.03
6/12 0/0 0 0 0 0 0 - 0
2/13 2/2 1 1 0 0 0 - 0
3/13 4/4 4 0 0 0 0 - 0
4/13 0/0 0 0 0 0 0 - 0
5/13 18/14 12 1 0 1 1 35 0.03
6/13 6/4 4 0 0 0 0 - 0
2/14 0/0 0 0 0 0 0 - 0
3/14 12/6 5 1 0 0 0 - 0
5/14 12/12 10 2 0 0 0 - 0
6/14 24/20 18 2 0 0 0 - 0

for multi-directional error analysis, and contains more than two erroneous bits. All multi-
directional aliasing cases will be analyzed based on the CMC.

2. Left singular error cone (LSC) This is the codeword which is obtained from the code
sequence by moving backwards from the CMC, and contains the leftmost erroneous bit of the
CMC.

3. Right singular error cone (RSC) This is the codeword which is obtained from the code
sequence by moving forwards from the CMC, and contains the rightmost erroneous bit of the
CMC.

4. Left multiple error cone (LMC) This is the codeword which is obtained from the code se-
quence by moving backwards from the CMC, and contains two or more consecutive erroneous
bits.

5. Right multiple error cone (RMC) This is the codeword which is obtained from the code
sequence by moving forwards from the CMC, and contains two or more consecutive erroneous
bits.

Consider the 2-out-of-6 code with weight set = {1,2} and weight sequence = 1-1-1-2-1. The
code sequence is given by 11000 → 10001 → 00010 → 00101 → 10100 → 01001 → 01100. The
entire sequence is depicted in Fig. 5.2. Let C1 be the CMC. A multi-directional error at locations
shown by x1, x2 and x3 would change codeword 11000 to 00010 (C3). For this error, C6 is a LSC
because it is at the left side of the CMC and contains bit x1. C7 is a LMC because it is at the left
side of the CMC and contains bits x1, x2 and x3. On the other hand, C4 and C3 are RSCs because
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Table 5.4: Results for weight set {1,2,3}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
two-bit errors

pb

1/8 6/4 4 0 0 0 0 - 0
2/8 6/4 4 0 0 0 0 - 0
3/8 6/6 5 1 0 0 0 - 0
4/8 12/12 11 1 0 0 0 - 0
1/9 2/2 1 1 0 0 0 - 0
2/9 2/2 2 0 0 0 0 - 0
3/9 8/8 8 0 0 0 0 - 0
4/9 4/2 2 0 0 0 0 - 0
1/10 0/0 0 0 0 0 0 - 0
2/10 6/4 4 0 0 0 0 - 0
3/10 6/6 6 0 0 0 0 - 0
4/10 6/4 4 0 0 0 0 - 0
5/10 12/12 11 1 0 0 0 - 0
1/10 2/2 1 1 0 0 0 - 0
2/10 0/0 0 0 0 0 0 - 0
3/10 4/2 2 0 0 0 0 - 0
4/10 8/8 8 0 0 0 0 - 0
5/10 4/4 4 0 0 0 0 - 0
1/11 0/0 0 0 0 0 0 - 0
2/11 2/2 1 1 0 0 0 - 0
3/11 4/2 2 0 0 0 0 - 0
4/11 2/2 1 1 0 0 0 - 0
5/11 8/8 8 0 0 0 0 - 0
1/12 0/0 0 0 0 0 0 - 0
2/12 0/0 0 0 0 0 0 - 0
3/12 6/4 4 0 0 0 0 - 0
4/12 6/6 5 1 0 0 0 - 0
5/12 6/6 5 1 0 0 0 - 0
6/12 12/8 8 0 0 0 0 - 0

they are at the right side of the CMC and contains bit x3. C2 is RMC because it is at the right
side of the CMC and contains bits x2 and x3.

Similar to bidirectional aliasing analysis, for multi-directional errors, six possible cases can
arise which are described below.

Case 1. For an undetected multi-directional error in the CMC, there exists one or more LSC. As
will be proved in Theorem 6, this error is always detected.

Case 2. For an undetected multi-directional error in the CMC, there exists one or more RSC.
Again, it will be proved in Theorem 6, that this error is always detected.

Case 3. For an undetected multi-directional error in the CMC, there exists one or more LMC.
The error can be detected in this case if the weights of all erroneous bits are such that equation 5.5
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Table 5.5: Results for weight set {1,2,3,5}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
two-bit errors

pb

1/12 2/2 1 1 0 0 0 - 0
2/12 0/0 0 0 0 0 0 - 0
3/12 2/2 2 0 0 0 0 - 0
4/12 2/2 2 0 0 0 0 - 0
5/12 0/0 0 0 0 0 0 - 0
6/12 4/4 4 0 0 0 0 - 0
1/13 0/0 0 0 0 0 0 - 0
2/13 2/2 1 1 0 0 0 - 0
3/13 2/2 1 1 0 0 0 - 0
4/13 0/0 0 0 0 0 0 - 0
5/13 2/2 2 0 0 0 0 - 0
6/13 2/2 2 0 0 0 0 - 0
1/14 0/0 0 0 0 0 0 - 0
2/14 0/0 0 0 0 0 0 - 0
3/14 2/2 2 0 0 0 0 - 0
4/14 2/2 2 0 0 0 0 - 0
5/14 2/2 2 0 0 0 0 - 0
6/14 2/2 2 0 0 0 0 - 0

Table 5.6: Percentage of bidirectional errors detected by Cases 1 and 2.

Weight set % errors detected by Cases 1 and 2 Weight set % errors detected by Cases 1 and 2
{1,2} 93 {2,3} 87
{1,2,3} 92 {1,2,3,5} 88

is not satisfied (refer to Theorem 7).

Case 4. For an undetected multi-directional error in the CMC, there exists one or more RMC.
Again the error can be detected in this case if the weights of all erroneous bits are such that equation
5.5 is not satisfied (refer to Theorem 7).

Case 5. For an undetected multi-directional error in the CMC, there exists one or more LMC
and/or RMC but the error still cannot be detected.

Case 6. For an undetected multi-directional error in the CMC, there is no LSC, RSC, LMC or
RMC. The error in the CMC has no chance of being detected as it is not contained by neighboring
cones.

