
HAL Id: lirmm-00363689
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00363689

Submitted on 24 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Line Instruction-Checking in Pipelined
Microprocessors

Stefano Di Carlo, Giorgio Di Natale, Mariani Riccardo

To cite this version:
Stefano Di Carlo, Giorgio Di Natale, Mariani Riccardo. On-Line Instruction-Checking in
Pipelined Microprocessors. ATS: Asian Test Symposium, Nov 2008, Saporro, Japan. pp.377-382,
�10.1109/ATS.2008.47�. �lirmm-00363689�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00363689
https://hal.archives-ouvertes.fr

Abstract— Microprocessors performances have increased by
more than five orders of magnitude in the last three decades.
As technology scales down, these components become
inherently unreliable posing major design and test challenges.
This paper proposes an instruction-checking architecture to
detect erroneous instruction executions caused by both
permanent and transient errors in the internal logic of a
microprocessor. Monitoring the correct activation sequence of
a set of predefined microprocessor control/status signals allow
distinguishing between correctly and not correctly executed
instructions.

I. INTRODUCTION
Information technology drastically changes our world.

Economies are shifting from the industrial age of steel and
cars to the information age of computer networks and ideas
[1]. Microprocessors play a central role in this revolution.
They are commodity products and represent an essential part
of computers, cars, train controls, aircrafts, cellular phones,
and personal digital assistants, to name just a few.
Embedded microprocessors in daily surroundings are
gaining more recognition than in the past and this trend will
continue in the next years [2].

VLSI and microprocessors performances have increased
by more than five orders of magnitude in the last three
decades. As technology scales down we face new challenges
such as process variations, single event upsets (soft-errors
[3]), and device degradation ([4][5]) leading to inherent
unreliability of digital systems. With the massive use of
microprocessors in commodity applications we can expect
wider sectors of the electronic industry to be demanding for
on-line testing solutions in order to ensure the welfare of the
users of electronic products [6][7].

Traditional approaches based on massive redundancy such
as the ones proposed in [8][9][10][11][12][13][14][15]
[16][17][18][19] may not be suitable for applications with
strong constraints in terms of power consumption and
budget. Therefore, there is a need for new fault tolerance
methods that can be implemented at a reasonable cost.

This paper proposes an on-line testing methodology for
pipelined microprocessors based on concurrent instruction
checking, extending the methodology proposed in [20]. The
goal of the proposed solution is to detect errors appearing in
the control unit of a pipelined microprocessor by monitoring
a subset of the microprocessor’s control and status signals.
The proposed approach targets both transient and permanent
faults and it is able to on-line detect faults that lead to a
variation of the activation sequence of the monitored signals.

One of the main advantages of the proposed schema, with
respect to the solution proposed in [20], is a precise
methodology that allows identifying the minimum set of
signals to monitor in order to reach the desired level of fault
detection, thus minimizing the overall hardware overhead.

The paper is organized as follows. Section II introduces
the proposed instruction checking technique, whereas
section III details the algorithm for the selection of the
minimum number of signals to monitor. Section IV
describes the results of the application of the instruction
checking to an open source microprocessor core, and finally
section V summarizes the main contributions of the work
and concludes the paper.

II. INSTRUCTION CHECKING
Figure 1 shows the basic architecture required to

implement the proposed instruction checking methodology.
It comprises four main blocks: (i) the microprocessor under
test (MUT), (ii) the system memory containing the program
to execute and its data, (iii) the system bus used to fetch
instructions and data from the memory, and (iv) the
Instruction Checking Module (ICM), an external block able
to understand whether the microprocessor correctly executes
the instructions fetched from the system bus.

Every time the MUT fetches an instruction, the same

instruction is also fetched by the ICM. The ICM
continuously monitors the waveforms produced by a
selected set of control and status signals coming from the
microprocessor. Either MUT’s external or internal signals
(when available) can be monitored by the ICM. By
comparing these waveforms with a set of pre-calculated ones
obtained by simulation, the ICM tries to identify erroneous
instruction executions. The proposed approach covers errors

On-Line Instruction-checking in Pipelined Microprocessors

Stefano Di Carlo
 Department of Control and

Computer Engineering, Politecnico
di Torino, Torino, Italy.

