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Abstract

We model RTL faults as stuck-at faults on primary
inputs, primary outputs, and flip-flops. Tests for these
faults are analyzed using Hadamard matrices for Walsh
functions and random noise level at each primary input.
This information then helps generate vector sequences.
At the gate-level, a fault simulator and an integer lin-
ear program (ILP) compact the test sequences. We
give results for four ITC’99 and four ISCAS’89 bench-
mark circuits, and an experimental processor. The
RTL spectral vectors performed equally well on mul-
tiple gate-level implementations. Compared to a gate-
level ATPG, RTL vectors produced similar or higher
coverage in shorter CPU times.

1. Introduction

Conventionally, test vectors are generated at the
gate-level, i.e., after synthesis has been performed.
Though this methodology has the advantage of being
able to generate reliable, high fault coverage test vec-
tors due to its direct use of the stuck-at fault model, it
suffers from several disadvantages. For large circuits,
the large number of faults and the algorithm complex-
ity make the gate-level test generation time consum-
ing and expensive. Since gate-level test generation is
performed at a later stage in the design process it is
difficult to deal with testability issues, revealed during
test generation, in an already verified design. Also, the
gate-level ATPG cannot be used for cores or circuits
for which only the functional information is available.
This scenario is frequently encountered in commercial
environments.

RTL (register transfer level) or synthesis indepen-
dent test generation eliminates the disadvantages of
gate-level test generation discussed above. Several RTL
test generation methods have been proposed. Ravi and
Jha [22], Ghosh and Fujita [8], Kim and Hayes [18] and
Goloubeva et al. [11] use pre-computed test sets for
RTL constructs like adders, multiplexers etc. and derive
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test vectors for the whole RTL circuit. Pre-computed
test sets either make some assumptions about the syn-
thesis of the design or use a superset of the actually
required test vectors. All of them use some kind of
data structure or metrics to derive the RTL test sets,
which have implications of large memory and compu-
tation overheads. Thaker et al. [24] show that a set of
stuck-at faults of variables in high-level synthetic oper-
ators and at the boundaries of RTL modules serve as a
statistical sample for the gate-level coverage analysis.

Recent work by Kang et al. [14] uses a set of stuck-
at faults called the sensitization faults which consider
the detection of each primary input fault separately
at every primary output. The coverage of sensitiza-
tion faults is shown to correlate well with the stuck-at
fault coverage in any gate-level implementation. How-
ever test generation effort is higher for such faults as
compared to ordinary stuck-at faults.

The gate-level spectral methods of test genera-
tion are relevant to the present research. In 1983,
Susskind [23] showed that Walsh spectrum can be used
for testing a digital circuit. General properties and
applications of digital spectra can be found in the pub-
lished literature [1, 6, 13, 25]. Hsiao and Seth [12] fur-
ther expanded that work to compact testing. More
recently, Giani et al. [9, 10] have reported spectral
techniques for sequential ATPG and built-in self-test.
Hsiao’s group at Virginia Tech has published further
work on spectrum-based self test and core test [2, 3, 16].
Khan and Bushnell [17] have designed hardware signa-
ture analyzers using spectral components. Zhang et

al. [29] further refined the method of extracting the
spectra from a digital signal using a selfish gene algo-
rithm. Recent work suggests that wavelet transforms
can also be used for similar application [4].

In this paper, we present a spectral method of gener-
ating test vectors for sequential circuits using only RTL
faults, which are faults on the inputs and outputs of the
circuit and inputs and outputs of the flip-flops (since
they remain invariant through synthesis). Our spec-
tral analysis determines the prominent digital function
components and the noise level in the RTL vectors.
Vector sequences generated from these properties are
found to detect almost as many faults as any gate-level
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ATPG. Besides, the sequences can be compacted to
about the same size as that produced by the gate-level
ATPG. In the RTL method the use of gate-level ATPG
is eliminated and only a fault simulator is used.

In this paper, Section 2 gives an overview of bit-
stream analysis in the spectral domain. Section 3
presents our method of RTL ATPG using spectral anal-
ysis, with results discussed in Section 4. We conclude
in Section 5.

2. Background

Our method of test generation is based on the
premise that the spectrum of vectors that detect high-
level faults of the circuit reflects important character-
istics of the circuit. These characteristics may include
spatial and temporal correlations among the bits of pri-
mary input vectors and the necessary vector sequence
length to sensitize paths between primary inputs and
outputs of a sequential circuit. However, any high level
test sequence has, besides the relevant spectra, some
amount of noise, which corresponds to the don’t care
bits in the tests of target faults. We analyze the spec-
trum and the noise level, and generate new vectors us-
ing the spectrum, to which noise samples are added.

