
Low Power Test-Compression for High Test-Quality
and Low Test-Data Volume

Vasileios Tenentes, Xrysovalantis Kavousianos
Dept. of Computer Science, University of Ioannina, Greece, {tenentes,kabousia}@cs.uoi.gr

Abstract—Test data decompressors targeting low power scan
testing introduce significant amount of correlation in the test data
and thus they tend to adversely affect the coverage of unmodeled
defects. In addition, low power decompression needs additional
control data which increase the overall volume of test data to be
encoded and inevitably increase the volume of compressed test
data. In this paper we show that both these deficiencies can be
efficiently tackled by a novel pseudorandom scheme and a novel
encoding method. The proposed scheme can be combined with
existing low power decompressors to increase unmodeled defect
coverage and almost totally eliminate control data. Extensive
experiments using ISCAS and IWLS benchmark circuits show
the effectiveness of the proposed method when it is combined
with state-of-the-art decompressors.

Index Terms—Defect Coverage; Test Data Compression

I. INTRODUCTION

Even though traditional test data compression techniques

(like for example [2], [4], [12], [13], [14], [15], [19]) are

very efficient in compressing test data, they elevate switching

activity beyond acceptable levels. Increased power dissipa-

tion often causes good chips to fail testing, degrading thus

production yield. At the same time, nanometer technologies

introduce new types of defects which lead to rapid growth of

test data volume, test time and inevitably power dissipation.

It is therefore evident that modern chips require new test data

compression techniques which offer low power dissipation,

high compression and high defect coverage.

In the past there have been proposed symbol-based test

data compression techniques which offer low shift power, like

[6], [7], [8], [18]. However, these techniques suffer from low

compression efficiency and additionally they are not suitable

for modern cores consisting of large number of scan chains.

Linear decompressors on the other hand achieve very high

compression but they are not power-friendly as they fill the

unspecified (‘x’) values in a random way [2], [4], [14], [15],

[19]. Recently, linear decompressors emerged, that target low

switching activity during scan testing [10], [11], [16], [17].

However, these techniques increase the volume of the encoded

test data as they need additional data to control the low power

operation of the linear decompressors. In addition they often

adversely affect the unmodeled defect coverage of generated

test vectors as they tend to fill the unspecified values of the

This research has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program
”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Heracleitus II. Investing
in knowledge society through the European Social Fund.

encoded test cubes in a highly correlated manner for reducing

switching activity. So far, improvement of unmodeled defect

coverage during low power testing has only been targeted in

the context of X-filling in [3], while [9] targets increased N -

detection of the resulting test vectors. However, both tech-

niques are inapplicable in a test-compression environment

were Xs are necessary for encoding test cubes.

In this paper we propose a new low cost scheme which

can be combined with classical decompresssors to improve

the unmodeled defect coverage of the generated test vectors

and at the same time to reduce shift power. The proposed

method exploits inherent properties of test sets to generate

multiple diverse power-efficient encodings of test cubes, and it

selects those offering the highest unmodeled defect coverage

using an evaluation metric based on output deviations [20].

Contrary to the state-of-the-art low power decompressors, the

proposed scheme does not increase the volume of test data to

be encoded and thus it achieves higher compression.

The proposed architecture is simple, test set independent and

can be combined with linear and code-based decompressors.

In particular, it can be combined with the state-of-the-art

linear decompressors presented in [10], [11], [17] as well

as with the symbol-based decompressors presented in [12],

[13] to improve both their unmodeled defect coverage and

their compression efficiency. Extensive experiments show the

effectiveness of the proposed method in terms of shift power,

test data volume (TDV), test application time (TAT) and

unmodeled defect coverage measured as coverage of surrogate

fault models. We note that, to the best of our knowledge, this is

the first test data compression technique for low power testing

which targets unmodeled defect coverage.

II. BACKGROUND & MOTIVATION

Excessive shift power during scan testing has been tradition-

ally tackled by exploiting unspecified bits (‘x’) of test cubes

(i.e. test vectors consisting of ‘0’, ‘1’ and ‘x’ logic values)

in order to reduce the pairs of successive complementary test

bits shifted into scan chains. For example, the Fill Adjacent

technique [5] fills ‘x’ values in such a way as to load

successive scan cells with the same logic value in order to

minimize transitions during scan-in. Even though this (and

other similar techniques) is very effective in reducing the

shift power, the generated test vectors tend to suffer from

low unmodeled defect coverage compared to the test vectors

generated by randomly filling the ‘x’ values [3].

2011 Asian Test Symposium

1081-7735/11 $26.00 © 2011 IEEE

DOI 10.1109/ATS.2011.75

46

Fig. 1. Low power decompressors

Using a similar concept, the linear decompressors proposed

in [16] decrease shift power by partitioning test data of each

scan chain into blocks. Each unspecified value (‘x’) in blocks

is filled with the last encountered specified value. When the

block size is small the shift power is considerably reduced

because many blocks are generated as repeated versions of

the same specified bits. However, one additional control bit

per block is needed which increases the test data.

A similar approach was adopted in [10], [11], [17]. Specif-

ically, the decompressor generates the test data in slices i.e.,

groups of c bits concurrently loaded into the c scan chains.

