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Abstract— Microprocessors performances have increased by 
more than five orders of magnitude in the last three decades. 
As technology scales down, these components become 
inherently unreliable posing major design and test challenges. 
This paper proposes an instruction-checking architecture to 
detect erroneous instruction executions caused by both 
permanent and transient errors in the internal logic of a 
microprocessor. Monitoring the correct activation sequence of 
a set of predefined microprocessor control/status signals allow 
distinguishing between correctly and not correctly executed 
instructions.  

I. INTRODUCTION 
Information technology drastically changes our world. 

Economies are shifting from the industrial age of steel and 
cars to the information age of computer networks and ideas 
[1]. Microprocessors play a central role in this revolution. 
They are commodity products and represent an essential part 
of computers, cars, train controls, aircrafts, cellular phones, 
and personal digital assistants, to name just a few. 
Embedded microprocessors in daily surroundings are 
gaining more recognition than in the past and this trend will 
continue in the next years [2]. 

VLSI and microprocessors performances have increased 
by more than five orders of magnitude in the last three 
decades. As technology scales down we face new challenges 
such as process variations, single event upsets (soft-errors 
[3]), and device degradation ([4][5]) leading to inherent 
unreliability of digital systems. With the massive use of 
microprocessors in commodity applications we can expect 
wider sectors of the electronic industry to be demanding for 
on-line testing solutions in order to ensure the welfare of the 
users of electronic products [6][7].   

Traditional approaches based on massive redundancy such 
as the ones proposed in [8][9][10][11][12][13][14][15] 
[16][17][18][19] may not be suitable for applications with 
strong constraints in terms of power consumption and 
budget. Therefore, there is a need for new fault tolerance 
methods that can be implemented at a reasonable cost.  

This paper proposes an on-line testing methodology for 
pipelined microprocessors based on concurrent instruction 
checking, extending the methodology proposed in [20]. The 
goal of the proposed solution is to detect errors appearing in 
the control unit of a pipelined microprocessor by monitoring 
a subset of the microprocessor’s control and status signals. 
The proposed approach targets both transient and permanent 
faults and it is able to on-line detect faults that lead to a 
variation of the activation sequence of the monitored signals.  

One of the main advantages of the proposed schema, with 
respect to the solution proposed in [20], is a precise 
methodology that allows identifying the minimum set of 
signals to monitor in order to reach the desired level of fault 
detection, thus minimizing the overall hardware overhead. 

The paper is organized as follows. Section II introduces 
the proposed instruction checking technique, whereas 
section III details the algorithm for the selection of the 
minimum number of signals to monitor. Section IV 
describes the results of the application of the instruction 
checking to an open source microprocessor core, and finally 
section V summarizes the main contributions of the work 
and concludes the paper. 

II. INSTRUCTION CHECKING 
Figure 1 shows the basic architecture required to 

implement the proposed instruction checking methodology. 
It comprises four main blocks: (i) the microprocessor under 
test (MUT), (ii) the system memory containing the program 
to execute and its data, (iii) the system bus used to fetch 
instructions and data from the memory, and (iv) the 
Instruction Checking Module (ICM), an external block able 
to understand whether the microprocessor correctly executes 
the instructions fetched from the system bus.  

 
Every time the MUT fetches an instruction, the same 

instruction is also fetched by the ICM. The ICM 
continuously monitors the waveforms produced by a 
selected set of control and status signals coming from the 
microprocessor. Either MUT’s external or internal signals 
(when available) can be monitored by the ICM. By 
comparing these waveforms with a set of pre-calculated ones 
obtained by simulation, the ICM tries to identify erroneous 
instruction executions. The proposed approach covers errors 
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Figure 1.  Instruction checking architecture. 
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in the control unit of the MUT that manifest as a 
modification of the activation sequence of the monitored 
signals. Errors appearing in the data processed by the 
instructions that do not modify the activation sequence of the 
monitored signals are not covered. Nevertheless, this type of 
error has been already addressed in literature resorting to 
data redundancies [21] [22]. 

The implementation of the instruction checking 
architecture of Figure 1 presents two major challenges: 
• The identification of the best set of signals to monitor. 

The higher is the number of monitored signals, the 
higher is the number of recognized instructions. 
Nevertheless, the complexity of modern 
microprocessors and the very high number of available 
signals requires the identification of an optimal subset 
guaranteeing the highest coverage with the lowest 
complexity. This task is not trivial and requires 
opportune algorithms; 

• The definition of an ICM architecture keeping the 
hardware overhead as low as possible. 

