

An Optimum ORA BIST for Multiple Fault FPGA Look-Up Table Testing

Armin Alaghi, Mahnaz Sadoughi Yarandi, Zainalabedin Navabi

Department of Electrical and Computer Engineering
University of Tehran, Iran

a.alaghi@ece.ut.ac.ir, m.sadoughi@ece.ut.ac.ir, navabi@ece.neu.edu

Abstract

This paper presents a BIST architecture for FPGA
Look-Up Table testing using a minimum number of
logic elements for its ORA. The propagation of faults
in the TPGs and CUTs is formulated so that the ORA
can detect multiple faults by monitoring a single
signal. At the cost of using more cells for the ORA, the
granularity of error detection can be reduced to as low
as one fault per five LUTs. The increase in the ORA
overhead, and thus the untested FPGA areas, can be
compensated by more configurations. We will show
that 100% test coverage and a maximum granularity
can be achieved simultaneously by a reasonable
number of FPGA configurations.

1. Introduction

Field Programmable Gate Arrays (FPGAs) have been
widely used for rapid prototyping and manufacturing
of complex digital systems, such as microprocessors
and high speed telecommunication chips [1]. FPGAs
are suitable for prototypes of systems [2] whose correct
operation is necessary for the evaluation of new
architectures. This requires changing the architecture
during the design cycle with many reconfigurations of
the same FPGA. The frequent reconfiguration of an
FPGA makes it more fault-prone [3].

There are many components of an FPGA to test
for ensuring reliable usage of this device. Algorithms
for interconnect testing are discussed in References [4,
5]. In References [6, 7, 8] general test algorithms for
Arrays of RAMs/LUTs has been proposed.

In this paper, we only consider test of LEs and
focus on LUTs within LEs. There are different
methods for LE testing. One may use I/O pins for
applying test vectors to LEs and collecting test results
[8, 9]. But, usage of I/O pins for test decreases the
number of I/O pins available for normal operation. If
detailed information for JTAG implementation was
available, usage of JTAG pins as an interface to apply
test vectors and retrieve LEs' results would be suitable
[10].

A Built-In-Self-Test (BIST) architecture has been
proposed for LEs testing [11], which eliminates the
usage of I/O and JTAG pins. In this paper we address
this approach for LUT testing of LEs. Our objective is
to propose a BIST architecture with a good balance
between various costs. Test time, test area and
granularity are such trade-offs.

In this scheme, LUTs of the FPGA are partitioned
into Test Chains in which some LUTs are configured
as Test Pattern Generators (TPGs) and some as Circuit
Under Tests (CUTs). The arrangement is introduced in
Section 2. However, in our method while TPG is
generating test vectors for CUT, LUTs configured as
TPG are also tested. In Section 3 our test strategy is
presented. Section 4 provides a mathematical
justification for the design of the ORA. Section 5
shows its design and implementation results. In Section
6 alternative structures, such as ORA multiplexing and
algorithms with more reconfiguration time, are
proposed to evaluate the trade-offs between test area
and test time. Finally, Section 7 presents the
experimental results that show the optimized BIST
structure as well as costs of alternative approaches that
we have proposed in the preceding section.
Conclusions are presented in Section 8.

2. BIST Architecture

Our proposed BIST architecture chains a group of
LUTs of FPGA logic elements to form test pattern
generators and circuits to test and their corresponding
output analyzer. This BIST structure is shown in
Figure 1. As shown, some of the LUTs are configured
as the Test Chain (TC) and the others as the ORA.
Note that ORA faults are not detected. A subdivision
of the entire BIST logic, containing a single TC and its
ORA, is referred as a Partial BIST. The overall
structure covers all LEs of an FPGA.

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

.

Figure 1. BIST architecture inside the FPGA

There are many alternative arrangements for TCs
and ORAs in an FPGA [14]. Some of the parameters
affected by this partitioning are test time, ORA size,
test area, and the number of detected faults.

Test chains consist of Partial Chains (Figure 2)
within which we have a Test Pattern Generator (TPG)
and the Circuit Under Test (CUT).