Whenever a group Gk of k (k > 1) successive test slices of a

test cube are compatible (i.e., every slice in this group exhibits

no bitwise incompatibilities with any other slice in this group)

one test slice Sk which is compatible with all test slices of

group Gk is encoded and it is loaded into the scan chains for

k successive clock cycles. This is achieved by the use of a

shadow register located between the ring generator and the

phase shifter (see Fig. 1). When Sk has to be generated for

the first time, the ring generator generates and transfers the

test data corresponding to slice Sk to the shadow register by

setting signal Update to logic value ‘1’ (Update operation).

During the next k successive clock cycles, the shadow register

holds its contents by setting the Update signal to logic value

‘0’ and thus it continues loading the scan chains with the

same slice Sk (Hold operation). In this case, additional data

are needed to control signal Update which are encoded within

the compressed test data.

Even though these methods reduce the shift power they

suffer from limited unmodeled defect coverage due to the

correlation induced in the way the ‘x’ values of test cubes

are filled during the decompression. We will show that the

adverse effects of this correlation on the unmodeled defect

coverage can be significantly reduced by following a different

encoding method. An example is illustrated in Fig. 2.

Different power efficient encodings of test cubes generate

different test vectors which detect different unmodeled de-

fects. If the proper encoding for each test cube is selected

then the unmodeled defect coverage of the generated vectors

will improve. Higher volume of power efficient and diverse

test vectors can be generated by partitioning scan chains

into groups loaded by separate and independently controlled

shadow registers. For example, suppose that scan chains SC1,

SC2 in the example of Fig. 2 are loaded from shadow register

Fig. 2. (a) presents a test cube for a circuit with 4 scan chains. (b) presents the
test vector generated when this cube is encoded using a shadow register. The
decompressor encodes slice 01x1 (this is the result of merging the compatible
slices S1,S2,S3), as well as the slice 1x10 (this is the result of merging
slices S4, S5) and loads them into the shadow register using two Update
operations at the 1st and 4th scan cycle highlighted in (b) (the ‘x’ values are
randomly filled). The rest of the slices are generated using Hold operations.
This encoding provides low switching activity but it is not unique. There are
other groups of compatible successive slices that can be encoded, as shown
in (c), (d) (the 2nd Update operation is applied sooner).

A and scan chains SC3, SC4 are loaded from shadow register

B. Then there are three possible power efficient encodings for

test data of scan chains SC1, SC2 and another four encodings

for scan chains SC3, SC4, providing thus 3 × 4 different

encodings (we do not count the first Update operation as it

is always applied before the loading of the first slice). One

example is shown at Fig. 2e.

A similar (but for a different purpose) approach was pro-

posed in [10]. Specifically, in [10] it was noted that multiple

independently controlled shadow registers can be potentially

used for further reducing the shift power during scan testing.

However this approach causes test data volume expansion.

Consider for example a core consisting of 100 scan chains

and 100 scan slices (i.e., each scan chain consists of 100

scan cells) and let us assume a typical fill rate of 1% (i.e.,

in average each test cube consists of 100 specified and 9900

unspecified bits). Then the number of control bits per cube

is equal to 100 (one control bit per slice) which have to be

encoded in conjunction with the 100 specified bits of the test

cube. This results to duplicating the test bits to be encoded

and inevitably results to reduced overall compression. If we

use 2, 3, 4, ... shadow registers in the same example the test

data to be encoded increase by 3x, 4x, 5x, ... which renders

this approach impractical.

In this paper we show that the large amount of unspecified

bits in test cubes can be exploited to almost eliminate these

control data. This enables the application of an advanced

encoding method which offers a wide variety of unique

power-efficient encodings. These encodings are screened by

an output-deviation based metric which selects the encodings

offering the highest unmodeled defect coverage. The proposed

method is based on a pseudorandom scheme which controls

the shadow register(s) independently of the decompressor at no

additional overhead on control data even when a large number

of shadow registers are used. When this pseudorandom scheme

is combined with linear and symbol-based decompressors it

achieves a significant reduction of the volume of compressed

test data as it eliminates the need for controlling the shadow

register. We note that the proposed method can be combined

with techniques like scan chain disabling [10] to reduce

capture and scan out power as well.

47

Fig. 3. Proposed Architecture

III. PROPOSED METHOD

A. Basic Concept

Consider a decompressor and a shadow register partitioned

into g modules SR1, . . . , SRg as shown in Fig. 3. Each mod-

ule SRi drives a different group of scan chains and Updatei is

the Update signal driving module SRi. Let TS be a set of test

cubes generated using ATPG for a certain type of faults. The

basic characteristic of the proposed method is that the Update

operations of each module SRi are determined prior to the

encoding process by using a pseudorandom binary sequence1

PSi generated using a probability Pupdate−i. Pupdate−i is

the probability signal Updatei to be set to logic value ‘1’.

The encoding of test cubes of TS is adjusted to sequences

PSi. Specifically, if PSi(Sj) = 0 (i.e. Updatei = 0, during

generation of slice Sj) then SRi holds its contents and the

decompressor does not provide data to the SRi (i.e. no test

bits are encoded). If PSi(Sj) = 1 (Updatei = 1, during

generationg of slice Sj), then the contents of SRi are updated

with test data from the decompressor which are calculated

in order to match all subsequent slices Sj+1, Sj+2, . . . which

will be generated without updating the shadow register i.e.