In Theorem 6, we prove that a multi-directional error of the CMC will be detected by a
LSC or RSC, if it exists. This theorem will, therefore, cover Cases 1 and 2 discussed above.
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Figure 5.15: 2-out-of-6 code sequence.

Theorem 6. An undetected multi-directional error of the CMC will be detected by another cone
(codeword), if one of the corner bits involved in the error is contained by a LSC or RSC.
Proof: Let us assume that four bits, namely i, j, p and q are involved in a multi-directional error
in cone ca as shown in Fig. 5.16. Now, if a LSC contains bit i, then the error will be detected for
the reason similar to that of Theorem 1. Similarly, if bit q is covered by a RSC, the error will be
detected. Q.E.D

In Theorem 7, we prove that a multi-directional error of the CMC can be detected by a
LMC or RMC, if it exists. The detection of the error depends on the weights of the erroneous bits
at the LMC or RMC. This theorem covers Cases 3 and 4 as explained previously.

Theorem 7. An undetected multi-directional error of the CMC can be detected by another cone
(codeword), if two or more bits involved in the error are contained by LMCs or RMCs and those
covered bits in each LMC/RMC do not satisfy equation 5.5 in the new cone.
Proof: Referring to Fig. 5.16 again. Let us assume that a neighboring cone (LMC or RMC)
covers more than one erroneous bits. Now, if equation 5.5 is not satisfied for the erroneous bits
in the new cone, the resulting positive or negative imbalance in weight will cause a change in the
overall weight of the new cone and the error will be detected. Q.E.D

In the following theorem, we would prove that a multi-directional error cannot be detected
if it is not contained by any cone or it is contained by neighboring cones (LMC or RMC) where the
weights of the erroneous bits in each new cone still satisfy equation 5.5. This situation is covered
by Cases 5 and 6 respectively.

Theorem 8. An undetected multi-directional error of the CMC cannot be detected, if it is not
contained in any other cone or two or more bits involved in the error are contained by LMCs or
RMCs, but those covered bits satisfy equation 5.5 in each new cone.
Proof: The first part of this theorem is very similar to Theorem 3 and can be proved accordingly.
Now, if the erroneous bits, covered by each LMC or RMC still satisfy equation 5.5, then the total
change in weight of the LMC or RMC is zero, which means that the error is undetectable. Q.E.D

x                      x                                                     x       x            

4

k1

Ca

qpji
3

21

Figure 5.16: Different regions for searching a multi-directional error.
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5.2.1 Total Number of Undetected Multi-directional Errors

Based on Theorems 6, 7 and 8, we present an algorithm to calculate the multi-directional
aliasing probabilities. Again, there are total four search regions for each error in the CMC as
illustrated in Fig. 5.16. Region 1 (region 2) is searched for a LSC (RSC) while region 3 (region 4)
is searched for LMCs (RMCs). Here, k is the cone size and i, j, p and q are the bit numbers which
are susceptible to an error. If a LSC or RSC exists for a multi-directional error in the CMC, then
the error is immediately detected. Otherwise, the algorithm checks if a LMCs or RMCs exist for the
error and that if the error can be detected by them. If not, the error is undetectable and counts as
multi-directional aliasing. In the following paragraphs, we present an example to illustrate various
steps of the algorithm.

Example 4. Let us consider an un-optimized codeword ordering of a 3-out-of-8 code sequence with
weight set {1,2} and cone size of 5 to illustrate the operation of algorithm MultidirectionalDetect
(). The codewords, bit numbers, and the weight distribution are illustrated in Fig. 5.9. The
corresponding graph G is shown in Fig. 5.10. The error list generated by GenerateErrorList() is
as follows:

C1 - (0,1,2,3), (0,1,2,4)
C2 - (0,1,2,3), (0,1,2,4)
C3 - (0,1,2,3), (0,1,3,4)
C4 - (0,1,2,3), (0,1,3,4)
C5 - (0,1,2,4), (0,1,3,4)
C6 - (0,1,2,4), (0,1,3,4)

The total number of errors before dropping = 12, and the total number of errors after dropping =
12. Again, we emphasize that the errors in each cone is undetected by the CMC.

Table 5.7: Summary of multi-directional aliasing example.

codeword error detected case

C1 (0,1,2,3) yes 1
(0,1,2,4) yes 1

C2 (0,1,2,3) yes 1
(0,1,2,4) yes 1

C3 (0,1,2,3) yes 3
(0,1,3,4) yes 4

C4 (0,1,2,3) yes 1
(0,1,3,4) yes 1

C5 (0,1,2,4) yes 2
(0,1,3,4) no 5

C6 (0,1,2,4) yes 2
(0,1,3,4) yes 2

Each of the errors from the reduced error list for each codeword is analyzed to check if it
can be detected by a neighboring LSC, RSC, LMC or RMC. For example, let C1 be the CMC. We
try to analyze error (0,1,2,3) from the reduced error list. Using the graph in Fig. 5.10 to travel
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backwards, we can observe that C6 is the LSC which is 4 shifts away to the left side of C1 and
contains the 0th erroneous bit. This is clearly illustrated in Fig. 5.11. Therefore, this error is
detectable. Further, let us consider error (0,1,2,3) in CMC C3. Using Fig. 5.10, we go backwards
to see if any LSC exists. Since no LSC covers error on 0th bit, we travel forwards in graph G to
find if any RSC exists. From Fig. 5.11, it is obvious that no RSC covers error at the 3rd bit alone.
Next, by moving backwards in G, we find a LMC C2 which covers error bits (0,1,2) of C3 with the
weights of erroneous bits (2,2,2) at C2. Hence, the total change of weight in C2 due to error (0,1,2)
at C3 is -2+2+2 = 2 which is non-zero. Therefore, the error will be detected. From Table 5.7, it
is evident that out of 12 reduced errors, a total of 11 errors are detected. Hence, the total number
of errors that are masked is 1 only.

Based on the above example, we now present algorithm MultidirectionalDetect () to analyze
the number of aliasing cases. This algorithm is very similar to algorithm BidirectionalDetect ().
The function GenerateErrorList() picks one cone at a time, and finds out potential locations that
are susceptible to a multi-directional error in the cone. All such locations must satisfy equation
5.5. The function Drop() picks up one cone at a time and, for each of its errors, checks if the error
will be analyzed by the succeeding cone or not. This function is same as Drop() that is presented
in algorithm BidirectionalDetect () for eliminating the possibility of over-counting.