Figure 2. Chain Architecture

The TPG is an address generator that produces
addresses 0 to 15. For LUT testing, the input address
should cover the complete address space of the 4-input
LUT. Output of the TPG directly drives LE0 and is
treated as the address for its LUT. The output of the
LE0 along with the three address bits of the TPG
produces the address line of the next LE. Depending on
the configuration, the arrangement of the address line
varies. Address lines of the proceeding LUTs have the
same arrangement relative to the preceding LEs. The
Partial Chain structure is shown in Figure 3.

Figure 3. Partial Chain Architecture

3. Test Methodology

Algorithms for LUT testing need to write different test
patterns into LUTs, read contents of LUTs and check
the correctness of what has been read. Arrays of LUTs
with n inputs can be tested with at least by

n2 configurations [6].
These configurations for FPGA with 4-input LUTs

are shown in Table 1 [12]. As shown, there are two
groups of complementary patterns.

The table shows standard patterns for memory
testing treating a 16-bit Look-Up Table as a 16-bit
word to test. For reading this memory contents we
address the LUT such that data read are from
alternating 0 and 1 locations. The data read from an
LUT is a periodic signal that is used for the clock input
of the next Partial Chain. Being able to use arbitrary
clocks for different LEs facilitates this procedure.
Irregularities in the periodic signal indicate PC errors.

We use these configurations to detect single stuck-
at, wrong cell read (write), no cell read (write) and
additional cell read (write) faults in LUTs [12].

Table 1. Test Patterns

G1 G2
C1 C3 C5 C7
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

C2 C4 C6 C8
1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

With these configurations output signals toggle

regularly, therefore it can be used as clock input of its
succeeding Partial Chain. Hence, the clock pulse
width will be multiplied by two after passing through
each Partial Chain. Figure 4 shows fault free signals
for clocks.

Figure 4. Fault Free Signal

4. Fault Propagation

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

Propagation of faults follows rules that can be derived
mathematically. An overview of two propagated faults
can be seen in the simulation result shown in Figure 5.

Figure 5. Simulation Result
As mentioned earlier, clock pulse width is

multiplied by two after passing through each Partial
Chain. Referring to “width” as the time between an
edge to the next similar edge of a signal:
() () 01 2...2 www i

irir === −
In this equation i refers to the present Partial

Chain, and i-1 to the previous Partial Chain. wr stands
for the reference output pulse width of each Partial
Chain. We assume w0 is the pulse width of the original
clock (c0) driving the first TPG.

4.1. Single Fault Rules
A single fault in any Partial Chain causes elimination
of a pulse in the output of that Partial Chain. In effect,
this extends width of a section of this output signal by
wc (corrupt width). Figure 6 shows the effect of wc on
the output of the Partial Chain.

() 1−irw

()irw

()icw
Figure 6. Fault Effect on the Response Signal

Provided that this Partial Chain (ith) is the only
faulty Partial Chain in the entire chain, the extra
amount of wc will be carried through all Partial Chains
to the final output of the chain by the following
expression:
() () 01 22 www i

iric == − (1)
Thus, the corrupt pulse width (wc) depends on the

Partial Chain in which the error occurs.

4.2. Multiple Fault Rules

For analysis of error and location of a fault in a Partial
Chain, let us assume we have a chain of n Partial

Chains, and an input frequency of f0. In a good circuit,
the pulse width of the input signal is w0 = 1/ f0 and that
of the last expected output is wn = 2n.w0.

Multiple faults in different Partial Chains can be
detected by examining the pulse width of this output
signal. This output pulse width on the output resulting
from multiple Partial Chain faults is an accumulation
of all corrupt widths in Partial Chains leading to that
output. Let fw be this accumulated width. This
parameter is calculated by:

() ∑
=

=
n

m

m
mnf wcw

1
0.2. (2)

Where cm = 1 if there is a fault in the mth Partial
Chain and 0 otherwise.

The above expression can be explained by the
discussion that follows. Locations of Partial Chain
faults can be found by examining the final response of
the chain, whose width becomes:

() ()
nfnrn www +=

Where n is the number of Partial Chains. (wr)n is the
pulse width as expected at point n which is equal to
2nw0, and (wf)n is the width of accumulated errors at
that point.