PSi(Sj+1) = PSi(Sj+2) = · · · = 0.

The generation of the control sequences PSi is very impor-

tant for the effectiveness of the proposed method. Test cubes

which exhibit bitwise incompatibilities in slices corresponding

to successive Hold operations in sequence PSi are not encode-

able for PSi (the potential of PSi to encode the test cubes

of a test set is hereafter referred to as the encode-ability

of PSi). A large number of Hold operations (i.e., a small

value of Pupdate−i) degrades the encode-ability of PSi while

a large value of Pupdate−i improves it (note that a value

Pupdate−i = 1 can encode every test cube). However, a

large value of Pupdate−i increases the number of Update

operations and thus the number of complementary bits shifted

1The term pseudorandom sequence is used in a different meaning than in
the rest literature. We use this term to refer to the way the shadow registers
are controlled. The encoding of test cubes still remains deterministic

into the scan chains. So, when Pupdate−i increases, shift power

increases too. On the other hand, a small value of Pupdate−i

introduces high correlation in test data and the unmodeled

defect coverage tends to drop (many adjacent scan cells are

assigned the same logic value). Note that PSi, determines only

the groups of compatible slices for any encoded test cube (their

specified bits are not affected). The generation of each PSi

sequence is part of the encoding method described next.

B. Encoding Method

At first we introduce a metric which is representative of the

incompatibilities of test cubes and shows the likelihood a test

cube to be encode-able using a pseudorandom sequence PSi.

Let t be a test cube. The volume of incompatibilities, I(t,m),
of scan chain m ∈ [1, SC] for t, is defined as the number

of successive complementary bits of t corresponding to scan

chain m. Note that test cubes consist also of ‘x’ logic values

which affect measure I(t,m) based on the way they are filled.

Since this is not known before the encoding, we adopt the

following approximation: every ‘x’ logic value shifted into the

scan chain is considered to be equal to the last specified logic

value ‘0’ or ‘1’ which was encountered during the loading

of this scan chain for t. This is a reasonable approximation

as the proposed encoding tends to fill test cubes in a similar

manner. Note that the ‘x’ values of test cubes are not actually

filled which remain unaffected by this process. For example,

for the test cube t of Fig. 2a we have I(t, 1) = I(t, 4) = 1,

I(t, 2) = I(t, 3) = 0. The volume of incompatibilities I(t)
for test cube t is defined as the maximum value I(t,m) for

any of its scan chains m ∈ [1, SC].
A test cube with a high (low) value of I(t) is considered as

a hard-to-encode (easy-to-encode) test cube due to its high

(low) volume of incompatibilities between successive scan

cells2. The same classification is done among scan chains.

Specifically, for every scan chain m, IS(m) =
∑

t∈TS I(t,m)
is the measure of its incompatibilities among all test cubes of a

test set TS. A scan chain m with high (low) value of IS(m) is

considered a hard-to-encode (easy-to-encode) scan chain. Both

these measures can be used to improve the encoding process.

The IS(m) values are used to partition the scan chains into

groups where each group is driven by its own shadow register.

The I(t) values are used to bias the encoding process towards

the early encoding of the most hard-to-encode test cubes which

can decrease the overall volume of test data.

At first the scan chains are partitioned into a pre-determined

(selected by the designer) number of groups, g, according

to their IS values (scan chains with similar IS values are

grouped together). Since every group is independently con-

trolled by a separate shadow register module, groups con-

sisting of scan chains with small IS values are assigned

a low initial value Pupdate−i, as the encode-ability of the

corresponding pseudorandom sequences is not affected and

the gains in switching activity reduction are high. For groups

2Among two test cubes t1, t2 with I(t1) = I(t2) the most hard to encode
is the cube with the highest value among

∑
m I(t1,m),

∑
m I(t2,m).

48

Fig. 4. Encoding example

consisting of scan chains with large IS values large initial

Pupdate−i values are assigned to enhance the encode-ability

of the respective sequences. Let Gi be the number of incom-

patibilities of group i defined as the sum of the IS values of

the scan chains comprising group i. Let SRw (w ∈ [1, g]) be

the module driving the group of scan chains with the highest

volume (Gworst) of incompatibilities. Then the Pupdate−w

value for SRw is set equal to a parameter Pinit selected by the

designer among a number of discrete values P1, P2, . . . , Pk.

The value of Pinit is set according to the design objectives

for shift power - test sequence length. A low value of Pinit

provides low shift power but increases the test sequence length.

A high value of Pinit increases the shift power but offers

shorter test sequences. The initial probabilities Pupdate−i of

the rest modules are set to lower values which are calulated

proportionally to Pinit. Specifically Pupdate−i is set equal to

the rounding of the value Pinit×Gi/Gworst to a discrete value

in the set P1, P2, . . . , Pk (note that Gi/Gworst < 1).

