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Abstract 

 

This paper presents a BIST architecture for FPGA 
Look-Up Table testing using a minimum number of 
logic elements for its ORA. The propagation of faults 
in the TPGs and CUTs is formulated so that the ORA 
can detect multiple faults by monitoring a single 
signal. At the cost of using more cells for the ORA, the 
granularity of error detection can be reduced to as low 
as one fault per five LUTs. The increase in the ORA 
overhead, and thus the untested FPGA areas, can be 
compensated by more configurations.  We will show 
that 100% test coverage and a maximum granularity 
can be achieved simultaneously by a reasonable 
number of FPGA configurations.  
 

1. Introduction 
 

Field Programmable Gate Arrays (FPGAs) have been 
widely used for rapid prototyping and manufacturing 
of complex digital systems, such as microprocessors 
and high speed telecommunication chips [1]. FPGAs 
are suitable for prototypes of systems [2] whose correct 
operation is necessary for the evaluation of new 
architectures. This requires changing the architecture 
during the design cycle with many reconfigurations of 
the same FPGA. The frequent reconfiguration of an 
FPGA makes it more fault-prone [3].  

There are many components of an FPGA to test 
for ensuring reliable usage of this device. Algorithms 
for interconnect testing are discussed in References [4, 
5]. In References [6, 7, 8] general test algorithms for 
Arrays of RAMs/LUTs has been proposed.  

In this paper, we only consider test of LEs and 
focus on LUTs within LEs. There are different 
methods for LE testing.  One may use I/O pins for 
applying test vectors to LEs and collecting test results 
[8, 9]. But, usage of I/O pins for test decreases the 
number of I/O pins available for normal operation. If 
detailed information for JTAG implementation was 
available, usage of JTAG pins as an interface to apply 
test vectors and retrieve LEs' results would be suitable 
[10]. 

A Built-In-Self-Test (BIST) architecture has been 
proposed for LEs testing [11], which eliminates the 
usage of I/O and JTAG pins. In this paper we address 
this approach for LUT testing of LEs. Our objective is 
to propose a BIST architecture with a good balance 
between various costs. Test time, test area and 
granularity are such trade-offs. 

In this scheme, LUTs of the FPGA are partitioned 
into Test Chains in which some LUTs are configured 
as Test Pattern Generators (TPGs) and some as Circuit 
Under Tests (CUTs). The arrangement is introduced in 
Section 2. However, in our method while TPG is 
generating test vectors for CUT, LUTs configured as 
TPG are also tested. In Section 3 our test strategy is 
presented. Section 4 provides a mathematical 
justification for the design of the ORA. Section 5 
shows its design and implementation results. In Section 
6 alternative structures, such as ORA multiplexing and 
algorithms with more reconfiguration time, are 
proposed to evaluate the trade-offs between test area 
and test time. Finally, Section 7 presents the 
experimental results that show the optimized BIST 
structure as well as costs of alternative approaches that 
we have proposed in the preceding section. 
Conclusions are presented in Section 8. 
 

2. BIST Architecture 
 

Our proposed BIST architecture chains a group of 
LUTs of FPGA logic elements to form test pattern 
generators and circuits to test and their corresponding 
output analyzer. This BIST structure is shown in 
Figure 1. As shown, some of the LUTs are configured 
as the Test Chain (TC) and the others as the ORA. 
Note that ORA faults are not detected. A subdivision 
of the entire BIST logic, containing a single TC and its 
ORA, is referred as a Partial BIST. The overall 
structure covers all LEs of an FPGA. 
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Figure 1. BIST architecture inside the FPGA 

There are many alternative arrangements for TCs 
and ORAs in an FPGA [14]. Some of the parameters 
affected by this partitioning are test time, ORA size, 
test area, and the number of detected faults. 

Test chains consist of Partial Chains (Figure 2) 
within which we have a Test Pattern Generator (TPG) 
and the Circuit Under Test (CUT). 

 
 

 
Figure 2. Chain Architecture 

 

The TPG is an address generator that produces 
addresses 0 to 15. For LUT testing, the input address 
should cover the complete address space of the 4-input 
LUT. Output of the TPG directly drives LE0 and is 
treated as the address for its LUT.  The output of the 
LE0 along with the three address bits of the TPG 
produces the address line of the next LE. Depending on 
the configuration, the arrangement of the address line 
varies. Address lines of the proceeding LUTs have the 
same arrangement relative to the preceding LEs. The 
Partial Chain structure is shown in Figure 3. 

 

 
Figure 3. Partial Chain Architecture     

3. Test Methodology 
 

Algorithms for LUT testing need to write different test 
patterns into LUTs, read contents of LUTs and check 
the correctness of what has been read. Arrays of LUTs 
with n inputs can be tested with at least by 

n2 configurations [6].  
These configurations for FPGA with 4-input LUTs 

are shown in Table 1 [12]. As shown, there are two 
groups of complementary patterns.  