The following subsections will introduce a set of basic 
concepts needed to address the proposed challenges. 

A. Microprocessor signal classifications 
Considering a generic microprocessor, the full set of 

available Observable Signals (OS) can be classified based on 
the effort required for their external monitoring: 
• External Signals, corresponding to the external pins of 

the microprocessor. They can be directly routed from 
the MUT to the ICM and therefore they are fairly easy 
to monitor; 

• Internal Signals, corresponding to the internal nets of 
the microprocessor. Their observation is only possible 
when the microprocessor design is available and 
modifiable since it requires the introduction of 
additional pins. They should be considered only if 
really required, i.e., if their contribution to the final 
coverage justifies the cost of the microprocessor design 
modification.  

Based on this classification, for each signal s ∈ OS  it is 
possible to define a Signal Observation Cost (SOC) taking 
into account the cost to route the signal from the MUT to the 
ICM. The design of the ICM requires the identification of 
the minimum set of observable signals that maximizes the 
fault detection capabilities and minimizes the global 
observation cost. 

B. Microprocessor pipeline and data path 
Almost all modern microprocessors use pipelines to 

enhance their performance. Even if each microprocessor 
family presents different implementations, this paper 
considers a generic 5-stages pipeline. The proposed model is 
general enough to be mapped on several commercial 
microprocessors. Moreover, the proposed instruction 
checking architecture is not limited to this pipeline model 
and can be easily extended to more complex architectures 
The five stages pipeline performs the following tasks: 

• Instruction fetch: the instruction is fetched from 
memory and placed in the instruction cache; 

• Decode: the instruction is decoded; 
• Operands fetch: the instruction operands are read from 

the register file/memory.  
• Execute: the operation is executed; 
• Write-back: the instruction results are written back to 

the register file or to the memory. 
Depending on the microprocessor architecture, Operands 
fetch and Execute operations may require more than one 
clock cycle. 

 The organization of the pipeline leads to a partition of the 
blocks composing the microprocessor data-path. Figure 2 
shows an example of a generic microprocessor data-path 
partitioned into five different areas corresponding to the five 
stages of the pipeline. According to this partitioning we can 
easily suppose that, during the execution of a program, each 
stage of the pipeline drives a distinct set of signals not driven 
by other stages. This partitioning is extremely important to 
identify the signal waveforms generated by each instruction 
as will be detailed in section III.A. 

 

C. Signal-fingerprints 
The concepts introduced in sections II.A and II.B lead to 

the conclusion that in a pipelined microprocessor each 
instruction identifies a particular activation sequence of the 
set of observable signals OS. 

Def. 1: Given an Instruction (I), and a set of Monitored 
Signals ( MS ⊆ OS ), the signals-fingerprint of I is a m × n  
matrix M where m is the number of pipeline stages, n = MS  
is the cardinality of MS (i.e., the number of monitored 
signals), and each element M[i, j ] ∈ 0,1,−{ } represents the 
value of the jth monitored signal in the ith stage of the 
pipeline. The ‘-‘ symbol means that the signal is not driven 
in the pipeline stage.  

Eq. 1 shows an example of signals-fingerprint for the 
proposed 5-stages pipeline and a set of seven MS. 

 

 
Figure. 2.  Generic data-path partitioning. 
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Clk4  (Execute)

Clk5 (Write − Back)

         s1    s2   s3   s4   s5   s6  s7

 (1) 

 
Depending on the target microprocessor, the number of 

clock cycles required to execute the instructions composing 
the instruction set can be constant (e.g., five clock cycles in 
a 5-stages pipeline) or not. In the identification of the 
signals-fingerprints this possibility must be taken into 
account. Signals-fingerprints allow an easy classification of 
the microprocessor instructions.  

Def. 2: An “Instructions Class” is a set of instructions 
identified by the same signals-fingerprint.  

Instructions belonging to the same class cannot be 
distinguished by the ICM without monitoring additional 
signals. There is no way to guarantee a correlation between 
instruction classes, and groups of instructions with the same 
functionality (e.g., arithmetic, branches, etc.). Nevertheless, 
since instructions with same functionality are supposed to 
use the same functional blocks and therefore involve the 
same set of control signals, we can likely expect a 
correlation. 