We use frequency decomposition, in which any bit-
stream or signal can be projected on or represented
using a set of orthogonal functions. The projections of
the signal on each of the functions give the contribution
of the corresponding functions to the original signal.
We shall use Walsh functions [26] because they have
been used for testing with effective results.

Walsh functions are a set of orthogonal functions.
They consist of trains of square pulses having +1s and
-1s as the allowed states and can only change at fixed
intervals of a unit time step. For an order n, i.e., for
a sequence of n time steps, there are 2n Walsh func-
tions given by the rows of a 2n × 2n Hadamard matrix
H(n) [26], when arranged in the so-called “sequency”
order [26]. The Hadamard matrix is a symmetric ma-
trix with each row being a unique Walsh orthogonal
function, also called as the basis function bit-streams.
Since it consists of only +1s and −1s, it is a good choice
for the signals in VLSI testing (+1 = logic 1, −1 = logic
0). Also multiplications can essentially be computed
using additions and subtractions only. Hadamard ma-
trices are square matrices containing only +1 and −1
elements and can be generated using the following re-
currence relation:

H(n) =

[

H(n − 1) H(n − 1)
H(n − 1) −H(n − 1)

]

(1)

where H(0) = 1 and 2n is the dimension of the nth
order Hadamard matrix, H(n). For example, for n = 1

and n = 2, we have:

H(1) =

[

1 1
1 −1

]

and H(2) =







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






(2)

The Hadamard matrix is an orthogonal matrix, which
gives H(n) × H(n)T = nIn, where In is the 2n × 2n

identity matrix. This simplifies reconstruction of the
test vectors from the spectral domain. Any bit-stream
of k bits can be represented as a linear combination
of the basis bit-streams from the Hadamard matrix,
H(log

2
k). The multiplicands used are the projections

of the object bit-stream on the basis bit-streams. We
shall refer to them as coefficients. By analyzing these
coefficients we will be able to determine the major con-
tributing basis bit-streams in an original signal, which
we shall regard as important basis bit-stream functions.

3. Spectral RTL ATPG

Our approach to RTL test generation consists of two
principal steps described in this section.

3.1 Spectral Characterization

The RTL faults considered are the stuck-at faults
on primary inputs and outputs of the circuit and on in-
puts and outputs of all flip-flops. These faults remain
invariant through logic synthesis. We obtain test vec-
tors to detect RTL faults. These vectors are analyzed
using Hadamard matrix to find the major spectral com-
ponents. To analyze a vector sequence, the bit-streams
entering various inputs are analyzed separately. The 0s
and 1s in a bit-stream are represented as −1s and +1s.
To find the coefficients for the bit-stream correspond-
ing to an input, the bit-stream is multiplied with the
Hadamard matrix. The multiplication operation is ba-
sically a correlation of the bit-stream with each of the
basis bit-streams. A high value of the coefficient cor-
responds to a high correlation of the bit-stream to the
corresponding basis bit-stream and vice-versa. Hence
basis bit-streams exhibiting high coefficient values are
considered as important or essential components and
others are considered as noise.

Figure 1 shows an example of generation of coeffi-
cients by projecting a bit-stream onto the basis bit-
streams and determining the essential component(s).
In the example, an 8 bit-stream (0s and 1s in the orig-
inal sequence being represented as −1s and +1s) is an-
alyzed by multiplying by a third order 8×8 Hadamard
matrix. The corresponding result gives the coefficients.
As shown, we obtained a single coefficient with high
correlation, which we shall treat as an essential com-
ponent and others will be treated as noise. Figure 2
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Figure 1. Spectral analysis of a stream of 8-bits. The essent ial Walsh component in this bit-stream
has magnitude 6 and is represented by the second row of Hadama rd matrix, H(3).

Figure 2. Walsh spectral coefficients for b01.

shows the spectral coefficients for the circuit b01. The
high rising bars show high correlation with the cor-
responding basis bit-streams and these are considered
essential. To determine the threshold, which separates
the essential components from the noise components,
each coefficient value considered is compared with the
mean of the total spectrum. For white noise we shall
have all equal valued coefficients and their magnitudes
will be equal to the mean of any other arbitrary spec-
trum. Hence after squaring the coefficients, their mag-
nitudes are compared with the mean of all coefficients.
This compares the fraction of power in the coefficients
to the mean power level. If this ratio is greater than
some constant K, then the coefficient and hence the
corresponding basis bit-stream is considered to be an
essential component or else is considered non-essential
or noise. The constant K affects which coefficients are
being considered as essential ones. A high value of K

selects only a few components as essential and a low
value selects many components.