After the initial value of every Pupdate−i is determined,

the sequence PSi of each group corresponding to the first

generated vector (i.e., for the first r cycles, where r is the

length of the longest scan chain) is generated. This is achieved

by the means of a trivial LFSR-based pseudorandom unit

which will be presented in section III-D. The test cubes

of TS are then examined for encode-ability for the given

sequences. The encode-able cubes are those cubes which

consist of slices without bitwise incompatibilities when they

are successively loaded using Hold operations. These cubes

are encoded as follows: every test slice Sj corresponding

to an update operation (PSi(Sj) = 1) and its follow-

ing slices Sj+1, Sj+2, . . . corresponding to hold operations

(PSi(Sj+1) = PSi(Sj+2) = · · · = 0) are merged into one

test slice which is encoded by the decompressor and it is

loaded into SRi when the update operation is applied. The

encoding begins from the most hard-to-encode test cubes in

order to minimize both the test data volume and the test

sequence length. Additional test cubes can be encoded by the

same sequence PSi provided that a) they are encode-able for

the sequence PSi at hand, b) they are bitwise compatible with

the previously encoded (by the same sequence PSi) cubes and

c) the decompressor has variables left to encode them. When

no more test cubes can be encoded this process continues

to the next vector (i.e., the sequence PSi for each SRi is

generated for the next r cycles and the encoding continues

with the remaining cubes). The following example illustrates

the encoding process.

Example 1. Fig. 4 shows three test cubes t1, t2, t3 and their

I values. Based on I values the IS values are: IS(sc1) =
1+1+1 = 3, IS(sc2) = 2, IS(sc3) = 0, IS(sc4) = 1. Scan

chains sc1, sc2 form the first group with G1 = 3 + 2 = 5
and scan chains sc3, sc4 form the second group with G2 =
0 + 1 = 1. Let Pinit = 1/2, k = 8 and [P1, P2, . . . , Pk]=
[1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16, 1]. Since G1 > G2 we

have Pupdate−1 = Pinit = 1/2 and Pupdate−2 = Pinit ×
G2/G1 = Pinit×1/5 = 1/10 which is rounded to the closest

discrete Pi value, that is P2 = 1/8. Let us assume that based

on these probabilities the sequences PS1 = 10101, PS2 =
00001 are generated i.e. for the shadow register driving the

first group three Update operations occur at the 1st, 3rd and

5th scan slice; for the shadow register driving the second group

one Update operation occurs at the 1st slice. The test slices that

must be compatible in order the test cubes to be encoded using

PS1, PS2 are shown for t1, t2, t3 inside dotted lines. Test cube

t1 is not encodeable for PS2 as the test slices of the second

group are not compatible (they are shown highlighted in Fig.

4). On the contrary, t2, t3 are both encode-able for PS1, PS2.

Test cube t2 is more hard-to-encode than t3 because I(t2) =
I(t3) but

∑
m I(t2,m) >

∑
m I(t3,m) and thus it is encoded

first. Only the contents of the shadow registers at the Update

operations (shown inside dotted lines in Fig. 4b) are encoded

by the decompressor. Tthe rest of the slices are generated using

Hold operations. After encoding t2, few unspecified bits still

exist which offer the potential for encoding also cube t3. The

final test vector is shown in Fig. 4c. �
Certain incompatibilities in scan chains prohibit the encod-

ing of some test cubes. When no test cubes can be further

encoded for a number of successive test vectors, we increase

Pupdate−i of every group to the next higher discrete value and

we initiate a new pseudorandom session. Each pseudorandom

session is retained for as long as test cubes are encoded. In

every successive session a different sequence is used for every

signal Updatei with increased rate of Update operations and

thus more test cubes become encode-able.

As the values of Pupdate−i increase in successive pseudo-

random sessions, the switching activity increases (see section

III-A) and its peak value may reach a predetermined limit.

This happens because the remaining test cubes have many

incompatibilities and thus they need a large number of Update

operations which cannot be easily matched by pseudorandom

sequences unless probabilities Pupdate−i increase a lot. This

means that the pseudorandom mode fails to further adhere

with the power specifications of the circuit and it terminates.

49

Fig. 5. Percentage of encode-able test cubes for the Ethernet benchmark

Then the deterministic mode is initiated with a global signal

controlling all shadow registers like being one (the control data

are encoded in this case as proposed in [10]).

The above encoding process owns its efficiency to the low

fill rates of test sets. Specifically, as it is common in test

sets, the vast majority of test cubes are sparsely specified

while only a very small fraction of them are densely specified.

The proposed method efficiently encodes the first ones during

the pseudorandom sessions and the second ones during the

deterministic session. In order to show the effectiveness of

pseudorandomly generated sequences PSi to encode large

test sets we performed an experiment using the Ethernet
circuit of IWLS suite [1]. This circuit consists of more than

10,000 scan cells and a dynamically compacted test set for

complete coverage of stuck-at faults for this circuits is almost

12 Mbits in size; therefore it is more representative of realistic

industrial designs than the rest of the benchmark circuits. Fig.

5 presents the percentage of test cubes which are encode-

able for various sequences PSi generated pseudorandomly.

We run three different experiments by using g = 1, 2 and

4 shadow register modules. The x-axis presents the minimum

value Pupdate−i used among the groups (this value is increased

from left to right of the x-axis as successive pseudorandom

sessions are applied). At each pseudorandom session 100

different pseudorandom sequences PSi were generated and

the percentage of test cubes which are encode-able for at least

one of them is reported by the means of bars.