Lemma 1: A microprocessor instruction is covered by the 
instruction checking if, by observing the selected set of 
monitored signals (MS), it is possible to distinguish between 
the given instruction and all the remaining ones.  

D. ICM generic architecture 
Based on the definition of signals-fingerprint (Def.1), 

Figure 3 proposes a generic ICM implementation. The ICM 
reads the OPCODE of each instruction fetched from the 
system bus. The Instruction Decoder is a look-up table; it 
decodes the OPCODE and provides the values expected on 
MS (signals-fingerprints). Depending on the pipeline stage 
driving the signals, opportune delay blocks are inserted to 
guarantee the synchronization with the pipeline. At each 
stage of the pipeline, the expected signals and the actual 
signals produced by the processor are compared. In case of 
mismatch the go / nogo output notifies the event to the 
system. Interrupts do not represent a limitation for this 
architecture. The ICM analyzes the execution of a single 
instruction at a time, no matter the type of program currently 
executed (i.e., user program, system call, interrupt handler, 
etc.).  

The ICM focuses on errors inside the microprocessor 
only, it does not consider errors appearing on the bus or on 
the internal memory. The problem of on-line testing the 
system bus and the system memory using error 
detection/correction codes is a well-known problem and 
many solutions can be found in literature. The system bus 
and memory are therefore considered error free. 

 

III. SELECTION OF MONITORED SIGNALS 
This section addresses the selection of the minimum set of 

microprocessor signals the ICM has to monitor in order to 
reach the desired level of instructions coverage (see Lemma 
1). The selection process has to trade-off between the 
number of signals to monitor, and the cost of the selected 
signals (see section II.A). It includes two phases: (i) the 
signals-fingerprints generation computed for each instruction 
and for the whole set of observable signals, and (ii) the 
signals-fingerprints analysis. The following subsections 
detail the two phases. 

A. Signals-fingerprints generation 
For each microprocessor instruction I, the corresponding 

signals-fingerprint considering the full set OS of observable 
signals has to be computed. Each signals-fingerprint is 
computed by simulating the MUT and by analyzing the 
waveforms (simulation dump) produced on the OS. For each 
instruction I the generation of the simulation dump requires 
the execution of the small test program proposed in Figure 4. 
This sequence of instructions, designed for a generic N-
stages pipeline, guarantees the target instruction traverses all 
the N stages of the pipeline. 

The simple use of simulations is not enough for the 
signals-fingerprint computation. In fact, at a certain time t, 
the value of the observed signals depends on all the 
instructions currently loaded in the MUT pipeline, not only 
on the single target instruction. It is therefore mandatory to 
know, for each signal s ∈ OS , the stage of the pipeline in 
charge of its control (see section II.A). This information can 
be obtained by analyzing the internal structure (e.g., the 
VHDL/Verilog description) of the microprocessor. 

From the simulation dump of each instruction and from 
the knowledge of the pipeline signals partitioning it easy to 
define the activation matrix M that identifies each signals-
fingerprint (see Def. 1). 

 
Figure. 3.  Generic ICM Architecture. 
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B. Signals-fingerprints analysis 
The signals-fingerprints analysis is the algorithm needed 

for the identification of the minimum set of signals to 
monitor during the instruction checking. 

Given the signals-fingerprint of each instruction computed 
over the full set of OS (see section III.B), and an upper 
bound on the number of selectable signals (#SS) that can be 
monitored by the ICM, the algorithm identifies the best 
solution in terms of monitored signals MSi ⊆ OS  for I 
ranging between 1 and #SS. Each solution MSi is the set of i 
observable signals that minimizes cost function of Eq.2. 

  
( ) ()

33()
22#,#

11)( fCfCIICfCCF iMS ⋅+⋅+⋅=  (2) 

where: 
 

•  f1(#IC,#I) measures the number #IC of Instructions 
Classes identified by the signals composing the 
solution over the number #I of available instructions 
(Eq. 3). The higher is #IC, the higher is the coverage 
(see Lemma 1) of the solution. f1 is a linear function 
equal to 0 in case #IC = #I (100% of coverage) and 
equal to 100 in case of  #IC=1 (0% of fault coverage); 

• f2 measures the observation cost of the solution 
calculated as the sum of the Signal Observation Costs 
(SOC) of the selected signals (see section II.A) 
normalized to 100 (Eq. 4). The SOC depends on the 
application and evaluates the effort needed to route the 
signal from the processor to the ICM. Low cost signals 
will be best candidates for being included in the 
solution. Signals with null cost will be always selected; 