Once the reduced error list is available, the next task is to check if each error can be detected
by any of its neighboring cones. Since Cases 1 and 2 are computationally least expensive, the
algorithm again starts with checking LSC or RSC for an error in the CMC. If such a cone exists,
then the error is detectable and the next error is picked for analysis. Otherwise, the algorithm
proceeds with checking if a LMC exist for the error in the CMC. If so, the new weights of all
erroneous bits covered by the LMC are checked. If the new weights do not satisfy equation 5.5,
then the error is detectable in the LMC. Otherwise, the error is undetectable and the algorithm
looks for the next LMC. If there is no more LMC, then the algorithm searches for a RMC and the
above procedure is repeated. If no LMC or RMC exists for the given error in the CMC, then the
error is undetectable (Case 5). If the error has one or more LMC or RMC but the new weights of
each LMC/RMC satisfies equation 5.5, then it is still undetectable (case 6). Cases 1 through 6 are
shown in algorithm MultidirectionalDetect () below.

Algorithm MultidirectionalDetect ()
begin
Input: A cyclic graph G where nodes are the cone numbers and edge represents shifts;
Output: Number of multi-directional aliasing cases;
GenerateErrorList();
Drop();
for (each error from the reduced error list)
do

begin
move backwards in region 1 of graph G; //see Fig. 5.8
if (cone exist)

then print ”multi-directional error is detectable” and exit; // Case-1
move forwards in region 2 of graph G;
if (cone exist)
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then print ”multi-directional error is detectable” and exit;// Case-2
move backwards in region 3 of graph G;
if (no cone found)

then no overlap flag1 = 1;
else

for (each cone found above)
do

begin
wr = weight[r + shift], ∀ r = erroneous bits covered by new cone;
if (

∑

r wr x (−1)vr == 0)
then print ”multi-directional error is detectable” and exit; // Case-3

end
move forwards in region 4 of graph G;
if (no cone found)

then no overlap flag2 = 1;
else

for (each cone found above)
do

begin
wr = weight[r - shift], ∀ r = erroneous bits covered by new cone;
if (

∑

r wr x (−1)vr == 0)
then print ”multi-directional error is detectable” and exit; // Case-4

end
if (no overlap flag1 == 1 and no overlap flag2 == 1)

then print ”no cone overlaps these affected bits” and
increment multidirectional count; // Case-6

else
print ”more than one cone overlaps these affected bits” and
increment multidirectional count;// Case-5

end
end

5.2.2 Total Number of Multi-Bit Errors

The algorithm MultidirectionalDetect () enumerates the number of multi-directional aliasing
cases. To find the multi-directional probability, we must calculate the number of all possible multi-
bit errors in the particular m-out-of-n code sequence. In the case of non-overlapped codeword
applications, the number of all possible multi-bit errors is Q x [C(l,3) + C(l,4) + ...+ C(l,l)]
where Q is the number of codewords and l is the cone size. However, this is not true in the case
of overlapped code sequence because some of the multi-bit errors are counted several times due
to overlap of codewords. We must, therefore, use the inclusion-exclusion principle to eliminate
duplicated cases and derive the exact number of multi-bit error cases.

For a given m-out-of-n code, assume there are Q codewords (k1, k2, ..., kQ) which are
optimally ordered for maximum overlapping. Using the inclusion-exclusion principle, the total
number to ways to pick multiple bits for multi-directional errors is given by
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N(k1∪k2∪...∪kQ)3+N(k1∪k2∪...∪kQ)4+....N(k1∪k2∪...∪kQ)j +...+N(k1∪k2∪...∪kQ)k (5.6)

where N(k1∪k2∪ ...∪kQ)j stands for the number of ways in which j bits at a time can be erroneous
in k1 ∪ k2 ∪ ...∪ kQ. Note that k1 ∪ k2 ∪ ...∪ kQ is in fact the entire overlapped codeword sequence.
Thus, we have

N(k1 ∪ k2 ∪ ... ∪ kQ)j = S1j − S2j + ... + (−1)i+1Sij + ... + (−1)Q+1SQj

where

S1j= N(k1)j + N(k2)j + ... + N(kQ)j

=
(k
j

)

+
(k
j

)

+ .... +
(k
j

)

= Q x
(k
j

)

,

S2j= N(k1 ∩ k2)j + N(k1 ∩ k3)j + ... + N(kQ−1 ∩ kQ)j

=
(k1∩k2

j

)

+
(k1∩k3

j

)

+ .. +
(kQ−1∩kQ

j

)

,

.

.

.
SQj= N(k1 ∩ k2 ∩ ... ∩ kQ)j

=
(k1∩k2∩...∩kQ

j

)

.

Hence, total number of ways of picking multiple (≥ 3) bits equals

k
∑

j=3

S1j −
k

∑

j=3

S2j + ... + (−1)i+1
k

∑

j=3

Sij + ... + (−1)Q+1
k

∑

j=3

SQj (5.7)

It is evident from equation 5.7 that the total number of terms is again very large. However,
as proved in Theorem 5, most of the terms can never exist in a given m-out-of-n code, if they involve
cones which are more than l (i.e., cone size) shifts away from each other. Further, the equation
can be simplified as all terms containing intersection of three or more cones can be reduced to
terms containing intersection of two cones (Theorem 4). Hence, many terms cancel out among
themselves. Using Theorems 4 and 5, it is possible to simplify the calculation of multi-bit error
cases, as most of the terms will either cancel out or turn out to be zero. Let us solve Example 2
again for multi-bit error enumeration.