3.2 Spectral Vector Generation

After spectral analysis of the RTL vectors, the spec-
tral coefficients are obtained. To generate test vectors

(a) Perturbing spectra :
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(b) New bit − stream obtained from perturbed spectra :

Sign{[1 6 2 − 1 3 − 2 3 − 1] × H(3)}
= [1 1 1 − 1 1 − 1 1 − 1] → [1 1 1 0 1 0 1 0]

Figure 3. Bit-steam generation by perturbing
the spectra. Note that the essential compo-
nent having a magnitude 6 is not perturbed.

for gate-level faults, the essential spectral coefficients
decided by the threshold are retained and others, being
considered noise, are perturbed in a confidence range
in terms of magnitude and/or in phase to generate new
coefficients. The confidence levels correspond to the
amount of randomness to be added.

Test vectors can easily be generated from the
coefficients by multiplying the coefficients with the
Hadamard matrix again. Figure 3 shows an example of
reconstruction of test vectors. We generate test vector
sets with different values of K. Also since we are adding
noise randomly, this variation gives different character-
istics to each vector set. We generate multiple sets of
vectors for each value of K.

Suppose the number of spectral components ob-
tained for a circuit is n. We generate perturbation vec-
tors sequences, V1, V2, · · ·, VM , each of length n, such
that their coverage as determined by fault simulation
of the gate-level circuit either reaches some target value
or simply saturates. Next, we compact the test by se-
lecting the smallest number of these sequences without
reducing the coverage.

85



Compaction is done by an integer linear program
(ILP), in a similar way as has been reported in the
literature [5, 15, 19]. During fault simulation, at the
beginning of each vector sequence the complete fault
list is restored and the circuit is set to an unknown
state. Thus, the coverage obtained for a sequence re-
mains valid irrespective to the order in which it is ap-
plied. On fault simulation, the fault simulator provides
a complete list of vector sequences that detect each
fault. The vector sequence Vi is assigned an integer
variable, xiǫ[0, 1] (xi = 1 : select the ith sequence or
else discard it. Suppose kth fault is detected by se-
quences V3, V4, and V11. The following ILP constraint
picks at least one sequence that detects this fault:

x3 + x4 + x11 ≥ 1 (3)

The number of such constraints equals the number of
faults. The ILP then determines the values of variables
xi’s that satisfy all constraints of the type 3 with the
following objective function:

Minimize

i=M
∑

i=1

xi (4)

where M is the total number of vector sequences gener-
ated. For the results given in the next section, we used
the ILP software contained in the AMPL mathemati-
cal programming package [7]. In the ILP solution, the
smallest possible number of x’s is assigned the value 1
and all others are assigned 0. The sequences with their
x’s set to 1 form the compacted test set.

4. Results

The spectral technique of RTL-ATPG was applied to
four ITC’99 RTL benchmark circuits, four ISCAS’89
benchmark circuits and an experimental processor,
PARWAN [21]. Three ITC’99 RTL benchmark circuits
were synthesized in two ways, by optimizing area and
by optimizing delay.

Test vectors for RTL faults were obtained using
the Mentor Graphics tool FlexTest [20] which is a se-
quential ATPG system with a built in fault simulator.
Those RTL vectors were analyzed for their spectrum,
new vector sequences were generated using the tech-
nique discussed above and finally they were compacted.
Results were obtained on Sun Ultra 5 machines with
256MB RAM. Table 1 shows the characteristics of the
RTL test vectors generated for the circuits. Column 1
lists the circuit name. Here b01-A and b01-D are the
area and delay optimized implementations of the b01
ITC’99 benchmark. ISCAS’89 benchmarks are already
at the gate-level. For s5378 and s9234, we created ad-
ditional versions by adding a global reset input in the
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Figure 4. Test coverage of RTL ATPG (spectral
vectors) for area optimized b11-A circuit.

original circuits. These are denoted with an asterisk
(*) in Tables 1 and 2.

Column 3 of Table 1 lists the number of RTL faults,
which are the faults at the primary inputs, primary
outputs, and the inputs and outputs of flip-flops. Next
in Table 1 appear the number of RTL test vectors, test
generation time (CPU s) and the number of spectral
components. In the absence of a true RTL ATPG pro-
gram, we used FlexTest [20] to derive tests just for
the selected stuck-at faults we designate as RTL faults.
For the ITC’99 benchmarks this was done for two gate-
level versions, one synthesized with area optimization
and the other with delay optimization. The number of
spectral components in the sixth column is the number
of RTL vectors rounded off to the nearest power of 2.