• f3 measures how the instructions classes identified by 
the solution are balanced in terms of number of 
instructions (Eq. 5 and Eq. 6). A solution identifying 
two classes each one composed of two instructions will 
be preferred (less cost) to a solution with two classes 
with one and three instructions respectively (higher 
cost). This measure is defined as the standard deviation 
of the cardinality of each instructions class |ICi| over 
the standard deviation of the worst distribution 
normalized to 100. The worst distribution consists in 
#IC-1 classes including a single instruction and a 
single class including the remaining ones (#I-#IC-1). 

f1(# IC ,# I ) = 100 − 100

(# I − 1)
(# IC −1)  (3) 

f2 () = SOCsj

∀signal sj in solution

100
max(SCk )∀solution k
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σWC =
1− IC( )2

n
+

# I−# IC −1( )− IC( )2

n
i=1

# IC −1

 (6) 

 
The three constants C1, C2, and C3 can be freely defined 

and they allow weighting the different parameters depending 
on the specific application. 

Given the number i of signals to include into a solution 
(1 ≤ i ≤# SS ) the identification of the set of signals that 
minimizes CF can be performed using two different 
approaches: 

• Exhaustive: the entire set of combinations of the 
observable signals into groups of i signals is evaluated. 
For each combination CF is evaluated and the solution 
with minimum cost is selected. The number of the 
possible solutions to evaluate is defined in Eq. 7. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
OS

Solutions
#

#  (7) 

• Greedy: the selection of a new signal is done 
considering the solution obtained so far, and adding the 
signal that locally minimizes CF. The steps of the 
greedy algorithm are summarized in Algorithm 1. 

 

IV. EXPERIMENTAL RESULTS 
We implemented the proposed instruction checking 

architecture for the open source Plasma CPU core [23]. This 
processor supports all MIPS I™ user mode instructions with 

NOP

NOP

...

   
   
   

      
N 

Instruction

NOP

NOP

...

   
   
   

      
N 

 

Figure. 4.  Test program for the simulation dump generation on a 
MUT with a N-stages pipeline. 

Algorithm 1: Greedy Algorithm 
1. MS ← ∅ 
2. while ( MS < i ) do 
3.    MinCost← ∞,newsignal← NULL 
4.    foreach ( s ∈ OS∧ s ∉ MS ) do 
5.       if ( CF(MS ∪s) < MinCost) then 
6.          MinCost← CF(MS ∪s),newsignal← s  
7.       end if 
8.    done 
9.   MS ← MS ∪newsignal               
10. done 
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the exception of unaligned load and store operations that are 
patented. The architecture of this processor is sketched in 
Figure 5. The processor has a simplified 3-stages pipeline. 

 
We successfully generated the full set of signals-

fingerprints for all the available instructions according to the 
procedure introduced in section III.A. We considered an 
initial set of 28 observable signals (OS) including all signals 
controlled by the microprocessor control unit.  

Being #OS not too high, we applied the exhaustive 
selection algorithm proposed in section III.B with #SS equal 
to 28. The result of the algorithm is that by monitoring 21 
signals over the 28 available we are able to reach the 
maximum instructions coverage with the minimum cost. The 
execution of the exhaustive algorithm required about 2 hours 
on a Intel Core Duo with 1GB of RAM. 

The selected solution identifies 56 instruction classes over 
60 instructions. Only 3 classes contain more than 1 
instruction. In particular, the following instructions cannot 
be distinguished by the ICM: 
• ADDI and ADDIU 
• ADD, ADDU and DADDU 
• SUB and SUBU 

 
As expected there is a strong correlation between 

instructions classes and instructions grouped by their 
functionalities. 

All selected signals are driven in the execute stage (2nd 
stage) of the pipeline. This characteristic strongly reduces 
the complexity of the ICM and thus the final overhead. The 
instruction coming from the bus is fetched by the processor 
and at the same time by the ICM. The instruction is decoded 
inside the ICM in order to generate the set of signals that the 
processor should generate in order to correctly execute that 
instruction. Two additional signals (coming from the 
processor) are used to synchronize the execution of long 
instructions, i.e., instructions that require more than one 
clock cycle to be executed (e.g., multiplication instructions 
and load/store instructions performed with a slow access 

memory).  
The whole system (processor, ICM, memory and bus) has 

been synthesized with RTL Compiler (Cadence) [24]. The 
area of the circuit is reported in Figure 5. A first good result 
of the proposed architecture is that the area overhead is not 
high. Indeed, the ICM counts of 193 cells, with an overall 
overhead equal to 1,43%. 