Example 5. Consider the 5-out-of-12 code with weight set {1,2,5} and weight distribution of
2-1-2-2-5. The code sequence is shown in Fig. 5.14. Once again, we have

N(k1)3 = N(k2)3 = N(k3)3 = N(k4)3 = C(5,3) = 10,
N(k1)4 = N(k2)4 = N(k3)4 = N(k4)4 = C(5,4) = 5,
N(k1)5 = N(k2)5 = N(k3)5 = N(k4)5 = C(5,5) = 1,
(k1 ∩ k2) = 2,
(k1 ∩ k3) = 0 (from Theorem 5),
(k1 ∩ k4) = 0 (from Theorem 5),
(k2 ∩ k3) = 1,
(k2 ∩ k4) = 0 (from Theorem 5),
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(k3 ∩ k4) = 1,
(k1 ∩ k2 ∩ k3) = (k1 ∩ k3) = 0 (from Theorem 4),
(k1 ∩ k2 ∩ k4) = (k1 ∩ k4) = 0 (from Theorem 4),
(k1 ∩ k3 ∩ k4) = (k1 ∩ k4) = 0 (from Theorem 4),
(k2 ∩ k3 ∩ k4) = (k2 ∩ k4) = 0 (from Theorem 4),
(k1 ∩ k2 ∩ k3 ∩ k4) = (k1 ∩ k4) = 0 (from Theorem 4).

From equations 5.6 and 5.7, we have
total number of multi-directional cases

= N(k1 ∪ k2 ∪ ... ∪ k4)3 + N(k1 ∪ k2 ∪ ... ∪ k4)4 + N(k1 ∪ k2 ∪ ... ∪ k4)5
=

∑k
j=3 S1j −

∑k
j=3 S2j +

∑k
j=3 S3j −

∑k
j=3 S4j

=
∑5

j=3[N(k1)j + N(k2)j + N(k3)j + N(k4)j ] -[N(k1 ∩ k2)3 + N(k1 ∩ k2)4 + N(k1 ∩ k2)5] -[N(k2 ∩ k3)3
+ N(k2 ∩ k3)4 + N(k2 ∩ k3)5] -[N(k3 ∩ k4)3 + N(k3 ∩ k4)4 + N(k3 ∩ k4)5]

= [4 C(5,3) + 4 C(5,4) + 4 C(5,5)] - [C(2,3) + C(2,4) + C(2,5)] - 2 [C(1,3) + C(1,4) + C(1,5)]
= 4 x[10 + 5 + 1] - 0 - 0
= 64.

5.2.3 Multi-directional Aliasing Probability

Based on the above discussions, the aliasing probability for multi-directional errors of a
code sequence can be represented by

pm = Total number of undetectable multi-directional error cases
Total number of ways of picking multiple (≥ 3) bits at a time

.

Example 6. Let us consider Example 4 again. We have the total number of multi-directional
aliasing cases = 1, while the total number of multi-bit error cases = 94. Therefore, the aliasing
probability for multi-directional errors is pm = 1

94 = 0.01.

5.2.4 Results

The multi-directional aliasing probabilities for the minimum-cost codeword sequences cor-
responding to different m-out-of-n codes and weight sets are presented in Tables 5.8, 5.9, 5.10 and
5.11. Note that, the first column in the tables shows the m and n values for each particular m-out-
of-n code. The second column shows the sum of all undetectable multi-directional errors in each
codeword that exist for the given m-out-of-n code, before and after performing the Drop() function.
For example, the sum of all undetectable multi-directional errors for the 3-out-of-8 code in Example
4 is 12 (12) before (after) the Drop() function. The third column gives the total number of errors
detected by LSC’s and RSC’s (i.e., Cases 1 and 2). The fourth column shows the total number
of errors detected by LMC’s and RMC’s (i.e., Cases 3 and 4). The fifth column shows the total
number of errors that are undetectable, because none of the neighboring cones contains them (Case
6). The sixth column shows the total number of errors that are contained in other cones, but still
cannot be detected (Case 5). The seventh column contains the total number of multi-directional
errors that are finally undetectable. It is obvious that this column is the summation of columns 5
and 6. The eighth column shows the total number of multi-bit errors for each given m-out-of-n code
sequence. This value is calculated using equation 5.6. It is surprising that the aliasing probability
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of multi-directional errors in each m-out-of-n code is zero. This demonstrate that the proposed
method is ideal and powerful. The power of the overlapped test application method comes from
that most undetected multi-directional errors in the CMC can be detected by its neighboring LSC
or RSC as unidirectional errors. This is shown in Table 5.12. Therefore, significant amount of
computing time can be saved since it is extremely easy to check Cases 1 and 2.

Table 5.8: Results for weight set {1,2}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
multi-bit errors

pm

1/6 0/0 0 0 0 0 0 - 0
2/6 18/18 18 0 0 0 0 - 0
3/6 32/32 30 2 0 0 0 - 0
1/7 0/0 0 0 0 0 0 - 0
2/7 12/11 11 0 0 0 0 - 0
3/7 24/22 22 0 0 0 0 - 0
1/8 0/0 0 0 0 0 0 - 0
2/8 6/6 6 0 0 0 0 - 0
3/8 12/10 10 0 0 0 0 - 0
4/8 18/18 16 2 0 0 0 - 0
1/9 0/0 0 0 0 0 0 - 0
2/9 0/0 0 0 0 0 0 - 0
3/9 0/0 0 0 0 0 0 - 0
4/9 6/6 6 0 0 0 0 - 0
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Table 5.9: Results for weight set {2,3}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
multi-bit errors

pm

2/11 0/0 0 0 0 0 0 - 0
3/11 0/0 0 0 0 0 0 - 0
4/11 6/6 6 0 0 0 0 - 0
5/11 0/0 0 0 0 0 0 - 0
2/12 0/0 0 0 0 0 0 - 0
3/12 0/0 0 0 0 0 0 - 0
4/12 0/0 0 0 0 0 0 - 0
5/12 12/10 10 0 0 0 0 - 0
6/12 2/2 2 0 0 0 0 - 0
2/13 0/0 0 0 0 0 0 - 0
3/13 0/0 0 0 0 0 0 - 0
4/13 0/0 0 0 0 0 0 - 0
5/13 12/10 10 0 0 0 0 - 0
6/13 0/0 0 0 0 0 0 - 0
2/14 0/0 0 0 0 0 0 - 0
3/14 0/0 0 0 0 0 0 - 0
5/14 0/0 0 0 0 0 0 - 0
6/14 6/6 6 0 0 0 0 - 0
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Table 5.10: Results for weight set {1,2,3}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
multi-bit errors

