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Abstract—Measuring the steady state leakage current
(IDDQ) is very successful in detecting faults not discovered
by standard fault models. But vector dependencies of IDDQ
decrease the resolution.

We propose deterministic ATPG algorithms to create test
vectors within predefined leakage ranges. Even when random
pattern generation does not find test vectors, the proposed
algorithms identify vectors within the desired range. Experi-
mental results confirm that leakage constraints are effectively
handled during test pattern generation without decreasing fault
coverage.
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I. INTRODUCTION

The steady state leakage current (IDDQ) is a good indica-
tor to decide whether a circuit contains failures introduced
during production. Even faults that remain undiscovered
using functional testing based on fault models are detected
by IDDQ measurements [1].

With continuously shrinking feature sizes the IDDQ cur-
rent of devices increases. At the same time the IDDQ current
of good devices changes due to process variations and test
vector dependencies. Consequently, differentiating good and
bad devices by using a simple threshold value for the IDDQ
current becomes infeasible.

Instead, post-processing techniques are typically applied
to handle IDDQ variations. Current signatures [2] are a
sorted plot of measured IDDQ values. Discontinuities in
this curve typically indicate a fault. Delta-IDDQ [3] is
an improvement that compares the differences between
measurements and yields more accurate information. These
techniques and similar approaches [4] help to remove certain
effects coming from process variations and from test vector
dependencies.

In contrast to these approaches the technique of [5] is
applied before the measurement during Automatic Test Pat-
tern Generation (ATPG). By this, leakage variations coming
from test vector dependencies are drastically reduced. An
IDDQ model predicts the expected leakage current for a
given test vector. Then, a small range for IDDQ is defined.
Only test vectors within this range are created by the ATPG
tool. Figure 1 shows the resulting leakage signatures. No
restrictions (o = 00) yield test vectors across a wide range
of leakage values. Tight restrictions (o« = 0.5) yield an
almost linear curve with a small slope while keeping high
fault coverage. Consequently, good and bad devices can be
differentiated more easily by IDDQ testing. But no complete
ATPG algorithm was given, instead a simple heuristic was
applied to generate test vectors. That approach cannot decide
whether no test vector within the defined range exists.

Algorithms for input vector control [6], [7], [8] search for
the input assignment causing the lowest quiescent current
for a circuit. Thus, a single optimization problem is solved.
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Figure 1. Leakage signatures of b19 [5]

Typically the algorithms are applicable to small circuits only
due to the long run times. In contrast ATPG under IDDQ
constraints must solve a large number of decision problems.

Here, we consider deterministic test pattern generation
under leakage constraints. An integration of standard ATPG
with 3-valued simulation for IDDQ estimation is introduced
and several improvements are proposed'. The algorithms
are evaluated on the ITC’99 benchmarks. The experimental
results show that (1) this simulation based algorithm is very
robust and (2) even under tight leakage constraints fault
coverage does not decrease.

This paper is organized as follows: The following section
introduces preliminaries like fault model and leakage model.
Section III introduces the simulation-based approach to-
gether with improvements. Section IV presents experimental
results evaluating the algorithm.

II. PRELIMINARIES

In the following the fault model and the leakage model
are introduced.

Combinational circuits are considered. The fype of a gate
denotes the Boolean function implemented by this gate. A
(full) assignment to the primary inputs of the circuit is a
vector ¢’ € B™. A partial assignment may contain don’t
care values and is given by a vector t € ({X} UB)™.
The partial assignment t corresponds to the ser of full
assignments derived by replacing all X values with values
from B. For convenience, we use a relaxed notation that
denotes vectors with don’t cares and the corresponding sets
of full assignments by the same symbol.

Example 1: Let t = (0,X) = {(0,0),(0,1)} and s =
(X,1) = {(0,1),(1,1)}. Then tN's = {(0,1)}. Moreover
for the full assignment ¢’ = (0, 0), it holds that ¢’ € ¢.