It is obvious that at each successive session more test cubes

become encode-able for the generated sequences. In addition,

as the number of shadow register modules increases more test

cubes become encode-able as the pseudorandom sequences

match in a better way the specific characteristics of each group

of scan chains. The curves show the test cubes which remain

not encoded at the end of each pseudorandom session (test

cubes which are encode-able for any generated sequence are

immediately dropped in this case). It is obvious that the vast

majority of test cubes are easily encoded at the first sessions

which offer very low switching activity. Especially in the case

of g = 4 shadow register modules all test cubes are encoded

very fast and the deterministic mode can be eliminated (no

test cubes remain unencoded after the 5th session). Thus it is

evident that the effectiveness of the proposed pseudorandom

encoding depends on the specified bits density of test cubes,

which is fairly low in large circuits, and not on the size or

amount of test cubes. Therefore, we conclude that the proposed

method is scalable to very large test sets.

C. Unmodeled Defect Coverage Improvement

The encoding of test cubes is done in two steps: a) at first

n different encodings are generated which all offer the same

high compression and low shift power and b) the n test vectors

corresponding to the n encodings are screened for detecting

unmodeled defects and the most promising one is selected.

Specifically, the n most hard-to-encode test cubes t1, t2, . . . , tn
which are encode-able by the current pseudorandom sequence

PS are selected and n candidate encodings e1, e2, . . . , en are

generated. Each candidate encodes one of the n selected test

cubes and as many additional test cubes as possible. All n-

candidates offer high compression as they encode hard-to-

encode cubes and the same low switching activity as they use

the same sequence of Update/Hold operations. However, they

generate different test vectors which detect different defects.

The best candidate is selected using a metric based on output

deviations. Output deviations [20] are based on a probabilistic

fault model, in which a probability map (referred to as the

confidence-level vector) is assigned to every gate in the circuit.

Signal probabilities p0i , p
1
i are associated with each line i for

every input pattern, where p0i , p
1
i are the probabilities for line

i to be at logic ‘0’, ‘1’ respectively. The confidence level

of a gate G with m inputs is a vector with 2m components

R = (r0...00, r0...01, . . . , r1...11), where each component of R
denotes the probability that the gate output is correct for the

corresponding input combination. Let y be the output of a 2-

input NAND gate and a, b be its inputs. Then:

p0y = p1a·p1br11+p0a·p0b(1−r00)+p0a·p1b(1−r01)+p1a·p0b(1−r10)
p1y = p0a · p0br00 + p0a · p1br01 + p1a · p0br10 + p1a · p1b(1− r11).

For any gate G, let its fault-free output value for an input

pattern tj be d, d ∈ 0, 1. The output deviation Gj of G for tj is

defined as P d̄
G where d̄ is the complement of d. Intuitively, the

deviation for an input pattern is a measure of the likelihood

that the gate output is incorrect for that input pattern. The

deviation values at the circuit outputs or pseudo-outputs are

indicative of the probability arbitrary defects to be detected

at these outputs. Output deviations are determined without

explicit fault grading; hence the computation (linear in the

number of gates) is feasible for large circuits and large test

sets (further details can be found in [20]).

Before we present the details of the output-deviation based

metric we note that as it is common in industry, each test

vector is applied using the Launch-On-Capture scheme and

thus both its first and second response r1, r2 are used for de-

tecting defects. Initially, every observable output f is assigned

four weights w(f, r1, 0), w(f, r1, 1), w(f, r2, 0), w(f, r2, 1),
corresponding to error-free logic values ‘0’, ‘1’ at output f
at responses r1 and r2. All these weights are initially set

equal to the number of lines in the fan-in logic cone of output

f as this is indicative of the volume of defects that can be

potentially detected at this output. Then the largest deviation

values expected for the test cubes of TS at each output at both

50

Fig. 6. Update Generation Module

responses r1, r2 and for both error-free logic values ‘0’, ‘1’

are estimated as follows: we temporarily fill the ‘x’ values of

test cubes randomly (note that output deviations are calculated

only for fully specified vectors) and for every test vector

we calculate the deviation values at circuit outputs at both

responses r1, r2 according to [20]. Among these values we

identify the largest one for each output, response (r1, r2) and

error-free logic value, which is denoted as MaxDev(f, rj , v)
where j = 1, 2 and v = 0, 1 (test vectors are then discarded).

Let t be the test vector generated by a candidate-encoding.

A weight WT (t) is calculated for t as the sum of the weights

w(f, rj , v) of outputs which have deviation value close to

the MaxDev(f, rj , v) where v is the error free logic value

at output f and response rj when t is applied. Among the

evaluated test vectors, the one with the highest weight is

selected since it is the most promising for defects detection.

Then the encoding process continues with the remaining

test cubes. The weights of outputs that gave near-maximum

deviation values at either response r1, r2 are divided by a

constant factor F after each selection. This is motivated by

the fact that many defects will probably be detected at these

outputs by the selected candidate, and thus these outputs are

expected to offer less defect coverage during the application

of the next vectors. By reducing their weights the selection

process is biased towards other outputs with high weights

which are more promising for detecting undetected defects.