pm

1/8 0/0 0 0 0 0 0 - 0
2/8 6/6 5 1 0 0 0 - 0
3/8 15/15 13 2 0 0 0 - 0
4/8 18/18 16 2 0 0 0 - 0
1/9 0/0 0 0 0 0 0 - 0
2/9 4/4 4 0 0 0 0 - 0
3/9 12/12 10 2 0 0 0 - 0
4/9 16/16 15 1 0 0 0 - 0
1/10 0/0 0 0 0 0 0 - 0
2/10 0/0 0 0 0 0 0 - 0
3/10 6/6 6 0 0 0 0 - 0
4/10 6/4 3 1 0 0 0 - 0
5/10 18/18 16 2 0 0 0 - 0
1/10 0/0 0 0 0 0 0 - 0
2/10 2/2 2 0 0 0 0 - 0
3/10 8/8 8 0 0 0 0 - 0
4/10 12/12 12 0 0 0 0 - 0
5/10 8/8 8 0 0 0 0 - 0
1/11 0/0 0 0 0 0 0 - 0
2/11 0/0 0 0 0 0 0 - 0
3/11 8/8 8 0 0 0 0 - 0
4/11 4/4 4 0 0 0 0 - 0
5/11 12/12 12 0 0 0 0 - 0
1/12 0/0 0 0 0 0 0 - 0
2/12 0/0 0 0 0 0 0 - 0
3/12 6/6 6 0 0 0 0 - 0
4/12 0/0 0 0 0 0 0 - 0
5/12 0/0 0 0 0 0 0 - 0
6/12 18/18 16 2 0 0 0 - 0
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Table 5.11: Results for weight set {1,2,3,5}.

m/n Errors (before/after
dropping)

Case 1 &
Case 2

Case 3 &
Case 4

Case 6 Case 5 Undetected
Errors

Total number of
multi-bit errors

pm

1/12 0/0 0 0 0 0 0 - 0
2/12 2/2 2 0 0 0 0 - 0
3/12 4/4 4 0 0 0 0 - 0
4/12 4/4 2 2 0 0 0 - 0
5/12 6/6 4 2 0 0 0 - 0
6/12 8/8 8 0 0 0 0 - 0
1/13 0/0 0 0 0 0 0 - 0
2/13 0/0 0 0 0 0 0 - 0
3/13 4/4 2 2 0 0 0 - 0
4/13 2/2 2 0 0 0 0 - 0
5/13 10/10 7 3 0 0 0 - 0
6/13 4/4 2 2 0 0 0 - 0
1/14 0/0 0 0 0 0 0 - 0
2/14 0/0 0 0 0 0 0 - 0
3/14 4/4 4 0 0 0 0 - 0
4/14 0/0 0 0 0 0 0 - 0
5/14 4/4 3 1 0 0 0 - 0
6/14 10/10 7 3 0 0 0 - 0

Table 5.12: Percentage of multi-directional errors detected by Cases 1 and 2.

Weight set % errors detected by Cases 1 and 2 Weight set % errors detected by Cases 1 and 2
{1,2} 97 {2,3} 100
{1,2,3} 93 {1,2,3,5} 76
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Chapter 6

Multiple Weight-Based Codes and

Checker Design

Sometimes, a single set of m-out-of-n codewords applied to the scan chain may not give
enough perturbation to the logic circuits. In this case, we can increase the number of perturbations
by applying more than one set of codewords. Thus, the codeword generation process presented
in chapter 3 can be repeated several times to obtain multiple sets of codewords. Different sets of
codewords cannot be applied in a mixed manner. The reason is that different sets of codewords may
have different weight configurations and m values, and the checker must be restructured to monitor
each different set of codewords. There are two major problems for the application of multiple
weight-based m-out-of-n codes: (1) design of checkers such that they are totally self-checking, and
(2) aliasing probability analysis when many sets of codewords are applied. In this chapter, we
discuss both problems in detail.

6.1 Multiple Weight-Based Code Sequences

Let us assume that we have two sets of m-out-of-n codes that are shifted into the scan chain
one after the other, and the combined sequence is

A1A2...AQA
B1B2...BQB

where Ai’s and Bi’s are codewords corresponding to two sets of m-out-of-n codes, A and B, differing
in the m value and weight distribution only. Further, QA and QB are the numbers of codewords
in codes A and B, respectively. The aliasing probability analysis for two or more sets of codewords
will be very tedious, if an aliasing codeword (i.e., erroneous and undetectable) for A turns out to
be a codeword of B. First, we will show that this is impossible for bidirectional errors. Consider
any particular codeword Ai in sequence A, and the total numbers of zero’s and one’s with the same
weight w in codeword Ai are u and v separately. It can be easily observed that an undetectable
bidirectional error occurring to Ai, caused by one bit of opposite transition in the u and v bits,
will form a valid codeword of sequence A. Since the m value of the erroneous codeword Ai is not
changed, it is impossible that Ai be one of the codewords of sequence B (which has a different m

value).

The above reasoning concludes that aliasing of codewords in sequence A (B) can only occur
among codewords of A (B), and there is no case of inter-code aliasing. This observation is inde-
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pendent of the number of different sets of m-out-of-n codes that are combined and of the ordering
among them. Based on such an observation, as shown in Chapter 5, the total number of bidirec-
tional aliasing cases will be given as

(number of undetectable bidirectional errors)A + (number of undetectable bidirectional errors)B.

(6.1)
The total number of two-bit error cases equals

N(k1 ∪ k2 ∪ ... ∪ kQA
)2 + N(k1 ∪ k2 ∪ ... ∪ kQB

)2. (6.2)

Hence, the bidirectional aliasing probability of the combined sequence using two m-out-of-n codes
equals

(number of undetectable bidirectional errors)A+(number of undetectable bidirectional errors)B

N(k1∪k2∪...∪kQA
)2+N(k1∪k2∪...∪kQB

)2
.

Similarly, for multi-directional aliasing, the total number of cases where multi-directional errors
can occur is

(number of undetectable multi-directional errors)A + (number of undetectable multi-directional
errors)B

while the total number of multi-bit error cases equals

∑l
j=3 N(k1 ∪ k1 ∪ ... ∪ kQA

)j +
∑l

j=3 N(k1 ∪ k1 ∪ ... ∪ kQB
)j .

Hence, the multi-directional aliasing probability of the combined sequence is

(number of undetectable multi-directional errors)A+(number of undetectable multi-directional errors)B
∑l

j=3
N(k1∪k1∪...∪kQA

)j+
∑l

j=3
N(k1∪k1∪...∪kQB

)j

.