The approaches in this paper are explained with respect to
the Pseudo Stuck-At Fault (PSF) model [9]. Like in the well-
known stuck-at fault model a fault constantly fixes a signal
to 0 or 1. The effect of a PSF does not have to be propagated

IWe also evaluated an alternative symbolic algorithm based on Pseudo
Boolean Satisfiability (PBS). Due to page limitation this formulation and
the results cannot be presented here.
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Figure 2. Example

to primary outputs, but is observed indirectly using IDDQ
measurement. Thus, ATPG for the PSF model is simpler,
but deciding whether a test vector for a PSF exists is still
NP-complete. An ATPG algorithm decides testability of a
PSF and returns a test vector for a testable fault. Additional
fault models are typically used for IDDQ testing [10], the
extension of the algorithms presented here is straightforward.

The IDDQ model of [11] is applied where the leakage
current of a circuit is given by the sum of the sub-threshold
leakages of all gates. The leakage current for a single gate
depends on the type of the gate and the assignment to inputs
i = (i1,...,1x) of the gate. Table 2(a) gives the expected
leakage values for an OR-gate’. Here, [(g,i) denotes the
leakage current of gate g under input assignment 7. Now, let
x denote primary inputs of the circuit and let i,(z) denote
the vector of functions at the inputs of gate g as a function
of primary inputs. Then, the leakage current of the circuit
is the sum of the leakage currents of all gates:

L(z) = (g, ig(x)) (1)

geC

Given a full assignment to the primary inputs, the equation
is evaluated. The assignment to the inputs of a gate denotes
the state of the gate, e.g. a 2-input gate may be in one of
four states: 00,01, 10, 11.

Finally, a leakage range is required for ATPG. The ap-
proach suggested in [5] is used — by random simulation
a distribution of leakage values is estimated. Assuming a
normal distribution, an interval around the mean leakage
value y is determined by the standard deviation ¢ and a
user-defined parameter a:

v — oo, p+ oal 2)

The smaller « the smaller is the interval and the smaller the
number of valid test vectors within the leakage range. In the
following l,i, denotes the lower limit and /,,,x denotes the
upper limit.

Usually, faults are classified as testable or untestable due
to logic constraints. A fault may be aborted due to resource
limits for the ATPG algorithm. Testable faults where no test
vector within the leakage constraints exists are classified as
out of range.

III. INTEGRATING ATPG AND SIMULATION-BASED
IDDQ ESTIMATION

The following alternative complete approach is based on
ATPG and simulation. Due to learning during the search and
a lifting technique to generalize valid or invalid vectors the
algorithm is quite effective.

2The values closely mimic the relations in a 90nm technology library, real
values are in the order of pA but cannot be given due to legal restrictions.
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Figure 3. Complete algorithm

A. Algorithm

Figure 3 shows a flow diagram of the algorithm. Two sets
of vectors are maintained. Set I stores vectors known to be
within the expected leakage range while O stores vectors
known to be out of range. The algorithm starts by retrieving
a partial test vector ¢ using an ATPG engine (1). Further
reduction of the specified bits in (partial) test vectors prunes
the search space. We use the fast greedy approach of [12]
for reduction. If no test vector is found (3), the fault is out
of range or untestable, if the first call to the ATPG engine
returned untestable already. Remember, that a partial test
vector can be considered as a set of vectors (all possible
replacements of the don’t care values by actual values).
Step (4) checks whether there is an overlap between ¢ and
the vectors within the range in I. In this case a full test
vector is selected from this overlap, the fault is testable (5).
Otherwise, step (6) checks whether any possible extension
of ¢ is known to be out of range, i.e. the overlap between
t and the complement of O is empty. Then the algorithm
returns to step (1) to retrieve the next test vector.

Otherwise the loop to exhaust all extensions of ¢ is entered
(steps (6)-(13)). Step (7) extends ¢ to a full vector ¢’ not
yet known to be out of range, i.e. selects ¢ € ¢ N Q.
The same step calculates the leakage current of ¢ by event
based simulation as discussed below. If the vector is within
the range, the fault is testable (10). Otherwise, the next
extension is considered. After learning information in steps
(11)—(13) the algorithm loops to (6). The loop proceeds until
all extensions of ¢ are known to be out of range (6).