E-mail: stefano.dicarlo@polito.it

Giorgio Di Natale
 Laboratoire d’Informatique, de

Robotique et de Microélectronique
de Montpellier UMR 5506, France.
E-mail:giorgio.dinatale@lirmm.fr

Riccardo Mariani
Yogitech s.p.a., Pisa, Italy

E-mail:
riccardo.mariani@yogitech.com

Figure 1. Instruction checking architecture.

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.47

375

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.47

377

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

in the control unit of the MUT that manifest as a
modification of the activation sequence of the monitored
signals. Errors appearing in the data processed by the
instructions that do not modify the activation sequence of the
monitored signals are not covered. Nevertheless, this type of
error has been already addressed in literature resorting to
data redundancies [21] [22].

The implementation of the instruction checking
architecture of Figure 1 presents two major challenges:
• The identification of the best set of signals to monitor.

The higher is the number of monitored signals, the
higher is the number of recognized instructions.
Nevertheless, the complexity of modern
microprocessors and the very high number of available
signals requires the identification of an optimal subset
guaranteeing the highest coverage with the lowest
complexity. This task is not trivial and requires
opportune algorithms;

• The definition of an ICM architecture keeping the
hardware overhead as low as possible.

The following subsections will introduce a set of basic
concepts needed to address the proposed challenges.

A. Microprocessor signal classifications
Considering a generic microprocessor, the full set of

available Observable Signals (OS) can be classified based on
the effort required for their external monitoring:
• External Signals, corresponding to the external pins of

the microprocessor. They can be directly routed from
the MUT to the ICM and therefore they are fairly easy
to monitor;

• Internal Signals, corresponding to the internal nets of
the microprocessor. Their observation is only possible
when the microprocessor design is available and
modifiable since it requires the introduction of
additional pins. They should be considered only if
really required, i.e., if their contribution to the final
coverage justifies the cost of the microprocessor design
modification.

Based on this classification, for each signal s ∈ OS it is
possible to define a Signal Observation Cost (SOC) taking
into account the cost to route the signal from the MUT to the
ICM. The design of the ICM requires the identification of
the minimum set of observable signals that maximizes the
fault detection capabilities and minimizes the global
observation cost.

B. Microprocessor pipeline and data path
Almost all modern microprocessors use pipelines to

enhance their performance. Even if each microprocessor
family presents different implementations, this paper
considers a generic 5-stages pipeline. The proposed model is
general enough to be mapped on several commercial
microprocessors. Moreover, the proposed instruction
checking architecture is not limited to this pipeline model
and can be easily extended to more complex architectures
The five stages pipeline performs the following tasks:

• Instruction fetch: the instruction is fetched from
memory and placed in the instruction cache;

• Decode: the instruction is decoded;
• Operands fetch: the instruction operands are read from

the register file/memory.
• Execute: the operation is executed;
• Write-back: the instruction results are written back to

the register file or to the memory.
Depending on the microprocessor architecture, Operands
fetch and Execute operations may require more than one
clock cycle.

 The organization of the pipeline leads to a partition of the
blocks composing the microprocessor data-path. Figure 2
shows an example of a generic microprocessor data-path
partitioned into five different areas corresponding to the five
stages of the pipeline. According to this partitioning we can
easily suppose that, during the execution of a program, each
stage of the pipeline drives a distinct set of signals not driven
by other stages. This partitioning is extremely important to
identify the signal waveforms generated by each instruction
as will be detailed in section III.A.

C. Signal-fingerprints
The concepts introduced in sections II.A and II.B lead to

the conclusion that in a pipelined microprocessor each
instruction identifies a particular activation sequence of the
set of observable signals OS.

Def. 1: Given an Instruction (I), and a set of Monitored
Signals (MS ⊆ OS), the signals-fingerprint of I is a m × n
matrix M where m is the number of pipeline stages, n = MS
is the cardinality of MS (i.e., the number of monitored
signals), and each element M[i, j] ∈ 0,1,−{ } represents the
value of the jth monitored signal in the ith stage of the
pipeline. The ‘-‘ symbol means that the signal is not driven
in the pipeline stage.

Eq. 1 shows an example of signals-fingerprint for the
proposed 5-stages pipeline and a set of seven MS.

Figure. 2. Generic data-path partitioning.