Propagation and accumulation of multiple faults is
described by:
() () ()icifif www +=

−1
 (3)

which results in equation 2 for an entire chain.

4.3. ORA Requirements

Our proposed ORA is based on Equation 2. In this
expression, cm value of 1 identifies the location of a
fault in the mth Partial Chain. cm values form a binary
number which is embedded in the pulse width of the
test chain output and is extracted by our ORA to
identify faulty Partial Chains and their locations.
Figure 7 shows a typical chain with four Partial
Chains and the ORA production.

Figure 7. Fault Detection Areas

5. ORA Hardware

As mentioned in the previous section and shown in
Figure 7, the ORA is placed after the last Partial
Chain. The ORA's input signal is the Response signal

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

that carries the propagated faults in form of a widened
pulse. The Response signal is expected to be a periodic
signal and the faults appear as irregularities in this
signal.

The ORA counts the width (an edge to a similar
edge) of pulses on the Response signal by the original
system clock (whose width is w0). Depending on the
number of Partial Chains, at least two counters are
needed to detect Partial Chain faults. While the result
of one of the counters is being registered, the other one
counts the next Response width. The register
accumulates the results of different widths by ORing
them. This combines the previous results with the
newer ones without losing any information. The ORA
architecture is shown in Figure 8.

 Figure 8. ORA Hardware Design

The number of Partial Chains affects the ORA
hardware. Calculations and experimental results show
that the optimum ORA can detect multiple faults in 4
partitions and since the initial TPG forms the first
partition, the best number of Partial Chains
becomes 3.

6. Alternative Structures

6.1. ORA Multiplexing

The general structure introduced earlier in Section 3
can be altered for special purposes. One idea is to
change the partial BIST architecture by multiplexing
an ORA between more than one test chains, as shown
in Figure 9. By doing this, we can gain an expanded
test area in the expense of increasing test time.
Depending on the number of TCs detected by a single
ORA (n), the test time increases n times.

Figure 9. Alternative Partial BIST Structure

6.2. Reconfiguring the FPGA

Another option for improving testability of an FPGA is
to use a large number of ORAs, and thus increase
granularity of tested blocks. Recall that we can only
detect one fault per Partial Chain. Making Partial

Chains smaller gives us a better testability, but requires
more ORAs.

Obviously the more ORAs cause a larger area of an
FPGA to be left untested. This can be remedied by
switching FPGA areas that are dedicated to TPG-CUT
with those of the ORAs. Switching FPGA areas
requires twice as many configurations, but results in
100% FPGA test coverage.

The drawback of this method is the long time it
takes for FPGA reconfiguration. With our test method,
typically, a configuration time is 106 times a test time.

7. Experimental Results

7.1. Implementation

Our proposed BIST has been synthesized and
implemented on several Altera devices, such as
FLEX10K, Cyclone, Stratix, ACEX1K and
APEX20KE, using Altera Quatus II.

7.2. Optimum ORA

As mentioned before, the number of the Partial Chains
affects the ORA hardware. Table 2 shows the results of
synthesized ORAs for different number of Partial
Chains on Altera FLEX10K device.

Table 2. Results of Synthesis on Altera FLEX10K

Number of
Partial
Chains

1 2 3 4 5 6 7

ORA Logic
Cells 15 19 28 76 165 271 392

To find the optimum number of Partial Chains in
a TC for the best ORA, we express the hardware
overhead as:

faultsofnumber
ORAtheforusedLCsofNumberOverheadHardware

 =

The “number of faults” which can be detected is same
as the number of Partial Chains. Figure 10 shows the
hardware overhead of the required ORA for different
number of Partial Chains. This graph shows the best
ORA is obtained when the number of Partial Chains
is 3.

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Number of Partial Chains

H
ar

dw
ar

e
O

ve
rh

ea
d

(L
og

ic
 C

el
ls

)

Figure 10. ORA Hardware Overhead for Different

Number of Partial Chains

7.3. Test Area vs. Granularity

By changing the number of chains, we have a trade off
between test area and granularity. We define the test
area as the ratio of the tested area to the total FPGA
area:

%100

 ×
+

=
CellsLogicORACellsLogicTC

CellsLogicTCareatest

And the granularity can be defined by the number
of detectable faults in 1000 LUTs.