The same discussion can be applied to the aliasing probability analysis for the case where more
than two multiple m-out-of-n codes are merged as the test sequence.

Example 1:
Consider a set of 1-out-of-10 code with weight distribution 2-1-1-3-3, and another set of 2-out-of-10
code with weight distribution 1-3-2-1-3 (refer to Table 3.3). The combined code sequence, where
1-out-of-10 code is followed by 2-out-of-10, is given by:

(01000→00100)→(00100→10010)

The bidirectional aliasing probability of the combined sequence is 0+0

(all two-bit error cases)
= 0.

Similarly, the multi-directional aliasing probability of the combined sequence equals 0+0

(all multi-bit error cases)
= 0.
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6.2 Checker Implementation

After we generate the codewords that can activate the faults and can capture the errors
with the minimum probability of masking, the next important task is to detect the errors with the
maximum reliability. The implementation of SCC is crucial as the success of our scan chain testing
scheme mainly depends on it. In this section, we present a checker design for multiple weight-based
m-out-of-n codes with variable weights. In fact, it is a general design converting the incoming
variable weight-based m-out-of-n codes to simple values code which are later fed to a TSC two-rail
checker (TRC).

6.2.1 Variable Weight m-out-of-n Checker

The totally self-checking circuit presented in [20] can be easily extended for multiple sets of
weight-based m-out-of-n codes by providing extra AND gates as shown in Fig. 6.1. The function
of AND gates T1 to T10 is to control the connection of codeword lines (e.g., O0, O1) to the sum
blocks for different sets of weighted m-out-of-n codes. The control lines (e.g., S11, S12) to control
the AND gates are provided by the a finite state machine driven by the tester using signals Tck
(test clock) and Tcs (test control signal). Note that Tcs is very similar to the TMS signal used in
the boundary scan controller IEEE 1149.1 [25]. For example, if the weight distribution is 2-3-2-3-2,
then T3 and T7 will be transparent and codeword bits input to sum0 are {O1, O3}. Further, T2, T4,
T6, T8 and T10 are transparent, so the sum1 block will receive inputs {O0, O1, O2, O3, and O4}.
Now, if the weight distribution is changed to 3-2-3-2-2, then T1 and T5 must become transparent,
so codeword bits input to the sum0 block will be changed to {O0, O2}.
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Figure 6.1: Self checking checker for variable weight line

The output of the sum block (with inputs sum0 and sum1) is input to a totally self-checking
(TSC) two-rail checker (TRC) which checks the sum against the m value provided by the finite
state machine. A TRC has two groups of inputs (x1, x2, ..., xn) and (y1, y2, ..., yn) and two outputs
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f and g. The signals observed on the outputs must always be complementary, that is, a 1-out-of-2
code if and only if every pair (xj , yj) is also complementary for all j (1 ≤ j ≤ n) [15]. Therefore,
the finite state machine provides the complementary value of the expected m to the TRC as one set
of inputs. The other set of inputs come from sum block. In the following discussions, we will show
that inserting the AND gates to the sum0 and sum1 blocks does not change the TSC property of
our design. The TSC property of the sum blocks and TRC checker can be found in [20] and [15]
respectively. We make the following assumptions generally considered for self-checking circuits: (a)
Errors occur one at a time and, and (b) The time elapsing between two consecutive errors is long
enough to allow the application of all possible input codewords. The analysis is done based on the
AND gates added as follows.

1. Stuck-at faults at the data input or output line of an AND gate: If the output line of a AND
gate is Sa0 (Sa1), then the m value calculated by the sum block will be smaller (greater)
than the expected m value for some codewords, and the fault is detected. Therefore, the TSC
property of the circuit is maintained. For example, if T1 is transparent and its input is 1 but
its output (refer to the circled 1 in Fig. 6.1) is Sa0, then the fault will be detected because the
calculated sum will be smaller than the expected m value. Similar arguments can be given
for Sa1 at output and Sa1/Sa0 at the input. Thus, the circuit is TSC.

2. Stuck-at faults at the control input line: Suppose the control line to an AND gate is Sa0
or Sa1. The fault will be detected and the TSC property of the circuit is maintained. For
example, if the control input S11 of T1 is Sa1 (refer to the circled 2 in Fig. 6.1), then the
AND gate will always be transparent. When O0 is 1 and T1 output is expected to be 0, the
sum will be greater than the expected m value and the error will be detected. Similarly, if
control input S11 of T1 is Sa0, then the AND gate output will always be 0. When O0 is 1 and
T1 is expected to be transparent, the sum will be smaller than the expected m value and the
error is detected. Hence, the TSC property is still satisfied.

If there is a Sa0 (Sa1) fault at any bit of expected m provided by the finite state machine
(refer to circled 3 in Fig. 6.1), the TRC checker will produce an error since the generated m will
be smaller (greater) than the expected m. One underlying assumption in this case is that, there is
no simultaneous errors in the expected m and the generated m at the same bit position. If such a
situation arises, then the (incorrect) expected m equals the (incorrect) generated m, then the fault
can go undetected.

If any of the O0, O1, ..., O4 is Sa0 (Sa1) as shown by circled 4 in Fig. 6.1, whereas the
original value is 1 (0), the generated m value will be smaller (more) than the expected m value
and the error will be detected. For example, consider the 6-out-of-13 code with weight distribution
3-2-3-2-3 again. Suppose O0 is Sa0, but here O0 is 1 for codeword 10100. The generated codeword
will be 00100 which has m = 3. Hence, the error is detected. Based on the above discussion, we
are sure that the proposed checker design shown in Fig. 6.1 is TSC.
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Chapter 7

Test Architecture

In this Chapter, we will first explain the test pattern alignment problem that arises due
to the incorporation of broadcast architecture and checkers used in our scheme. Then, we give
a test architecture that can efficiently support the proposed test method. The test architecture
(implemented in the SoC circuit) includes a finite state machine (FSM) that can communicate with
the external tester well. The number of pins dedicated to communication between the tester and the
finite state machine must be as small as possible. We use test pattern broadcasting architecture so
that test control signals can be shared by all self-checking checkers. By sharing test control signals,
the design-for-testability (DFT) circuits can be greatly simplified, and the control signal routing
area can be minimized. The test architecture is based on the assumption that even the shortest
scan chain of the entire SoC chip is longer than the cone size of the m-out-of-n codeword sequence
used for testing. In Sections 1, we will present the test pattern alignment problem and our solution
to it, while in Sections 2, we will present the test architecture.