376378

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

M =

1 0 - - - - -

- - 1 - - - -

- - - 1 1 - -

- - - - 1 1 -

- - - - - - 0

Clk1 (Fetch)

Clk2 (Decode)

Clk3 (Op.Fetch)

Clk4 (Execute)

Clk5 (Write − Back)

 s1 s2 s3 s4 s5 s6 s7

 (1)

Depending on the target microprocessor, the number of

clock cycles required to execute the instructions composing
the instruction set can be constant (e.g., five clock cycles in
a 5-stages pipeline) or not. In the identification of the
signals-fingerprints this possibility must be taken into
account. Signals-fingerprints allow an easy classification of
the microprocessor instructions.

Def. 2: An “Instructions Class” is a set of instructions
identified by the same signals-fingerprint.

Instructions belonging to the same class cannot be
distinguished by the ICM without monitoring additional
signals. There is no way to guarantee a correlation between
instruction classes, and groups of instructions with the same
functionality (e.g., arithmetic, branches, etc.). Nevertheless,
since instructions with same functionality are supposed to
use the same functional blocks and therefore involve the
same set of control signals, we can likely expect a
correlation.

Lemma 1: A microprocessor instruction is covered by the
instruction checking if, by observing the selected set of
monitored signals (MS), it is possible to distinguish between
the given instruction and all the remaining ones.

D. ICM generic architecture
Based on the definition of signals-fingerprint (Def.1),

Figure 3 proposes a generic ICM implementation. The ICM
reads the OPCODE of each instruction fetched from the
system bus. The Instruction Decoder is a look-up table; it
decodes the OPCODE and provides the values expected on
MS (signals-fingerprints). Depending on the pipeline stage
driving the signals, opportune delay blocks are inserted to
guarantee the synchronization with the pipeline. At each
stage of the pipeline, the expected signals and the actual
signals produced by the processor are compared. In case of
mismatch the go / nogo output notifies the event to the
system. Interrupts do not represent a limitation for this
architecture. The ICM analyzes the execution of a single
instruction at a time, no matter the type of program currently
executed (i.e., user program, system call, interrupt handler,
etc.).

The ICM focuses on errors inside the microprocessor
only, it does not consider errors appearing on the bus or on
the internal memory. The problem of on-line testing the
system bus and the system memory using error
detection/correction codes is a well-known problem and
many solutions can be found in literature. The system bus
and memory are therefore considered error free.

III. SELECTION OF MONITORED SIGNALS
This section addresses the selection of the minimum set of

microprocessor signals the ICM has to monitor in order to
reach the desired level of instructions coverage (see Lemma
1). The selection process has to trade-off between the
number of signals to monitor, and the cost of the selected
signals (see section II.A). It includes two phases: (i) the
signals-fingerprints generation computed for each instruction
and for the whole set of observable signals, and (ii) the
signals-fingerprints analysis. The following subsections
detail the two phases.

A. Signals-fingerprints generation
For each microprocessor instruction I, the corresponding

signals-fingerprint considering the full set OS of observable
signals has to be computed. Each signals-fingerprint is
computed by simulating the MUT and by analyzing the
waveforms (simulation dump) produced on the OS. For each
instruction I the generation of the simulation dump requires
the execution of the small test program proposed in Figure 4.
This sequence of instructions, designed for a generic N-
stages pipeline, guarantees the target instruction traverses all
the N stages of the pipeline.

The simple use of simulations is not enough for the
signals-fingerprint computation. In fact, at a certain time t,
the value of the observed signals depends on all the
instructions currently loaded in the MUT pipeline, not only
on the single target instruction. It is therefore mandatory to
know, for each signal s ∈ OS , the stage of the pipeline in
charge of its control (see section II.A). This information can
be obtained by analyzing the internal structure (e.g., the
VHDL/Verilog description) of the microprocessor.

From the simulation dump of each instruction and from
the knowledge of the pipeline signals partitioning it easy to
define the activation matrix M that identifies each signals-
fingerprint (see Def. 1).

Figure. 3. Generic ICM Architecture.

377379

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

B. Signals-fingerprints analysis
The signals-fingerprints analysis is the algorithm needed

for the identification of the minimum set of signals to
monitor during the instruction checking.

Given the signals-fingerprint of each instruction computed
over the full set of OS (see section III.B), and an upper
bound on the number of selectable signals (#SS) that can be
monitored by the ICM, the algorithm identifies the best
solution in terms of monitored signals MSi ⊆ OS for I
ranging between 1 and #SS. Each solution MSi is the set of i
observable signals that minimizes cost function of Eq.2.