Steps (9), (12) and (13) learn information by updating the
sets T and O, respectively. Since t’ is a complete assignment
to the primary inputs of the circuit, directly adding ¢’ to
the corresponding set does not prune the search space very
much. Instead, lifting is applied to ¢’ at first.

B. Lifting

Before explaining the lifting procedure, event based sim-
ulation that includes leakage calculation is discussed.

Given a full vector t/, logic simulation determines the
internal values in the circuit and Equation 1 yields the
expected leakage current. Event based logic simulation only
propagates value changes through the circuit. If the output
value of a gate g changes from z to Z all successors are
updated as well. This is extended to leakage calculation.
Only when input values at a gate g change, the state and
consequently the leakage current of g may change. Given
a gate g in state a, event based logic simulation yields the
new state a’. In this case the following calculation updates
the expected leakage current L:

L=L- l(gaa) + l(gaa/)

Lifting uses a similar procedure to also handle don’t care
values. Don’t care values at the primary inputs of the circuit
may propagate into the circuit. Thus, some bits at the gate
inputs may be undefined and the gate may be in one of
several states. Within all these states minimal and maximal
leakage current for the gate are determined. A partial input
assignment a for a gate g is considered as defined in Section
II. Minimal leakage current [|(g,a) and maximal leakage
current [;(g,a) of g under a are given by

l,(g,a) = min{l(g,b)|beB" and b € a}
I1(g,a) = max{l(g,b)|beB" and b € a}

Consequently, the expected leakage current of the circuit
is within a certain range L| < L < L; when don’t cares are
present. Whenever the input values at a gate change during
three valued event based simulation, the range may change.
If the partial assignment of gate g changes from a to a’ the
following calculation updates the range:

Ly = Ly=l(g,a)+1i(g,d)
Ly = Ly—l(g.a)+1i(g.d)

Example 2: Consider the assignment ¢; = 0,32 = 1 to
the circuit shown in Figure 2(b). Switching 72 to X puts
g1 into the set a = (0, X) of states, i.e. the gate may be
in state (0,0) or (0,1) with leakages of I|(g1,a) = 4 or
l1(g1,a) = 5. This yields L} = 8 and L; = 10 for the
leakage of the circuit.

Lifting happens using a greedy approach. Given a full as-
signment, the algorithm selects one primary input randomly
and sets the value to X. If the leakage current is not within
the required range afterwards, the original value is restored.
Then, the next primary input is randomly selected. Each
primary input is considered once.

The algorithm of Figure 3 uses the lifting procedure to
generalize a valid test vector within the allowed range in
step (9) and to extend an invalid vector while it remains
below or above the range in steps (12) or (13), respectively.

C. Efficiency and Completeness

The procedure is guaranteed to terminate. Whenever a
new vector ¢’ is selected in step (7), this vector is selected
from ¢ N O. If ¢ is not within the leakage range, lifting ¢’
in steps (12) or (13) yields a partial vector ¢” that includes
t’. Thus, by adding ¢” to @ during successive iterations t’
cannot be selected again in step (7).

During successive calls to the algorithm the set O is never
released. By this, vectors known to be outside the required
leakage range are learned. Also during successive calls the
set I accumulates vectors that are known to be within the
leakage range. Of course, this kind of learning causes some
overhead required to maintain the sets. The implementation
stores the sets by means of the characteristic functions in
binary decision diagrams [13]. This allows for a compact
representation and efficient set operations.

IV. EXPERIMENTAL RESULTS

This section evaluates the algorithm on ITC 99 benchmark
circuits. Different configurations are used to evaluate the
improvements reduction, lifting and learning, respectively.