ChainPartialperLUTs
LUTsfaultsygranularit

1000)1000/(=

In what follows we present our case study and
experimental results using a FLEX10K FPGA.
Features utilized in this FPGA are found in all more
advanced Altera devices. For the “Number of Partial
Chains” and “ORA logic cells” we use 3 and 28,
respectively. This calculates the test area and
granularity as shown in Table 3-a and 3-b.

By increasing the number of chains, we will need
more ORAs and the test area will be decreased
consequently. On the other hand, increasing the
number of chains will make them smaller which results
in less LUTs per Partial Chain and higher granularity.
In other words, one can gain a high granularity by
having a low test area and vice versa.

Table 3-a. Granularity vs. Test Area

Number of
Chains 1 10 20 50 80 87

Test Area (%) 99.3 92.5 85 62.6 40.2 34.9

LUTs per PC 1239 115 53 16 6 5

Granularity 0.81 8.66 18.8 63.9 160 200

Table 3-b. Granularity vs. Test Area

LUTs per Partial Chain 5 50 100 200 400

Test Area (%) 34.9 84 91.4 95.5 97.7

Granularity 200 21 10 5 2.5

Number of Chains 87 64 11 6 3

The highest test area can be achieved by having
only one chain, which results in having 1239 LUTs per
Partial Chain and a low granularity (0.81 faults in
1000 LUTs).

The best granularity can be achieved by having
only 5 LUTs per Partial Chain (4 LUTs for the TGP
and 1 for the CUT), which results in having 87 chains
and 34.9% test area.

7.4. Timing Analysis

After configuring the FPGA and resetting the circuit,
we will have to wait a number of clock periods for the
circuit to become stable, for the faults to propagate,
and for the ORA to detect the fault. Experimental
observations show that for 8 LUTs per Partial Chain,
the worst case takes 46 clock pulses for the circuit to
become stable, and 86 clock pulses for the ORA to
detect the faults. The synthesis results show that the
circuit clock frequency can be up to 500 MHz and
consequently the total test time becomes 264ns
(nsns 264)6846(*2 =+).

A typical configuration time for an Altera FPGA is
about 250ms, which causes the test time become
negligible [13].

7.5. ORA Multiplexing

By assigning more test chains to a single ORA, we can
have a gain in the test area. This is because we have
eliminated some untested areas by replacing the ORAs
with CUTs. Instead, the test time will increase.
However since the test time is negligible compared to
the configuration time and can be ignored. Table 4
shows the gain in the test area by multiplexing ORAs
between different numbers of TCs.

Table 4. Test Area Gained by ORA Multiplexing

Chains per
ORA 1 5 10 20 50 100 154

Test Area% 46 81 89 94 97 99.6 99.6

Another possibility is breaking and multiplexing

test chains for a fixed number of ORAs (Table 5). In
this case no change in the test area will occur but,
granularity can increase by having a slight increase in
the test time.

Table 5. Granularity Gained by ORA Multiplexing

Chains per ORA 1 2 5 8 10

Granularity 18.8 53 94 150.8 188

7.6. Reconfiguring the FPGA

The second alternative introduced in the previous
section can be used to have a 100% test area with a
desired granularity. The main cost is the number of

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

FPGA reconfigurations, which is relatively high, and
significant. Table 6 shows test area and granularity for
different number of reconfigurations. Note that we
need to have 8 different configurations for each LUT in
order to completely test it. If we partition the FPGA
into two halves, one for the TCs and the other for the
ORAs, then testing the ORA parts by replacing them
doubles the number of reconfiguration (i.e. 2x8).

Table 6. Granularity for Different Number of
Reconfigurations

Number of FPGA Reconfigurations 1x8 2x8 3x8

Granularity (Faults/1000LUTs) 0.81 104.4 206.3

All the cases examined in Table 6 have a 100%
test area. For the case of 3x8 configurations, the
partitioning made the ORAs hardware twice as much
as the TCs hardware (33% test area in 1x8
reconfigurations). By switching the location of the TCs
and ORAs three times, a 100% test area can be
achieved. The maximum possible granularity is 200
faults per 1000 LUTs since we can have the minimum
of 5 LUTs per Partial Chain. Thus the maximum test
area and granularity can be achieved simultaneously by
having 3x8 number of reconfigurations.