7.1 Test Pattern Alignment

The test pattern alignment problem is severe in our case because we have checker (s) for
each core. Each test pattern (or codeword) must be aligned at the checkers so that a shared control
signal can be used for all checkers. Further, the patterns must be aligned at the input because a
single input is used to scan-in the test patterns in the broadcast test architecture. Before solving
the alignment problem, we will explain the concept of repeat pattern by an example. Consider the
case of a 2-out-of-7 code with weight set of {1,2} and weight distribution of 1-2-1-2-1. The code
sequence for this code is 01000 → 10001 → 00010 → 00101 → 10100. The test application cost of
this code is 6, and the total number of bits present in the code sequence is 11 (5 for shifting the first
pattern and 6 for shifting the rest of patterns). The code sequence for the 2-out-of-7 code is shown
in Fig. 7.1. Note that by repetitively shifting test pattern 101000 into the initial codeword (i.e.,
01000), we can obtain the entire sequence of the 2-out-of-7 code. We call this a repeat pattern for
the given 2-out-of-7 code (Fig. 7.1). By repetitively pumping the repeat pattern α times (after the
very first patterns is already shifted), we can obtain the given m-out-of-n code sequence α times.
For the example of 2-out-of-7 code, if we shift in the repeat pattern (i.e., 101000) two times, then
we obtain the code sequence 01000 through 10100 two times.

In our test scheme, once the first test pattern and the last test pattern are aligned in all
cores, we just keep broadcasting the repeat patterns. For example, consider three cores IP1, IP2
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and IP3 with scan chain lengths of 13, 20 and 16, respectively. Assume that we shift in the 2-
out-of-7 code into the scan chains. The first pattern (f in Fig. 7.2) is shifted into every IP, and
then the repeat pattern r is shifted once to IP1 and IP3; whereas it is shifted twice into IP2. The
remaining empty flip-flops in IP1, IP2 and IP3 are 2 (r1), 3 (r2) and 5 (r3) respectively. It is easy
to note that the test patterns at the checker side of each IP are fully aligned. The next task is to
align the test patterns at the input side (Si) as we want to use a single line to provide inputs to all
IP’s. To achieve this, first of all, we find the IP with the maximum number of empty flops. In this
case, it is IP3. The scan chain of all other IP’s are added extra flip-flops, so that each one of them
has the equal number of empty flops (as the maximum value found above). This situation is clearly
illustrated in Fig. 7.2 where the scan chains of IP1 and IP2 are added 3 and 2 flops respectively,
so that the sum of empty flops and added flops is equal to five. Since five empty flops can contain
only a part of the repeat pattern in this case, we pump in the first 5 bits of the repeat pattern to
every scan chain. Now, our scan chains are aligned in the checker side as well as the input side.
The remaining portion of the current repeat pattern and the subsequent repeat patterns can be
broadcast to all IP’s simultaneously. In mathematical terms, if the number of empty flops for IP1,
IP2 and IP3 are given by r1, r2 and r3, then rmax is given by

rmax = Max (r1, r2, r3).

Note that we have
ri = (Li − k) % r where Li is the scan chain length of IPi, and k is the cone size.

The number of extra flops to be added for each core is given by,

r′1 = rmax - r1,
r′2 = rmax - r2

r′3 = rmax - r3

Therefore, it can be observed that the number of extra flops for each core mainly depends
on the length of the repeat pattern. If the repeat pattern is such that, the maximum deviation
between the r1, r2, r3, · · · are high, then the number of extra flops will naturally increase. Since the
scan chain lengths of the IP’s are fixed, the number of extra flip-flops required can be reduced by
choosing an appropriate m-out-of-n code with a suitable repeat pattern. This is an extra constraint
that must be considered while choosing the m-out-of-n code for testing. Once input/output are
aligned, we just keep pushing the test repeat patterns. Therefore, all control signals can be saved.

(r)f repeat pattern

C1

00010100

C1 C2 C3 C4 C5

0 1 0

Figure 7.1: 2-out-of-7 code sequence.

7.2 Test Architecture and Control Signal Sharing

To simplify the discussion, we assume that there is a single scan chain in each core, and the
scan chains of all cores receive inputs from a scan in port. This is a broadcast test architecture [1].

51



0

SCC3

SCC2

SCC1

sel3

sel1

sel2

r2

r

r r

fr

f

Scan in

r3

f

1

16

13

20

5

3

2

5

5

6

6

6 6

5

Extra Flops0

1

0

1

00

01

10

r1

r3

IP1

IP2

IP3

r3

Extra Flops

Figure 7.2: Extra hardware to support broadcast test architecture.

As shown in Fig. 7.3, the SoC chip contains four cores and each core contains one scan chain with
a SCC attached to the tail of the scan chain. There is a FSM which receives inputs Tck (test clock)
and Tcs (test control signal) from the tester, and outputs control signals are shared by all checkers.
Note that Tcs is similar to TMS in the boundary scan controller design of IEEE 1149.1 [25]. This
design enables the FSM to communicate with the tester using an extremely small number of pins.
The control signals mainly consist of the expected m value, the signals to turn on some gates to
sum0 and sum1 blocks, and signals to latch the SCC outputs (i.e., 01 or 10 if no error is found)
into the flop-flops (e.g., FF1 and FF2 in Fig. 7.3) for each SCC. A pair of flip-flops is used to
latch the outputs for each checker, and all flip-flops are connected as another scan chain to identify
the core that contains erroneous scan chain. The outputs of each SCC also go to a (global) two
rail checker (TRC), which gives a codeword (i.e., 01 or 10) if all SCC outputs are valid codewords
(i.e., 01 or 10). If any of the SCC output is invalid (i.e., 00 or 11), the TRC output becomes 00
or 11. Note that the tester monitors the TRC outputs in every valid codeword cycle. Once an
error is detected at the TRC output, the contents of the smaller scan chain (consisting of FF1

to FF8) are shifted out, and thus the faulty core can be identified. It is important to note that
the cores present in the SoC circuit are provided by vendors, while the checkers and all associated
test circuitries are designed by the core users. Therefore, the core users should design the FSM,
checkers and test flip-flops with extra care, so that there is a minimum chance of error occurrence
(in these designs) due to signal integrity. Ideally, the DFT circuitry should be isolated from the
cores, so that the probability of errors occurring in the DFT design, due to high-speed switchings
in cores, is minimized.