() ()

33()
22#,#

11)(fCfCIICfCCF iMS ⋅+⋅+⋅= (2)

where:

• f1(#IC,#I) measures the number #IC of Instructions
Classes identified by the signals composing the
solution over the number #I of available instructions
(Eq. 3). The higher is #IC, the higher is the coverage
(see Lemma 1) of the solution. f1 is a linear function
equal to 0 in case #IC = #I (100% of coverage) and
equal to 100 in case of #IC=1 (0% of fault coverage);

• f2 measures the observation cost of the solution
calculated as the sum of the Signal Observation Costs
(SOC) of the selected signals (see section II.A)
normalized to 100 (Eq. 4). The SOC depends on the
application and evaluates the effort needed to route the
signal from the processor to the ICM. Low cost signals
will be best candidates for being included in the
solution. Signals with null cost will be always selected;

• f3 measures how the instructions classes identified by
the solution are balanced in terms of number of
instructions (Eq. 5 and Eq. 6). A solution identifying
two classes each one composed of two instructions will
be preferred (less cost) to a solution with two classes
with one and three instructions respectively (higher
cost). This measure is defined as the standard deviation
of the cardinality of each instructions class |ICi| over
the standard deviation of the worst distribution
normalized to 100. The worst distribution consists in
#IC-1 classes including a single instruction and a
single class including the remaining ones (#I-#IC-1).

f1(# IC ,# I) = 100 − 100

(# I − 1)
(# IC −1) (3)

f2 () = SOCsj

∀signal sj in solution

100
max(SCk)∀solution k

(4)

()
WD

IC

i

i

n
ICIC

f
σ
100()

deviation standard

#

1

2

3 ⋅
−

= ∑
=

 (5)

σWC =
1− IC()2

n
+

I−# IC −1()− IC()2

n
i=1

IC −1

 (6)

The three constants C1, C2, and C3 can be freely defined

and they allow weighting the different parameters depending
on the specific application.

Given the number i of signals to include into a solution
(1 ≤ i ≤# SS) the identification of the set of signals that
minimizes CF can be performed using two different
approaches:

• Exhaustive: the entire set of combinations of the
observable signals into groups of i signals is evaluated.
For each combination CF is evaluated and the solution
with minimum cost is selected. The number of the
possible solutions to evaluate is defined in Eq. 7.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
OS

Solutions
#

(7)

• Greedy: the selection of a new signal is done
considering the solution obtained so far, and adding the
signal that locally minimizes CF. The steps of the
greedy algorithm are summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS
We implemented the proposed instruction checking

architecture for the open source Plasma CPU core [23]. This
processor supports all MIPS I™ user mode instructions with

NOP

NOP

...

N

Instruction

NOP

NOP

...

N

Figure. 4. Test program for the simulation dump generation on a
MUT with a N-stages pipeline.

Algorithm 1: Greedy Algorithm
1. MS ← ∅
2. while (MS < i) do
3. MinCost← ∞,newsignal← NULL
4. foreach (s ∈ OS∧ s ∉ MS) do
5. if (CF(MS ∪s) < MinCost) then
6. MinCost← CF(MS ∪s),newsignal← s
7. end if
8. done
9. MS ← MS ∪newsignal
10. done

378380

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

the exception of unaligned load and store operations that are
patented. The architecture of this processor is sketched in
Figure 5. The processor has a simplified 3-stages pipeline.

We successfully generated the full set of signals-

fingerprints for all the available instructions according to the
procedure introduced in section III.A. We considered an
initial set of 28 observable signals (OS) including all signals
controlled by the microprocessor control unit.

Being #OS not too high, we applied the exhaustive
selection algorithm proposed in section III.B with #SS equal
to 28. The result of the algorithm is that by monitoring 21
signals over the 28 available we are able to reach the
maximum instructions coverage with the minimum cost. The
execution of the exhaustive algorithm required about 2 hours
on a Intel Core Duo with 1GB of RAM.

The selected solution identifies 56 instruction classes over
60 instructions. Only 3 classes contain more than 1
instruction. In particular, the following instructions cannot
be distinguished by the ICM:
• ADDI and ADDIU
• ADD, ADDU and DADDU
• SUB and SUBU

As expected there is a strong correlation between

instructions classes and instructions grouped by their
functionalities.