The ITC’99 benchmark circuits were considered on an
AMD Athlon 64 X2 Dual Core 6000+ (4GB RAM, 3GHz,
Linux). Parameter a of Equation 2 was set to 0.2 forcing a
tight range for leakage current’. All gates in the circuits
were decomposed into 2-input gates. To find faults that
are are hard to classify, random simulation was applied at
first, then a PBS-based symbolic algorithm and the proposed
simulation based algorithm run for 1 CPU second.

No further details are reported for the PBS-based symbolic
approach due to page limitation and because the simulation-
based algorithm 3sim_ATPG from Section III was far more
effective.

Next, hard faults that were not classified by any algo-
rithm within 1 CPU second are considered. The timeout
is increased to 2 CPU minutes and up to 50 faults per
circuit are used. Table I reports some results. Different
configurations of 3sim_ATPG are considered: with/without
reduction of assignments (red.), with/without lifting (liff),
and with/without learning (learn). The table also shows the
name of the benchmark (column circ) and the number of
hard faults (#f) considered. Next, numbers of faults in the
different categories are shown: testable (#f), untestable due
to logic constraints (#u), out of range (#0), and aborted faults
(#a) left unclassified within 2 minutes of CPU time. Clearly,
the goal is to keep the number of aborted faults as small as
possible.

In some cases the plain algorithm 3sim_ATPG performs
best, e.g. on b20 and b21_1. For some other cases the
improvements — reduction, lifting or learning — are required
to effectively classify many faults, e.g. for circuit b15_1.

Moreover, different configurations of 3sim_ATPG typi-
cally abort on different faults. Table II shows which configu-
rations of 3sim_ATPG aborted how many faults, e.g. column
Sy corresponding to the set {3s. + red.} shown below

3The work in [5] has shown, that a more relaxed value of o = 0.5 already
yields quite flat leakage signatures. An even tighter range is considered here,
increasing the computational effort required.



the table gives the number of faults exclusively aborted by
3sim_ATPG with reduction. Column S7= { 3s., 3s.+red. }
gives the number of faults aborted by two configurations (1)
without improvements and (2) with reduction, but classified
by the two remaining configurations. Learning and lifting
are indicated by ‘+learn’ and ‘+lift’, respectively.

Only for four circuits some faults remain unclassified,
column Si5 indicates the number. In most cases each fault
is classified by at least one configuration, showing that the
proposed framework is very robust.

Overall only for the very small benchmarks a few faults
where out of range. Applying leakage constraints does not
negatively influence the fault coverage.

V. CONCLUSIONS

Deterministic ATPG under leakage constraints has been
considered. Integrating efficient simulation based leakage
estimation and an ATPG engine yields an effective algorithm
handling the largest ITC benchmark circuits. Even under
tight leakage constraints the fault coverage does not decrease
for circuits with a large gate count.

Based on this algorithmic framework for ATPG, future
work must evaluate the practical impact of a constrained
leakage range on real test data.
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Table I