8. Conclusion

This paper presented a BIST architecture for FPGAs
Look-Up Table testing. The method is general and can
be applied to most LUT based FPGAs. Our method is
based on altering periodic signal pulse widths in the
presence of Look-Up Table faults. Using this method,
we have designed an on-chip ORA which can detect
one fault for every group of LUTs that we refer to as
Partial Chains. Although using FPGA for the ORA
reduces the test area, a 100% test can be achieved.

There is a tradeoff between the ORA size and the
number of faults that can be detected in an entire
FPGA. We have found that a Chain size of three
Partial Chains yields the best ORA hardware. This
BIST has been implemented in Altera FPGAs, and
methods of programming the FPGA for the specific
placement of the LUTs have been devised. Although
the focus has been on LUTs, many logic faults between
LUTs and LE Flip-flops are also detected. More work
for FPGA RAM, and PLL testings is required to
complete this methodology.

References:
[1] S. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,

Field Programmable Gate Arrays, Kluwer Academic
Publishers, Boston, MA, 1992.

[2] M. Alderighi, E. Gummati, V. Piuri, and G. Sechi“, A
FPGA based Implementation of a Fault Tolerant Neural
Architecture for Photon Identification,” in Proc. of the

International Symposium on Field-Programmable Gate
Arrays, pp. 166 – 172, 1997.

[3] C. Metra et al., "Novel Technique for Testing FPGA",
Design, Automation and Test in Europe, pp 89-94, 1998.

[4] M. Renovell, J. Figueras, Y. Zorian, "Test of RAM-based
FPGA: Methodology and Application to the
Interconnect", in Proc. 15th VLSI Test Symp., pp. 230-
237, 1997.

[5] M. Renovell, "SRAM-Based FPGAs: A Structural Test
Approach", IEEE XI Brazilian Symposium on Integrated
Circuit Design SBCCI98, pp. 67-72, Oct. 1998.

[6] W.K. Huang, F.J. Meyer, N. Park, F. Lombardi. "Testing
memory modules in SRAM-based configurable FPGAs,"
mtdt, p. 79, 1997 IEEE International Workshop on
Memory Technology, Design and Testing (MTDT '97),
1997.

[7] X. Sun, J. Xu and P. Trouborst. "Testing Xilinx XC4000
Configurable Logic Blocks with Carry Logic Modules",
in the Proc. of the IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, October
2001.

[8] M. Renovell, J.M. Portal, J. Figueras, Y. Zorian, "RAM-
based FPGAs: a test approach for the configurable ", in
proceedings of the Design, Automation and Test in
Europe, 1998, pp.82-88.

[9] T. Inoue, et al., “Universal test complexity of field
programmable gate arrays,” in Proc. of Asian Test
Symp., pp.259-265, 1995.

[10] C. Stroud, S. Wijesuriya, C. Hamilton, M.
Abramovici, "Built-In Self-Test of FPGA Interconnect",
in Proc. of the IEEE International Test Conference, pp.
404-411, 1998.

[11] C. Stroud, et al., “Built-in self-test of logic blocks
in FPGAs (Finally, a free lunch: BIST without
overhead!),” in Proc. of VLSI Test Symp., pp.387-392,
1996.

[12] E. Atoofian, Z. Navabi. "A BIST Architecture for
FPGA Look-Up Table Testing Reduces
Reconfigurations," ats, p. 84, 12th Asian Test
Symposium (ATS'03), 2003.

[13] Altera Data Book, San Jose, USA, 2002.’
[14] M. Sadoughi Yarandi, A. Alaghi, Z. Navabi. “An

Optimized BIST Architecture for FPGA Look-Up Table
Testing” IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures
(ISVLSI’06), pp. 420-421, 2006.

[15] Quartus II Version 5.1, Handbook: Altera
Corporation http://www.altera.com/literature/hb/qts

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: TAGORE ENGINEERING COLLEGE. Downloaded on July 9, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