D. Proposed Architecture

The proposed architecture consists of the decompressor and

the shadow register modules SRi shown in Fig. 3 as well as

of the Update Generation unit shown in Fig. 6. This module

consists of the weighted signals generation unit (WSG), mul-

tiplexers (P-MUXi) selecting between pseudorandom signals

with different probabilities, a control unit which triggers the

initiation of each next session and multiplexers (D-MUXi)

used for switching from pseudorandom to deterministic mode.

At each clock cycle any number of 0 up to g modules may

concurrently update their contents (note that as it is shown

in Fig. 3 different outputs of the decompressor feed each

shadow register module, thus the decompressor can even load

all modules at the same cycle if necessary).

The weighted signals generator (WSG) consists of a small

LFSR which is initially loaded with a known random seed and

a very small combinational logic which generates pseudoran-

dom signals with various probabilities in the range [0, 1]. This

is achieved by feeding the outputs of different LFSR cells to

combinational gates. For example, the output of a two-input

AND gate driven by two LFSR cells has probability Pout =
(1/2)2 = 25%. We verified that k =8 signals C1, C2, . . . , C8,

with probabilities 0 < P1 < P2 < . . . < P8 ≤ 1 respectively,

are sufficient to implement our scheme with negligible cost.

Note that a phase shifter is also included in the WSG unit

in order to provide multiple groups of linearly independent

pseudorandom signals C1
1...8, . . . , C

g
1...8. Each of these groups

of signals is used to drive a different shadow register module.

One among the signals Ci
1, . . . , C

i
8 is selected by each

P-MUXi (which is an 8 → 1 multiplexer in our case)

for generating the PSi sequence to drive signal Updatei.
Signals Ci

1, . . . , C
i
8 are connected to the inputs of P-MUXi in

ascending order of signal probability, i.e, Ci
1 is connected to

the first multiplexer input, Ci
2 is connected to the second input

etc. Thus, in order to increase the probability that controls

each group, a higher order input of P-MUXi is selected using

a counter Counti which is very small (equal to 3 bits each

for the case at hand). Counti stores the selection address of

P-MUXi (let say value 1 ≤ sel ≤ 8) for the entire session

(it selects Csel, thus Pupdate−i = Psel). The value of Counti
remains unchanged throughout every session and increases by

one every time a new session is initiated.

In order to simplify the decompression process, at every

successive session all counters simultaneously increase by one

and thus every value Pupdate−i increases to the next higher

probability of WSG. This is triggered by internal registers of

Session Control unit which are loaded from the ATE before

the decompression process begins with the number of test

vectors applied at each session. Since at most 8 pseudorandom

sessions are applied (k = 8 probabilities are used) the area

required for these session-registers is negligible. After the last

pseudorandom session, Session Control switches the D-MUXi

to the input D Update which is a global signal common for

all groups and the deterministic mode begins. The control data

for signal D Update are encoded by the decompressor.

The proposed scheme shown in Fig. 6 operates as a “low

power converter” of the test cubes. It converts the test data

from the decompressor into low power vectors compatible with

the test cubes of TS. It is independent of the decompressor

used to encode the converted data and thus it can be combined

with linear as well as symbol-based decompressors.

IV. EXPERIMENTAL RESULTS

We implemented the standard dynamic reseeding (SDR), the

state-of-the-art low power dynamic reseeding proposed in [17]

(LPDR) and the proposed method using the C++ programming

language. For all the methods we used the same ring generators

as decompressors and their size was selected by the smax +

51

TABLE I
COMPARISONS TSL, TDV, TDF & BF (%)

Circuit
TDV (in Kbits) TSL (# of vectors applied) ASA TDF Cov. (%) BF Cov. (%)

SDR LPDR Prop. SDR LPDR Prop. SDR LPDR Prop. SDR LPDR Prop. SDR LPDR Prop.

s5378 5.6 10 6.9 273 305 331 50.1 5.8 12.4 63.54 62 66.72 94.9 94.39 95.11
s9234 11.3 20.9 13.9 477 504 597 49.6 11.6 19.3 47.41 49.81 52.59 88.47 88.17 88.81

s13207 10.9 20.8 13.4 342 419 415 50.1 5.4 13.3 62.27 61.25 69.43 92.55 92.09 93.05
s15850 14.7 26.8 18.4 498 552 611 50.1 7 11.7 55.4 54.68 58.39 95.96 94.42 94.67
s38417 64 97.5 69.3 1685 1548 1875 50 6.2 17.9 87.38 87.81 88.32 98.1 98.21 98.19
s38584 51.1 89.7 59.4 1115 1179 1281 50 7 13 67.68 67 68.52 91.65 91.57 91.74

ac97 ctrl 41.2 67.2 44.4 1547 1543 1665 50 3.8 3.9 57.74 57.44 66.88 99.54 99.49 99.53
pci bridge 148.7 233 154.9 3614 3435 3731 53.3 2.6 5.7 83.83 81.88 84.6 98.6 98.56 98.6

tv80 40.3 72.5 47.6 2257 2330 2684 49.9 10.8 12.8 61.06 59.88 64.27 91.24 91.06 91.37
usb funct 73.9 123.7 84.9 1709 1748 1895 50 5.2 11.7 74.67 74.32 77.02 97.35 97.32 97.44
ethernet 299.3 494.9 322 2385 2501 2574 50 3.3 12 53.19 53.21 57.01 93.47 93.35 93.61

20 rule, where smax is the number of specified bits of the

most specified test cube. We run experiments on a 4-CPU

Linux workstation. The CPU time of the proposed method

was almost 2.5 times the CPU time of the LPDR method.