The table shows standard patterns for memory 
testing treating a 16-bit Look-Up Table as a 16-bit 
word to test.  For reading this memory contents we 
address the LUT such that data read are from 
alternating 0 and 1 locations. The data read from an 
LUT is a periodic signal that is used for the clock input 
of the next Partial Chain. Being able to use arbitrary 
clocks for different LEs facilitates this procedure. 
Irregularities in the periodic signal indicate PC errors. 

We use these configurations to detect single stuck-
at, wrong cell read (write), no cell read (write) and 
additional cell read (write) faults in LUTs [12].  

Table 1. Test Patterns 
 

G1 G2 
C1 C3 C5 C7 
0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1  

C2 C4 C6 C8 
1 1 1 1 
1 1 1 0 
1 1 0 1 
1 1 0 0 
1 0 1 1 
1 0 1 0 
1 0 0 1 
1 0 0 0 
0 1 1 1 
0 1 1 0 
0 1 0 1 
0 1 0 0 
0 0 1 1 
0 0 1 0 
0 0 0 1 
0 0 0 0  

 
With these configurations output signals toggle 

regularly, therefore it can be used as clock input of its 
succeeding Partial Chain. Hence, the clock pulse 
width will be multiplied by two after passing through 
each Partial Chain. Figure 4 shows fault free signals 
for clocks. 
 

 
 

Figure 4. Fault Free Signal 
 

4. Fault Propagation 
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Propagation of faults follows rules that can be derived 
mathematically. An overview of two propagated faults 
can be seen in the simulation result shown in Figure 5.  
 

Figure 5. Simulation Result 
As mentioned earlier, clock pulse width is 

multiplied by two after passing through each Partial 
Chain. Referring to “width” as the time between an 
edge to the next similar edge of a signal: 
( ) ( ) 01 2...2 www i

irir === −  
In this equation i refers to the present Partial 

Chain, and i-1 to the previous Partial Chain. wr stands 
for the reference output pulse width of each Partial 
Chain. We assume w0 is the pulse width of the original 
clock (c0) driving the first TPG. 

 

4.1.   Single Fault Rules 
A single fault in any Partial Chain causes elimination 
of a pulse in the output of that Partial Chain. In effect, 
this extends width of a section of this output signal by 
wc (corrupt width). Figure 6 shows the effect of wc on 
the output of the Partial Chain. 

( ) 1−irw

( )irw

( )icw  
Figure 6. Fault Effect on the Response Signal 

 

Provided that this Partial Chain (ith) is the only 
faulty Partial Chain in the entire chain, the extra 
amount of wc will be carried through all Partial Chains 
to the final output of the chain by the following 
expression:  
( ) ( ) 01 22 www i

iric == −   (1) 
Thus, the corrupt pulse width (wc) depends on the 

Partial Chain in which the error occurs. 

 
 
 
4.2.   Multiple Fault Rules 
 

For analysis of error and location of a fault in a Partial 
Chain, let us assume we have a chain of n Partial 

Chains, and an input frequency of  f0. In a good circuit, 
the pulse width of the input signal is w0 = 1/ f0 and that 
of the last expected output is wn = 2n.w0. 

Multiple faults in different Partial Chains can be 
detected by examining the pulse width of this output 
signal. This output pulse width on the output resulting 
from multiple Partial Chain faults is an accumulation 
of all corrupt widths in Partial Chains leading to that 
output. Let fw be this accumulated width. This 
parameter is calculated by: 

( ) ∑
=

=
n

m

m
mnf wcw

1
0.2.    (2) 

Where cm = 1 if there is a fault in the mth Partial 
Chain and 0 otherwise. 

The above expression can be explained by the 
discussion that follows. Locations of Partial Chain 
faults can be found by examining the final response of 
the chain, whose width becomes: 

( ) ( )
nfnrn www +=  

Where n is the number of Partial Chains. (wr)n is the 
pulse width as expected at point n which is equal to 
2nw0, and (wf)n is the width of accumulated errors at 
that point. 

Propagation and accumulation of multiple faults is 
described by: 
( ) ( ) ( )icifif www +=

−1
  (3) 

which results in equation 2 for an entire chain. 
 

4.3. ORA Requirements 
 

Our proposed ORA is based on Equation 2. In this 
expression, cm value of 1 identifies the location of a 
fault in the mth Partial Chain. cm values form a binary 
number which is embedded in the pulse width of the 
test chain output and is extracted by our ORA to 
identify faulty Partial Chains and their locations. 
Figure 7 shows a typical chain with four Partial 
Chains and the ORA production. 