TIMEOUT 2 CPU MINUTES

circ red. [ Iift [learn | # | # [ #u | #o | #a
bI4_ I [0 0 021 1 0 0] 20
1 0 0| 21 4 0 01| 17
1 1 0] 21 3 0 0| 18
1 1 1|21 3 0 0| 18
bl15 0 0 0] 16 4 0 0] 12
1 0 0] 16 | 12 0 0 4
1 1 0] 16 | 13 0 0 3
1 1 1 16 | 12 0 0 4
bi5_1 | O 0 0] 50 [ 32 0 0] 18
1 0 01|50 |35 0 01| 15
1 1 0|50 | 33 0 01| 17
1 1 1|50 | 50 0 0 0
bl7_1 | O 0 0] 50 [ 50 0 0 0
1 0 01| 50 | 49 0 0 1
1 1 01|50 | 50 0 0 0
1 1 1|50 | 49 0 0 1
bl8 0 0 0] 50 [ 50 0 0 0
1 0 0| 50 | 50 0 0 0
1 1 0| 50 | 50 0 0 0
1 1 1|50 | 48 0 0 2
b18_1 | O 0 0] 50 [ 50 0 0 0
1 0 01|50 | 50 0 0 0
1 1 0| 50 | 50 0 0 0
1 1 1|50 | 50 0 0 0
b19 0 0 0| 50 | 40 0 0| 10
1 0 0|50 | 43 0 0 7
1 1 0| 50 | 40 0 0| 10
1 1 1|50 | 31 0 01| 19
bI9_ I [ O 0 0[50 42 0 0 8
1 0 0|50 | 39 0 0] 11
1 1 0| 50 | 44 0 0 6
1 1 1|50 | 36 0 0| 14
b20 0 0 0] 50 | 48 0 0 2
1 0 0| 50 | 48 0 0 2
1 1 0| 50 | 41 0 0 9
1 1 1|50 | 39 0 0] 11
b20_1 | O 0 0] 21|21 0 0 0
1 0 01|21 |20 0 0 1
1 1 0|21 |19 0 0 2
1 1 1|21 19 0 0 2
b21 0 0 0] 50 | 49 0 0 1
1 0 01| 50 | 49 0 0 1
1 1 0| 50 | 45 0 0 5
1 1 1|50 | 49 0 0 1
b22.1 | 0 0 0] 24|24 0 0 0
1 0 0|24 |22 0 0 2
1 1 0|24 | 22 0 0 2
1 1 1|24 | 22 0 0 2
Table II
SETS OF ABORTED FAULTS
Circ. [[So0[[S1]52]53]54][S5]S6]57[S8]S9[S10][S11]S12[S13]514][S15
bl4_1|[ Off 1| 1] O] Off O] Oof O] Of of O 1] 1 3] O] 14
bl5 2(|10] O O] O|f O] O] Of of 1| O] O] Of of 1 2
b15_1|| 23| 5| 2| 3| O|| 3| 4/ O] 4 0] O] 6/ Of 0 O] O
bl7 ||50f| O] O] O] O O] O] O] Of Of O]f Of ©Of oOf O] O
b17_1|{48|| O] 1| Of 1|| O] O] Of O Of O] O Of O] 0] O
bl8 ||48] O] O] O] 2|| O] O] O] O] Of O]f O ©Of oOf O] O
b18_1||50{| O] O] O] O|| O] O] O] Of Of O] Of ©Of o] O] O
b19 17| 6| 3] 5/ 9|| 0] O] 2| O] 2| 3| O 1 1] 1 0
b19_1|| 21| 5| 5| 1] 8|| 2| 1] O] 1] 3| 3| O Of O] O] O
b20 |[33|| O 2| 4| 5| O] Of 1| O] Of 4| o O 1 O O
b20_1|| 19]| O] O] O] O|| O] O] Of O] O 1| O] Of O] 1 0
b21 ||45]| O] Of 4| O|| O] O] Of O] Of O] Of Of o] 0] 1
b21_1|(21|| Of O O] If| O] Of Of 1] Of O] O O] Of 1 0
No aborts: ~ Sp={ };
One config:  Sy={ 3s. }; Sg= { 3s.+red. }; Sg= { 3s.+red+lift }; Sy= { 3s.+red.+ift+learn };
Two config.:  Sg={ 3s., 3s.+red. }; Sg= { 3s., 3s.+red.+lift }; Sy= { 3s., 3s.+red+Hift+learn };
Sg={ 3s+4red., 3s+red.+ift }: Sg= { 3s.+red., 3s.+red.+lift+learn };
Three config.: S1g= { 3s.4red.+lift, 3s.+red +lift+learn }: S1= { 3s.. 3s.4red., 3s.+red.+lift };
S12={ 3s., 3stred, 3s.+red.+lift+learn }; Sq3= { 3s., 3s.+red.+lift, 3s.+red +lift+learn };
S14={ 3s-4red., 3s+red.+lift, 3s.+red +lift+learn };
All config:  S15= { 3s. 3s.4red., 3s.+red.+lift, 3s.+red +lift+learn };