We conducted experiments on the largest ISCAS’89 and a

subset of the IWLS’05 [1] benchmark circuits. We examined

various scan chain configurations and we selected the one that

yielded the best result for the baseline SDR method and then

all other methods used that scan chain configuration. For each

circuit a test set TS was generated using a commercial ATPG

engine targeting complete coverage of stuck-at faults.

For LPDR a single shadow register was used to keep its

TDV low. We implemented the shadow register control using

both techniques proposed in [10], [17] (internal XOR tap or

one additional ATE channel) and the best result is reported. For

the proposed method we used four shadow register modules, n
= 30 candidate encodings and the threshold on peak switching

activity was set close to that of LPDR. Various initial values

of Pupdate−i were used and the best results are reported. The

WSG unit implements k=8 probabilities: 1/16, 1/8, 1/4, 1/2,

3/4, 7/8, 15/16, 1. The ATE-repeat command was utilized to

reduce the TDV for all methods. We further improve the TDV

of both LPDR and SDR methods by filling free variables in

a repeat-friendly way similar to [19]. In the proposed method

all free variables are filled in a non-repeat-friendly way to

improve output-deviations. For all the results we present the

test data volume (TDV), the test sequence length (TSL) and

the average scan-in switching activity (ASA) measured using

the metric of [10], [17].

For evaluating the unmodeled defect coverage we used two

surrogate fault models, namely the transition delay (TDF) and

the bridging fault model (BF). None of these models were
targeted by the stuck-at test sets encoded. For detecting

transition faults each stuck-at test vector generated by the

decompressors is applied on the circuit using two capture

cycles according to Launch-On-Capture (LOC) technique. For

the bridging fault model 100K pairs of lines were selected

randomly for each circuit. For each pair, four bridging faults

were simulated by considering both lines as aggressors and

victims, and both logic values ‘0’ and ‘1’ at the aggressors.

Fault simulations were carried out using a commercial tool.

Note that similar approaches were adopted in many techniques

(e.g. [3], [20]) for evaluating the unmodeled defect coverage.

Table I presents the TDV in Kbits, the TSL in number of

vectors applied and the ASA values for each method (note

that the same number of clock cycles is needed in all cases

to generate, load and apply each test vector). Columns 2-10

present the TDV, TSL and ASA values of SDR, LPDR and

the proposed method. For the proposed method various initial

values of Pupdatei were used (the best results are reported).

The SDR approach offers the best compression but its ASA

is unacceptable. LPDR offers very low ASA, but increases

the TDV compared to SDR considerably due to the additional

data required for controlling the shadow register. The proposed

method offers short TSL and small TDV, which approach the

respective values of SDR method, and very low ASA which

approaches that of LPDR. The superiority of the proposed

method compared to LPDR in respect to both TDV and TSL

stems from the fact that almost no control data are required by

the proposed method (the proposed method requires control

data only during the deterministic mode which constitutes

a very small portion of the test mode). The ASA of the

proposed method is a little higher than that of LPDR, but it is

still very low and it most probably complies with the power

specifications of the circuit which is the most critical goal for

scan testing.

The last 6 columns of Table I present defect coverage

comparisons. As it was expected, in the majority of the cases

the LPDR method offers reduced defect coverage compared to

the SDR approach. In almost all cases the proposed method

achieves much higher TDF and higher BF coverage than both

LPDR and SDR methods. We also note that the improvement

of the proposed method against the other methods in terms

of BF coverage is less than the improvement in terms of

TDF coverage. However, this is due to the fact that the

bridging fault coverage is very high in all cases and thus there

is no much potential for further improvement. In particular,

the average (over all circuits) number of bridging faults that

remain undetected after the application of the proposed method

is less than 2.6% of the total number of faults simulated. This

clearly show that the proposed technique has already achieved

very high bridging fault coverage.

Fig. 7 presents the TDF coverage ramp-up achieved for the

representative ac97 ctrl benchmark circuit. It is obvious that

52

Fig. 7. Transition delay fault coverage ramp-up

the use of the proposed encoding combined with the output

deviation-based metric offers higher coverage and coverage

ramp-up than the rest methods reducing thus the TAT in an

abort-at-first-fail environment.

For evaluating the hardware overhead we synthesized the

proposed scheme for a) one and b) four shadow register

modules. The proposed decompressors including all units (i.e.,

ring generator, shadow register, phase shifter, WSG, P-MUX,

etc) is 15% larger in case (a) and 55% larger in case (b) than

the decompressors of LPDR which are admittedly very small.

Thus, the cost of the proposed scheme is also very small.