The last two columns of Table 1 show the fault cover-
ages of the RTL vectors. RTL Coverage is the coverage
of just the RTL faults and gate-level coverage is the
coverage of all stuck-at faults in the implementation.
As expected, the gate-level coverage is lower than the
normal requirement of being close to 100%. We will use
our spectral technique to enhance this coverage. The
low coverage of the RTL faults, however, may indicate
a testability problem, which could limit our ability to
increase the coverage either by the spectral technique
or by gate-level ATPG.

Table 2 gives a comparison of the proposed RTL
ATPG method with gate-level sequential ATPG. The
first two columns give the circuit name and the number
of gate level single stuck-at faults. The performances of
RTL ATPG–spectral tests, gate-level ATPG, and ran-
dom vectors can be compared by examining the data in
the subsequent columns. For RTL ATPG, the number
of vectors is the total number vectors in the compacted
test sequences. Gate-level test coverage provided by
the fault simulator of FlexTest [20] is shown in column
2 of Table 2. Note that the test coverage of FlexTest is
an upward adjusted coverage, accounting for faults that
are found to be untestable. The ATPG time in column
5 includes the times for RTL characterization (Table 1),
perturbed spectral sequence generation, fault simula-
tion, and ILP compaction. Of these, RTL characteri-
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Table 1. Spectral characterization of circuits by RTL vecto rs.
Circuit RTL Characterization

Name Gate-level No. of No. of CPU No. of spectral RTL Gate-level
synthesis faults vectors s Components Cov. (%) Cov. (%)

b01-A Area optimized 62 38 < 1 64 94.57 96.33
b01-D Delay optimized 62 31 < 1 32 94.57 85.45
b09-A Area optimized 248 109 519 128 75.22 78.18
b09-D Delay optimized 248 193 418 256 75.22 72.69
b11-A Area optimized 340 224 530 256 76.16 74.09
b11-D Delay optimized 340 174 767 256 76.32 84.14
b14-A A part of Viper processor 2566 110 1684 128 63.53 47.14
s1488 ISCAS’89 104 38 1 64 83.12 64.34
s5378 ISCAS’89 1602 115 1185 128 55.36 68.82
s5378* ISCAS’89+Reset 1962 82 444 64 69.22 65.04
s9234 ISCAS’89 1840 16 706 16 18.48 16.45
s9234* ISCAS’89+Reset 2264 59 2495 64 49.85 43.58
s35932 ISCAS’89 14536 92 50 64 68.80 94.03

PARWAN [21] An experimental processor 434 80 156 64 70.41 69.64

zation and fault simulation are the dominant compo-
nents, the other two being negligible. As we move down
in Table 2, circuits become larger and we observe that
RTL ATPG provides about the same test coverage and
vector lengths as the gate-level ATPG, but its time in-
creases slower. Moreover, the RTL faults used for cir-
cuit characterization and vector generation are imple-
mentation independent. Notably, the test coverage of
random vectors tends to drop as circuits become larger.

Figures 4 and 5 give test coverages against the num-
ber of vectors for two circuits, b11-A and the PARWAN
processor [21], for RTL spectral ATPG vectors, gate-
level ATPG vectors and random vectors. The gate-
level coverages of RTL vectors (generated to cover RTL
faults only) are also shown by a point in each graph.
For these circuits, the coverages of RTL ATPG are
about 2 to 4% higher, vector lengths about double and
CPU times about 30 to 50% when compared to the
gate-level ATPG.

5. Conclusion

We have presented a new method of RTL test gener-
ation using spectral techniques. Test vectors generated
for RTL faults are analyzed using Hadamard matrix to
extract important features and new vectors are gener-
ated retaining those features. Generation of different
types of test sets and performing compaction on them
is found to be an efficient and reliable method for test
generation. Results show that as circuits become larger
the RTL method may have advantages over gate-level
ATPG. This reveals a promise in generation of test vec-
tors at RTL by spectral analysis.

RTL test generation has advantages of reduced
memory and CPU time complexity. It enables the
testability appraisal at RTL, and hence efforts can be
made to improve testability when the design is concep-
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Figure 5. Test coverage of RTL ATPG (spectral
vectors) for PARWAN processor [21].

tualized at higher levels of abstraction. This aspect is
not explored in the present work. Further, RTL ATPG
enables the testing of cores for whom only the func-
tional information is known. An alternative method
of spectral characterization of a core from functional
vectors has been explored in a recent paper [28].
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