All selected signals are driven in the execute stage (2nd
stage) of the pipeline. This characteristic strongly reduces
the complexity of the ICM and thus the final overhead. The
instruction coming from the bus is fetched by the processor
and at the same time by the ICM. The instruction is decoded
inside the ICM in order to generate the set of signals that the
processor should generate in order to correctly execute that
instruction. Two additional signals (coming from the
processor) are used to synchronize the execution of long
instructions, i.e., instructions that require more than one
clock cycle to be executed (e.g., multiplication instructions
and load/store instructions performed with a slow access

memory).
The whole system (processor, ICM, memory and bus) has

been synthesized with RTL Compiler (Cadence) [24]. The
area of the circuit is reported in Figure 5. A first good result
of the proposed architecture is that the area overhead is not
high. Indeed, the ICM counts of 193 cells, with an overall
overhead equal to 1,43%.

In order to understand the effectiveness of the proposed

architecture we set up a fault injection campaign to calculate
the detection capability of the ICM in presence of a Single
Event Upset (SEU) appearing into an internal flip-flop of the
microprocessor.

The experiments consist in injecting bit-flips in the
microprocessor register while it is executing a small
assembly program designed to extensively use the complete
instruction set. The program is composed of 72 instructions.
Bit-flips are injected during all possible clock cycles from
the first executed instruction to the last one.

Over 6900 injected SEUs, only 368 produced an error at
the output of the microprocessor. That means that all the
other bit flips targeted “not alive” flip-flops, i.e., their value
was not relevant for the application or their value was lately
re-written without reading it. Over the 368 relevant SEUs
the ICM has been able to detect 286 faults, reaching a
coverage percentage of 76,63%.

Figure 6 summarizes the coverage capability related to the
processor’s functional blocks. It’s interesting to note that
while the fault coverage is quite high for internal registers,
the coverage of the Program Counter’s flip-flops is not very
high. This is normal because this technique does not target
control flow errors but it aims at the detection instructions
not correctly executed. A fault in the program counter would
most likely lead to a control flow error, i.e., the next
executed instruction will not be the correct one. Anyway,
this technique guarantees that the instruction fetched by the
processor is correctly executed (even if it’s not the expected

Figure. 5. Plasma CPU architecture.

===
Generated by: Encounter(r) RTL Compiler v06.10-s007_1
Generated on: Jan 30 2007 11:21:24 AM
Module: ICM_system
Technology libraries: c35_CORELIB 2.0
c35_IOLIB_4M 1.9
Operating conditions: _nominal_ (balanced_tree)
Wireload mode: enclosed
===

Instance Cells Cell Area Net Area

ICM_system 7199 1155245 172701
 u1_cpu 7005 1138574 166140
 u4_reg_bank 3685 829265 76230
 u8_mult 1287 132787 26667
 u2_mem_ctrl 477 46810 6237
 u7_shifter 472 32360 9279
 u6_alu 251 28028 4905
 u5_bus_mux 349 26954 4608
 u1_pc_next 194 24424 2268
 u3_control 212 12230 2934
 u3_ICM 193 16598 2880

Figure. 5. Synthesis results.

379381

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

instruction to be executed). Without considering faults
affecting the program counter, the ICM is able to detect
89,70% of faults.

V. CONCLUSIONS
This paper proposed an on-line testing methodology for

pipelined microprocessors. It aims at detecting errors
appearing in the control unit of a pipelined microprocessor.
The overall idea is to monitor a set of control signals of the
target microprocessor identifying erroneous sequences of
activations. The main problem in applying this technique is
the identification of the set of signals to monitor in order to
guarantee a high level of fault detection vs. a low complexity
of the hardware introduced to perform the check. We
proposed an algorithm to identify the minimum set of signal
to monitor in order to reach a certain level of detection.

We successfully applied this technique to an open source
processor obtaining promising fault detection coverage with
a very reduced hardware overhead.

REFERENCES
[1] “A survey of the world economy: The hitchhiker’s guide to

cybernomics”, The Economist, September 28 1996.
[2] K. Sakamura, “Farewell message”, IEEE Micro Vol. 22, Issue 6.,

2002, pp. 2.
[3] N. Seifert, X. Zhu, L.W. Massengill, “Impact of scaling on Soft-Error

Rates in Commercial Microprocessors”, IEEE Transaction on Nuclear
Science, Vol. 49, No. 6, Dec. 2002.