The test architecture works as follows. First, the tester gives a signal by Tcs to wake up the
FSM, then the tester inputs another signal by Tcs to have the FSM send appropriate test control
signals such as the expected m value, the Sij signals to the checkers as shown in Fig. 7.3 and Fig.
6.1. This is to reconfigure the test architecture for a specific m-out-of-n code sequence. The next
objective is to align the test patterns of each scan chain. To begin with, we assume that extra
flip-flops are already added at the inputs of the scan chains for each core. Next, the sel1 signal is
asserted 1 and sel2 and sel3 (Fig. 7.2 are also asserted by the FSM so that IP1 is selected. Now,
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the first pattern (f) and repeat pattern (r) are pumped in until IP1 is full. Note that, it is possible
that only a part of the repeat pattern is shifted into IP1 by the end of the last cycle. Next, the
sel2 and sel3 signals are changed so that IP2 is selected. The same process is repeated again in
this case. Similarly, all scan chains are selected one-by-one and f followed by r patterns are shifted
into it. After this, the test architecture is ready to test the scan chains simultaneously. So, the
FSM de-asserts the sel1 signal so that all IP’s are connected into the broadcast mode, and the
tester begin pumping in the remainder of the repeat pattern, if any. This is followed by continuous
shifting of repeat patterns. Every time when a codeword is shifted into the R registers in each
SCC as shown in Fig. 6.1, the tester sends a signal by Tcs to the FSM to generate a signal for
latching the outputs of each checker. The tester also monitors the TRC outputs and in case of
error (indicated by TRC), scans out the control flip-flops (e.g., FF1 to FF8 in Fig. 7.3) to identify
the faulty core. The above process is repeated until the user is satisfied with the test results.

It can be easily observed that there is a latency involved in beginning the actual testing
of the scan chain (due to test pattern alignment process). But, it is possible to save some test
cycles by broadcasting the common test patterns to the IP’s during the alignment process. For the
above example, the first 13 test patterns can be broadcast, and then the fine alignment process can
be exercised. Once the alignment is done at both ends, the repeat patterns can be broadcast as
described above.

If multiple m-out-of-n code sequences are used, they cannot be broadcast in a sequential
manner, i.e., AAA...BBBAAA..BBB, because there will be an alignment problem at the checker
side when codewords of code B are applied just after the codewords of code A. Hence, we propose
that the multiple codes be combined in an interleaved manner (i.e., ABABA..BA), and the repeat
pattern of the combined sequence (i.e., AB) is determined. After the first pattern f of code A is
shifted, the multiple m-out-of-n codewords can be obtained by simply repeating the new repeat
pattern. The FSM (under the control of the tester by Tcs) must issue the expected m values and
all corresponding Sij values in an interleaved manner.

For example, consider a 3-out-of-11 code with weight set of {1,2,3} and weight distribution
of 1-3-2-3-2, and a 4-out-of-11 code with weight distribution of 1-2-3-3-2. The code sequence for the
3-out-of-11 code is 01000 → 10001 → 00010 → 10100, while the code sequence for the 4-out-of-11
code is 01001 → 10010 → 10100. The codewords belonging to the 4-out-of-11 code are followed by
the codewords belonging to the 3-out-of-11 code. The repeat pattern for the combined sequence is
10100101000 (Fig. 7.4). It can be noticed that by iterating the new repeat pattern, one can obtain
the codewords of 3-out-of-11 and 4-out-of-11 code in an interleaved manner. Once the alignment is
achieved (by following the same procedure as mentioned previously), the FSM only needs to switch
the expected m and Sij ’s at proper cycles. That is, when the codewords of the 3-out-of-11 code are
being shifted out, the expected m should be 3 and the weight distribution should be configured for
1-3-2-3-2 (by providing proper Sij ’s); while the expected m should be changed to 4 and the weight
distribution should be changed to 1-2-3-3-2 by providing Sij , when the codewords of the 4-out-of-11
code are shifted out. The same procedure is repeated as many times as the user wishes. The above
idea can also be extended to combine more than two m-out-of-n codes.

In can be observed that the complexity of control signal generation is greatly reduced by
adopting the test pattern broadcasting architecture. Also, the control signals can be easily shared
by all SCC’s because every checker receives a codeword at the same instance. Further, we have
avoided the insertion of dummy patterns because the alignment problem is easily solved by adding
a limited number of extra registers.
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Chapter 8

Conclusions and Future Work

We have proposed the application of weight-based m-out-of-n codes for scan chain fault
diagnosis at the core level of a SoC circuit. The codewords are shifted into the scan chain(s) as test
patterns, and the output responses are validated using self-checking checkers. By proper code selec-
tion and/or by combining two or more m-out-of-n codes, it is possible to activate many scan chain
faults and to diagnose all unidirectional as well as many bidirectional and multi-directional errors
at the core level with small hardware overhead. The aliasing probabilities have been thoroughly
analyzed for single and a combination of two or more weight-based m-out-of-n codes. Experimental
results demonstrate that aliasing probabilities are zero in most cases. A test pattern broadcast ar-
chitecture is incorporated to support the proposed testing method. By adopting this architecture,
the complexity of control signal generation and scan chain test is greatly reduced. Further, by
adding a test pattern alignment scheme, it was possible to use shared control lines for all checkers
and to use a single scan-in signal for all scan chains (as required by the broadcast architecture).
Therefore, the hardware overhead of the test architecture is greatly reduced. Totally self-checking
checkers are designed to support the entire approach. The future research work are: (1) to develop
a simulator that can evaluate the power of codewords applied (instead of using only the transition
counts); (2) to extend the result to the domain of fine-grained scan cell identification; (3) to de-
velop a more powerful method (e.g., to support multiple m-out-of-n codes) to solve the test pattern
alignment problem by using small hardware overhead; (4) to develop a built-in self-test method for
generating the efficient codewords and perform at-speed diagnosis of the scan chain.
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