 
 
In order to understand the effectiveness of the proposed 

architecture we set up a fault injection campaign to calculate 
the detection capability of the ICM in presence of a Single 
Event Upset (SEU) appearing into an internal flip-flop of the 
microprocessor. 

The experiments consist in injecting bit-flips in the 
microprocessor register while it is executing a small 
assembly program designed to extensively use the complete 
instruction set. The program is composed of 72 instructions. 
Bit-flips are injected during all possible clock cycles from 
the first executed instruction to the last one.  

Over 6900 injected SEUs, only 368 produced an error at 
the output of the microprocessor. That means that all the 
other bit flips targeted “not alive” flip-flops, i.e., their value 
was not relevant for the application or their value was lately 
re-written without reading it. Over the 368 relevant SEUs 
the ICM has been able to detect 286 faults, reaching a 
coverage percentage of 76,63%. 

Figure 6 summarizes the coverage capability related to the 
processor’s functional blocks. It’s interesting to note that 
while the fault coverage is quite high for internal registers, 
the coverage of the Program Counter’s flip-flops is not very 
high. This is normal because this technique does not target 
control flow errors but it aims at the detection instructions 
not correctly executed. A fault in the program counter would 
most likely lead to a control flow error, i.e., the next 
executed instruction will not be the correct one. Anyway, 
this technique guarantees that the instruction fetched by the 
processor is correctly executed (even if it’s not the expected 

 
Figure. 5.  Plasma CPU architecture. 

===================================================== 
Generated by: Encounter(r) RTL Compiler v06.10-s007_1  
Generated on: Jan 30 2007  11:21:24 AM 
Module: ICM_system 
Technology libraries:   c35_CORELIB 2.0 
c35_IOLIB_4M 1.9 
Operating conditions:   _nominal_ (balanced_tree) 
Wireload mode:          enclosed 
===================================================== 

 
Instance             Cells   Cell Area   Net Area 
------------------------------------------------- 

ICM_system            7199     1155245     172701 
  u1_cpu              7005     1138574     166140 
    u4_reg_bank       3685      829265      76230 
    u8_mult           1287      132787      26667 
    u2_mem_ctrl        477       46810       6237 
    u7_shifter         472       32360       9279 
    u6_alu             251       28028       4905 
    u5_bus_mux         349       26954       4608 
    u1_pc_next         194       24424       2268 
    u3_control         212       12230       2934 
  u3_ICM               193       16598       2880 

 
Figure. 5.  Synthesis results. 
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instruction to be executed). Without considering faults 
affecting the program counter, the ICM is able to detect 
89,70% of faults. 

 

V. CONCLUSIONS 
This paper proposed an on-line testing methodology for 

pipelined microprocessors. It aims at detecting errors 
appearing in the control unit of a pipelined microprocessor. 
The overall idea is to monitor a set of control signals of the 
target microprocessor identifying erroneous sequences of 
activations. The main problem in applying this technique is 
the identification of the set of signals to monitor in order to 
guarantee a high level of fault detection vs. a low complexity 
of the hardware introduced to perform the check. We 
proposed an algorithm to identify the minimum set of signal 
to monitor in order to reach a certain level of detection.  

We successfully applied this technique to an open source 
processor obtaining promising fault detection coverage with 
a very reduced hardware overhead.  

REFERENCES 
[1]  “A survey of the world economy: The hitchhiker’s guide to 

cybernomics”, The Economist, September 28 1996. 
[2] K. Sakamura, “Farewell message”, IEEE Micro Vol. 22, Issue 6., 

2002, pp. 2. 
[3] N. Seifert, X. Zhu, L.W. Massengill, “Impact of scaling on Soft-Error 

Rates in Commercial Microprocessors”, IEEE Transaction on Nuclear 
Science, Vol. 49, No. 6, Dec. 2002. 

[4] S. Borkar er al., “Parameter Variations and Impact on Circuits and 
Microarchitecture”, 40th Design Automation Conference, DAC03, 
IEEE CS Press, 2003, pp. 338-342. 