 
Figure 7. Fault Detection Areas 

5. ORA Hardware 
 

As mentioned in the previous section and shown in 
Figure 7, the ORA is placed after the last Partial 
Chain. The ORA's input signal is the Response signal 
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that carries the propagated faults in form of a widened 
pulse. The Response signal is expected to be a periodic 
signal and the faults appear as irregularities in this 
signal.  

The ORA counts the width (an edge to a similar 
edge) of pulses on the Response signal by the original 
system clock (whose width is w0). Depending on the 
number of Partial Chains, at least two counters are 
needed to detect Partial Chain faults. While the result 
of one of the counters is being registered, the other one 
counts the next Response width. The register 
accumulates the results of different widths by ORing 
them. This combines the previous results with the 
newer ones without losing any information. The ORA 
architecture is shown in Figure 8. 

 

 Figure 8. ORA Hardware Design 

The number of Partial Chains affects the ORA 
hardware. Calculations and experimental results show 
that the optimum ORA can detect multiple faults in 4 
partitions and since the initial TPG forms the first 
partition, the best number of Partial Chains 
becomes 3. 
 

6. Alternative Structures 
 

6.1. ORA Multiplexing 
 

The general structure introduced earlier in Section 3 
can be altered for special purposes. One idea is to 
change the partial BIST architecture by multiplexing 
an ORA between more than one test chains, as shown 
in Figure 9. By doing this, we can gain an expanded 
test area in the expense of increasing test time. 
Depending on the number of TCs detected by a single 
ORA (n), the test time increases n times. 
 

 
Figure 9. Alternative Partial BIST Structure 

 

6.2. Reconfiguring the FPGA 
 

Another option for improving testability of an FPGA is 
to use a large number of ORAs, and thus increase 
granularity of tested blocks. Recall that we can only 
detect one fault per Partial Chain. Making Partial 

Chains smaller gives us a better testability, but requires 
more ORAs.  

Obviously the more ORAs cause a larger area of an 
FPGA to be left untested. This can be remedied by 
switching FPGA areas that are dedicated to TPG-CUT 
with those of the ORAs. Switching FPGA areas 
requires twice as many configurations, but results in 
100% FPGA test coverage. 

The drawback of this method is the long time it 
takes for FPGA reconfiguration. With our test method, 
typically, a configuration time is 106 times a test time. 
 

7. Experimental Results 
 

7.1. Implementation 
 

Our proposed BIST has been synthesized and 
implemented on several Altera devices, such as 
FLEX10K, Cyclone, Stratix, ACEX1K and 
APEX20KE, using Altera Quatus II. 
 

7.2. Optimum ORA 
 

As mentioned before, the number of the Partial Chains 
affects the ORA hardware. Table 2 shows the results of 
synthesized ORAs for different number of Partial 
Chains on Altera FLEX10K device. 
 

Table 2. Results of Synthesis on Altera FLEX10K 
 
 

Number of 
Partial 
Chains 

1 2 3 4 5 6 7 

ORA Logic 
Cells 15 19 28 76 165 271 392 

 
 

To find the optimum number of Partial Chains in 
a TC for the best ORA, we express the hardware 
overhead as: 

faultsofnumber
ORAtheforusedLCsofNumberOverheadHardware

  
       =

 
The “number of faults” which can be detected is same 
as the number of Partial Chains. Figure 10 shows the 
hardware overhead of the required ORA for different 
number of Partial Chains. This graph shows the best 
ORA is obtained when the number of Partial Chains 
is 3. 
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Figure 10. ORA Hardware Overhead for Different 

Number of Partial Chains 
 

7.3. Test Area vs. Granularity  
 

By changing the number of chains, we have a trade off 
between test area and granularity. We define the test 
area as the ratio of the tested area to the total FPGA 
area: 

%100
    

   ×
+

=
CellsLogicORACellsLogicTC

CellsLogicTCareatest  

And the granularity can be defined by the number 
of detectable faults in 1000 LUTs. 

ChainPartialperLUTs
LUTsfaultsygranularit

   
1000)1000/( =

In what follows we present our case study and 
experimental results using a FLEX10K FPGA. 
Features utilized in this FPGA are found in all more 
advanced Altera devices. For the “Number of Partial 
Chains” and “ORA logic cells” we use 3 and 28, 
respectively. This calculates the test area and 
granularity as shown in Table 3-a and 3-b. 

By increasing the number of chains, we will need 
more ORAs and the test area will be decreased 
consequently. On the other hand, increasing the 
number of chains will make them smaller which results 
in less LUTs per Partial Chain and higher granularity. 
In other words, one can gain a high granularity by 
having a low test area and vice versa. 