Finally, in order to show the advantages of the proposed

scheme when combined with other decompressors, we imple-

mented the statistical encoding proposed in [13] as follows:

the test data corresponding to each scan slice are partitioned

into multiple constant-length blocks and each block is encoded

using the selective Huffman code. Data sent by the ATE are

decoded using a Huffman decompressor, and the decoded

blocks fill a register with length equal to the number of

scan chains. When all blocks of a test slice are loaded into

the register the slice is loaded into the scan chains. The

proposed scheme is applied to this decompressor as follows:

the aforementioned register plays the role of the shadow

register which is partitioned into modules. Each codeword is

used to encode the test data required to load a shadow register

module whenever it is updated according to the pseudorandom

sequences. The parts of the register corresponding to shadow

register modules which are not updated at a scan cycle require

no codewords (no encoding is done for these modules similar

to the encoding method described in section 3.1). Thus, the

proposed method in this case reduces both TDV and TAT

(less codewords and clock cycles are required for loading

each test slice into the scan chains). Due to space limitations

we provide results only for the ac97 ctrl benchmark circuit

for 32 scan chains, block size equal to 8 bits and number

of encoded blocks equal to 16. When the proposed scheme

is applied to this decompression architecture, the TDV drops

from 55.3Kbits to 24.7 Kbits, the ASA drops from 36.4% to

4.6% and the test application time is reduced by 25.6%. At

the same time TDF coverage increases from 41.8% to 50.24%

and BF coverage increases from 95.8% to 98.6%. Thus the

proposed method offers considerable gains in this case too.

V. CONCLUSIONS

We presented a new decompression scheme and a novel

encoding method which can be combined with various decom-

pressors to offer low shift power, high unmodeled defect cov-

erage and high compression. Extensive experiments showed

that when the proposed method is combined with state-of-

the-art linear and statistical code based decompressors, both

compression and unmodeled defect coverage improve while

shift power is retained at very low levels.

REFERENCES

[1] IWLS’05 circts., online: http://www.iwls.org/iwls2005/benchmarks.html.
[2] K. J. Balakrishnan and N. A. Touba, “Improving linear test data

compression,” IEEE Trans. on CAD, pp. 1227–1237, 2006.
[3] S. Balatsouka, V. Tenentes, X. Kavousianos, and K. Chakrabarty, “Defect

aware x-filling for low-power scan testing,” in Proc. IEEE/ACM DATE,
march 2010, pp. 873–878.

[4] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. ACM/IEEE DAC,
2001, pp. 151–155.

[5] K. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and G. Hetherington,
“Minimizing power consumption in scan testing: pattern generation and
dft techniques,” in Proc. ITC, 2004, pp. 355–364.

[6] A. Chandra and K. Chakrabarty, “Low-power scan testing and test data
compression for system-on-a-chip,” IEEE Trans. on CAD, vol. 21, no. 5,
pp. 597–604, may 2002.

[7] ——, “Test data compression and test resource partitioning for system-
on-a-chip using frequency-directed run-length (fdr) codes,” IEEE Trans.
Comput., vol. 52, pp. 1076–1088, August 2003.

[8] ——, “A unified approach to reduce soc test data volume, scan power
and testing time,” IEEE Trans. on CAD, vol. 22, no. 3, pp. 352–363,
Mar. 2003.

[9] Z. Chen, D. Xiang, and B. Yin, “Segment based x-filling for low power
and high defect coverage,” in Proc. VLSI-DAT, april 2009, pp. 319–322.

[10] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer,
“Low-power scan operation in test compression environment,” IEEE
Trans. on CAD, vol. 28, no. 11, pp. 1742–1755, 2009.

[11] D. Czysz, G. Mrugalski, N. Mukherjee, and J. R. J. Tyszer, “Low-power
compression of incompatible test cubes,” in ITC, 2010, pp. 1–10.

[12] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective huffman coding,” IEEE
Trans. on CAD, vol. 22, no. 6, pp. 797–806, 2003.

[13] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective
huffman coding for test-data compression,” IEEE Trans. on Comput.,
vol. 56, no. 8, pp. 1146–1152, 2007.

[14] B. Könemann, “Lfsr-coded test patterns for scan designs,” in Proc. ETC,
1991, pp. 237–242.

[15] C. V. Krishna, A. Jas, and N. A. Touba, “Achieving high encoding
efficiency with partial dynamic lfsr reseeding,” ACM TODAES, vol. 9,
no. 4, pp. 500–516, 2004.

[16] J. Lee and N. A. Touba, “Lfsr-reseeding scheme achieving low-power
dissipation during test,” IEEE Trans. on CAD, vol. 26, no. 2, pp. 396–
401, 2007.

[17] G. Mrugalski, J. Rajski, D. Czysz, and J. Tyszer, “New test data
decompressor for low power applications,” in Proc. ACM/IEEE DAC,
2007, pp. 539–544.

[18] M. Nourani and M. H. Tehranipour, “Rl-huffman encoding for test
compression and power reduction in scan applications,” ACM TODAES,
vol. 10, pp. 91–115, January 2005.

[19] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deter-
ministic test,” IEEE Trans. on CAD, vol. 23, no. 5, pp. 776–792, 2004.

[20] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using
output-deviation-based reordering of test patterns,” IEEE Trans. on CAD,
vol. 27, no. 2, pp. 352–365, feb. 2008.

53