[4] S. Borkar er al., “Parameter Variations and Impact on Circuits and
Microarchitecture”, 40th Design Automation Conference, DAC03,
IEEE CS Press, 2003, pp. 338-342.

[5] F. Irom, F.H. Farmanesh, G.M. Swift, A.H. Johnston, G.L. Yoder,
“Single-event upset in evolving commercial silicon-on-insulator

microprocessor technologies”, IEEE Transactions on Nuclear Science,
Volume 50, Issue 6, Part 1, Dec. 2003, pp:2107 – 2112.

[6] M. Nicolaidis, Y. Zorian, “On-Line Testing for VLSI – A
Compendium of Approaches”, Journal of Electronic Testing, Volume
12, Numbers 1-2, 1998, pp. 7-20.

[7] S. Kim, A. K. Somani. “On-Line Integrity Monitoring of
Microprocessor Control Logic.”, 2001 International Conference on
Computer Design, ICCD 2001, 23-26 Sept. 2001, pp.:314-319.

[8] S. S. Yau, F. Ch. Chen, “An Approach to Concurrent Control Flow
Checking”, IEEE Transaction on Software Engineering, Vol. SE-6,
No. 2, pp. 126-137, 1980.

[9] R. Leveugle, T. Michel, G.Saucier, “Design of Microprocessors with
Built-In On-Line test”, 20th International Symposium on Fault-
Tolerant Computing (FTCS-20), pp. 450-456, 1990.

[10] A. Mahamood, E. J. McCluskey, “Concurrent Error Detection Using
Watchdog Processor - A Survay”, IEEE Transaction on Computer,
Vol. 37, No. 2, pp. 160-174, 1988.

[11] D. J. Lu, “Watchdog processors and VLSI” in Proc. Nat. Electron.
Conf., vol. 34, 1980, pp. 240–245.

[12] A. Mahmood and E. J. McCluskey, “Watchdog processor: Error
coverage and overhead” in Digest, 15th Ann. Int’l. Symp. Fault-
Tolerant Computing (FTCS-15), 1985, pp. 214–219.

[13] M. Namjoo, “Techniques for Concurrent Testing of VLSI Processor
Operation”, International Test Conference (ITC-82), pp. 461-468,
1982.

[14] M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X. Zhu, “Expermental
Evaluation of Two Concurrent Error Detection Schemes”, 16th
International Symposium on Fault Tolerant Computing (FTCS-16),
pp. 138-143, 1986

[15] K. Wilken, J.P. Shen, “Continuous Signature Monitoring: Low-Cost
Concurrent Detection of Processor Errors”, IEEE Transaction on
Computer Aided Design and Systems, Vol. 9, Issue 6, pp. 629-641,
June 1990.

[16] T. Michel, R. Leveugle, G. Saucier, “A New Approach to Control
Flow Checking without Program Modification”, 21th International
Symposium on Fault-Tolerant Computing (FTCS-21), pp. 334-341,
1991.

[17] Shambhu Upaddhyaya, Bina Ramamurthy, “Concurrent Process
Monitoring with No Reference Signatures”, IEEE Transaction on
Computer, Vol. 43 no. 4, pp. 475-480, April 1994.

[18] G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, “Use of Time and
Address Signatures for Control Flow Checking”, 5th IFIP Working
Conference on Dependable Computing for Critical Applcation
(DCCA-5), pp. 113-124, 1995.

[19] X. Delord, G.Saucier, “Control Flow in Pipelined RISC
Microprocessor: The Motorola MC88100 Case Study”, Workshop on
Real Time (Euromicro '90), pp. 162-169, 1990.

[20] S. F. Daniels. “A concurrent test technique for standard
microprocessors”. In Digest of Papers, COMPCON Spring 83, pages
389-394, San Francisco, February 1983.

[21] N. Oh, S. Mitra, E.J. McCluskey, “ED4I: error detection by diverse
data and duplicated instructions”, IEEE Transactions on Computers,
Volume 51, Issue 2, Feb. 2002 Page(s):180 – 199.

[22] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, “A watchdog
processor to detect data and control flow errors”, 9th IEEE On-Line
Testing Symposium, 2003. IOLTS 2003. 7-9 July 2003, Kos (Greece),
Page(s):144 – 148.

[23] http://www.opencores.org
[24] http://www.cadence.com

Figure. 6. SEU Coverage related to Processor’s functional blocks.

380382

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