 
Table 3-a. Granularity vs. Test Area 

 

Number of 
Chains 1 10 20 50 80 87 

Test Area (%) 99.3 92.5 85 62.6 40.2 34.9 

LUTs per PC 1239 115 53 16 6 5 

Granularity 0.81 8.66 18.8 63.9 160 200 
 

Table 3-b. Granularity vs. Test Area 
 

LUTs per Partial Chain 5 50 100 200 400 

Test Area (%) 34.9 84 91.4 95.5 97.7 

Granularity 200 21 10 5 2.5 

Number of Chains 87 64 11 6 3 
 

The highest test area can be achieved by having 
only one chain, which results in having 1239 LUTs per 
Partial Chain and a low granularity (0.81 faults in 
1000 LUTs). 

The best granularity can be achieved by having 
only 5 LUTs per Partial Chain (4 LUTs for the TGP 
and 1 for the CUT), which results in having 87 chains 
and 34.9% test area. 

 

7.4. Timing Analysis  
 

After configuring the FPGA and resetting the circuit, 
we will have to wait a number of clock periods for the 
circuit to become stable, for the faults to propagate, 
and for the ORA to detect the fault. Experimental 
observations show that for 8 LUTs per Partial Chain, 
the worst case takes 46 clock pulses for the circuit to 
become stable, and 86 clock pulses for the ORA to 
detect the faults. The synthesis results show that the 
circuit clock frequency can be up to 500 MHz and 
consequently the total test time becomes 264ns 
( nsns 264)6846(*2 =+ ). 

A typical configuration time for an Altera FPGA is 
about 250ms, which causes the test time become 
negligible [13]. 

 

7.5. ORA Multiplexing  
 

By assigning more test chains to a single ORA, we can 
have a gain in the test area. This is because we have 
eliminated some untested areas by replacing the ORAs 
with CUTs. Instead, the test time will increase. 
However since the test time is negligible compared to 
the configuration time and can be ignored. Table 4 
shows the gain in the test area by multiplexing ORAs 
between different numbers of TCs. 
 

Table 4. Test Area Gained by ORA Multiplexing 
 

Chains per 
ORA 1 5 10 20 50 100 154 

Test Area% 46 81 89 94 97 99.6 99.6 

 
Another possibility is breaking and multiplexing 

test chains for a fixed number of ORAs (Table 5). In 
this case no change in the test area will occur but, 
granularity can increase by having a slight increase in 
the test time. 

 

Table 5. Granularity Gained by ORA Multiplexing 
 

Chains per ORA 1 2 5 8 10 

Granularity 18.8 53 94 150.8 188 

7.6. Reconfiguring the FPGA 
 

The second alternative introduced in the previous 
section can be used to have a 100% test area with a 
desired granularity. The main cost is the number of 
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FPGA reconfigurations, which is relatively high, and 
significant. Table 6 shows test area and granularity for 
different number of reconfigurations. Note that we 
need to have 8 different configurations for each LUT in 
order to completely test it. If we partition the FPGA 
into two halves, one for the TCs and the other for the 
ORAs, then testing the ORA parts by replacing them 
doubles the number of reconfiguration (i.e. 2x8). 

 

Table 6. Granularity for Different Number of 
Reconfigurations 

 

Number of FPGA Reconfigurations 1x8 2x8 3x8 

Granularity (Faults/1000LUTs) 0.81 104.4 206.3 
 

All the cases examined in Table 6 have a 100% 
test area. For the case of 3x8 configurations, the 
partitioning made the ORAs hardware twice as much 
as the TCs hardware (33% test area in 1x8 
reconfigurations). By switching the location of the TCs 
and ORAs three times, a 100% test area can be 
achieved. The maximum possible granularity is 200 
faults per 1000 LUTs since we can have the minimum 
of 5 LUTs per Partial Chain. Thus the maximum test 
area and granularity can be achieved simultaneously by 
having 3x8 number of reconfigurations. 
 

8. Conclusion 
 

This paper presented a BIST architecture for FPGAs 
Look-Up Table testing.  The method is general and can 
be applied to most LUT based FPGAs. Our method is 
based on altering periodic signal pulse widths in the 
presence of Look-Up Table faults.  Using this method, 
we have designed an on-chip ORA which can detect 
one fault for every group of LUTs that we refer to as 
Partial Chains. Although using FPGA for the ORA 
reduces the test area, a 100% test can be achieved.  

There is a tradeoff between the ORA size and the 
number of faults that can be detected in an entire 
FPGA.  We have found that a Chain size of three 
Partial Chains yields the best ORA hardware. This 
BIST has been implemented in Altera FPGAs, and 
methods of programming the FPGA for the specific 
placement of the LUTs have been devised. Although 
the focus has been on LUTs, many logic faults between 
LUTs and LE Flip-flops are also detected. More work 
for FPGA RAM, and PLL testings is required to 
complete this methodology. 
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