[5] F. Irom, F.H. Farmanesh, G.M. Swift, A.H. Johnston, G.L. Yoder, 
“Single-event upset in evolving commercial silicon-on-insulator 

microprocessor technologies”, IEEE Transactions on Nuclear Science, 
Volume 50,  Issue 6,  Part 1,  Dec. 2003, pp:2107 – 2112. 

[6] M. Nicolaidis, Y. Zorian, “On-Line Testing for VLSI – A 
Compendium of Approaches”, Journal of Electronic Testing, Volume 
12, Numbers 1-2, 1998, pp. 7-20. 

[7] S. Kim, A. K. Somani. “On-Line Integrity Monitoring of 
Microprocessor Control Logic.”, 2001 International Conference on 
Computer Design, ICCD 2001, 23-26 Sept. 2001, pp.:314-319. 

[8] S. S. Yau, F. Ch. Chen, “An Approach to Concurrent Control Flow 
Checking”, IEEE Transaction on Software Engineering, Vol. SE-6, 
No. 2, pp. 126-137, 1980. 

[9] R. Leveugle, T. Michel, G.Saucier, “Design of Microprocessors with 
Built-In On-Line test”, 20th International Symposium on Fault-
Tolerant Computing (FTCS-20), pp. 450-456, 1990. 

[10] A. Mahamood, E. J. McCluskey, “Concurrent Error Detection Using 
Watchdog Processor - A Survay”, IEEE Transaction on Computer, 
Vol. 37, No. 2, pp. 160-174, 1988. 

[11] D. J. Lu, “Watchdog processors and VLSI” in Proc. Nat. Electron. 
Conf., vol. 34, 1980, pp. 240–245. 

[12] A. Mahmood and E. J. McCluskey, “Watchdog processor: Error 
coverage and overhead” in Digest, 15th Ann. Int’l. Symp. Fault-
Tolerant Computing (FTCS-15), 1985, pp. 214–219. 

[13] M. Namjoo, “Techniques for Concurrent Testing of VLSI Processor 
Operation”, International Test Conference (ITC-82), pp. 461-468, 
1982. 

[14] M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X. Zhu, “Expermental 
Evaluation of Two Concurrent Error Detection Schemes”, 16th 
International Symposium on Fault Tolerant Computing (FTCS-16), 
pp. 138-143, 1986 

[15] K. Wilken, J.P. Shen, “Continuous Signature Monitoring: Low-Cost 
Concurrent Detection of Processor Errors”, IEEE Transaction on 
Computer Aided Design and Systems, Vol. 9, Issue 6, pp. 629-641, 
June 1990. 

[16] T. Michel, R. Leveugle, G. Saucier, “A New Approach to Control 
Flow Checking without Program Modification”, 21th International 
Symposium on Fault-Tolerant Computing (FTCS-21), pp. 334-341, 
1991. 

[17] Shambhu Upaddhyaya, Bina Ramamurthy, “Concurrent Process 
Monitoring with No Reference Signatures”, IEEE Transaction on 
Computer, Vol. 43 no. 4, pp. 475-480, April 1994. 

[18] G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, “Use of Time and 
Address Signatures for Control Flow Checking”, 5th IFIP Working 
Conference on Dependable Computing for Critical Applcation 
(DCCA-5), pp. 113-124, 1995. 

[19] X. Delord, G.Saucier, “Control Flow in Pipelined RISC 
Microprocessor: The Motorola MC88100 Case Study”, Workshop on 
Real Time (Euromicro '90), pp. 162-169, 1990. 

[20] S. F. Daniels. “A concurrent test technique for standard 
microprocessors”. In Digest of Papers, COMPCON Spring 83, pages 
389-394, San Francisco, February 1983. 

[21] N. Oh, S. Mitra, E.J. McCluskey, “ED4I: error detection by diverse 
data and duplicated instructions”, IEEE Transactions on Computers, 
Volume 51,  Issue 2,  Feb. 2002 Page(s):180 – 199. 

[22] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, “A watchdog 
processor to detect data and control flow errors”, 9th IEEE On-Line 
Testing Symposium, 2003. IOLTS 2003. 7-9 July 2003, Kos (Greece), 
Page(s):144 – 148. 

[23] http://www.opencores.org  
[24] http://www.cadence.com 

 
                                                           
 

 
Figure. 6. SEU Coverage related to Processor’s functional blocks. 
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