
An Efficient 2-Phase Strategy to Achieve High Branch
Coverage

Sarvesh Prabhu

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Michael S. Hsiao, Chair
Sandeep K. Shukla

Yaling Yang

3 February, 2012
Blacksburg, Virginia

Keywords: Branch Coverage, Conflict-driven Learning,
Symbolic Execution, Software Testing

Copyright 2012, Sarvesh Prabhu

An Efficient 2-Phase Strategy to Achieve High Branch Coverage

Sarvesh Prabhu

(ABSTRACT)

Symbolic execution-based test generation is gaining popularity for software test generation.

The increasing complexity of the software program is posing new challenges in software

execution-based test generation because of the path explosion problem. We present a new

2-phase symbolic execution driven strategy that achieves high branch coverage in software

quickly. Phase 1 follows a greedy approach that quickly covers as many branches as possible

by exploring each branch through its corresponding shortest path prefix. Phase 2 covers the

remaining branches that are left uncovered if the shortest path to the branch was infeasible.

In Phase 1, a basic conflict driven learning is used to skip all the paths that may have

any of the earlier encountered conflicting conditions, while in Phase 2, a more intelligent

conflict driven learning is used to skip regions that do not have a feasible path to any

unexplored branch. This results in considerable reduction in unnecessary SMT solver calls.

Experimental results show that significant speedup can be achieved, effectively reducing the

time to detect a bug and providing higher branch coverage for a fixed time out period than

previous techniques.

∼ To my Grandparents ∼

iii

Acknowledgments

I would, first of all, like to thank my research advisor, Dr. Michael S. Hsiao, for his selfless

guidance and support during my research. His exceptional teaching in the course, Testing of

Digital Systems, inspired me to join his PROACTIVE research group. I was honoured to get

a chance to work with him and was deeply inspired by his extensive knowledge, dedication

and amiable nature. I would like to thank Dr. Sandeep Shukla and Dr. Yaling Yang for

serving on my thesis committee.

My sincere thanks also goes to Loganathan Lingappan, Vijay Gangaram and Jim Grundy

from Intel Corporation for funding this research. Their suggestions during our meetings

immensely helped me in this research work.

I also thank my lab-mate Saparya Krishnamoorthy for taking time out of her own crunch

time to explain the concepts of symbolic execution and answering all my doubts.

Special thanks to my roommates Supratik Misra, Anup Mandlekar, Apoorv Naik and Akshay

Sankpal who have made my stay at Virginia Tech truly memorable. I would also like to thank

my friends Sachin Hirve, Amrapali Dengada and Kavya Shagrithaya for all the curricular

and non-curricular discussions that we had.

I would like to express my gratitude to my parents Pradeep Prabhu and Vidhya Prabhu, my

sister Sheetal Prabhu and my extended family for their love, support and encouragement at

iv

every step of my life.

I thank my PROACTIVE lab-mates Dhrumeel Bakshi, Neha Goel, Nikhil Rahagude, Ma-

heshwar Chandrasekhar, Mainak Banga, Chinmay Limaye, Min Li, Huy Nguyen, Indira

Priyadarshani and Nevedetha Narayanan for helping me throughout and for all the fun we

had over the last two years.

Sarvesh Prabhu

February 2012

v

Contents

1 Introduction 1

1.1 Application to Tester Programs . 2

1.2 Contributions . 5

1.3 Thesis Organization . 6

2 Background 7

2.1 Symbolic execution-based test generation . 8

2.1.1 Program Instrumentation . 11

2.2 Concolic execution . 16

2.3 Satisfiability Modulo Theory (SMT) solvers 17

2.4 Previous work . 19

2.4.1 DFS-based reachability-guided strategy 21

2.4.2 Disadvantages of the DFS based reachability-guided strategy 23

3 Phase 1 27

3.1 The Strategy for Phase 1 . 27

3.1.1 Lower coverage reported . 30

3.2 Conflict Driven Learning . 32

3.2.1 UNSAT core . 32

3.2.2 Advantages of Proposed Phase 1 . 34

4 Phase 2 with Intelligent Conflict-driven Learning 36

vi

4.1 Need for an intelligent conflict driven learning 37

4.2 Phase 2 Algorithm with intelligent conflict-driven learning 39

5 Experimental Results 48

6 Conclusion and Future Direction 53

Bibliography 55

vii

List of Figures

2.1 Example of a Control Flow Graph . 11

2.2 A reachability graph where the DFS based reachability guided strategy ex-
plores a node through a longer path even though shorter paths exist 24

2.3 A reachability graph where a DFS based strategy gets confined in a subspace
for a long time . 25

3.1 An example of procedure followed in Phase 1 29

3.2 A reachability graph showing the need to report low coverage in Phase 1 . . 31

4.1 A reachability graph showing the need for an intelligent conflict driven learning
in Phase 2 . 37

4.2 A reachability graph showing the use of no feasible path nodes list 45

4.3 A reachability graph showing a totally unexplored node 47

viii

List of Tables

1.1 SKUs associated with Intel R© CoreTM desktop processor family 3

2.1 Example of Symbolic Execution . 9

5.1 Phase 1 Results . 49

5.2 Phase 2 Results . 50

ix

List of Algorithms

2.1 DFS-based reachability-guided search strategy 22

3.1 Algorithm for Phase 1 . 28

4.1 Algorithm for Phase 2 . 40

4.2 Algorithm for reachability check of branch (n, V) 40

x

Chapter 1

Introduction

Testing of software plays a critical role in ensuring the quality of the product, and nowadays

testing accounts for about 50% of the development cost [1]. According to a study by the

National Institute of Standards and Technology [2], software bugs or errors are so prevalent

that they cost the US economy an estimated $59.5 billion annually. The study also found

that more than a third of these costs could be saved by improving the testing infrastructure.

For effective testing of a software program, the desire is that all possible behaviors of the

program can be exercised by the test suite. This is not achievable by applying random inputs

or manual test generation. Random inputs tend to exercise the same execution paths while

hard to reach paths remain untested.

Various techniques [3–5] have been developed for automated test generation for software. The

advanced method of symbolic evaluation can be applied to program testing situations with

results close to those of formal correctness proofs, but without the high cost of generating such

proofs [6]. SELECT[7] and EFFIGY[8] were the first systems that demonstrated symbolic

execution. In symbolic execution, the path of the program which needs to be exercised

is converted to a logical formula. This formula is then given to a constraint solver which

1

Sarvesh Prabhu Chapter 1. Introduction 2

returns an input that exercises the path, if such an input exists. On the other hand, if no

input exists that can exercise the path, the solver concludes that the path is infeasible. The

symbolic execution based methods are guaranteed to make conclusions about distinct paths

of the program under test.

Even though symbolic execution based methods are very effective in path based test genera-

tion, these methods currently do not scale to large programs. The number of paths increase

exponentially with increase in the size of the program. Hence, it is impossible to exercise

every path of the program in a short time. This problem is usually referred to as the path

explosion problem. Therefore, instead of exploring all paths in a program code, other metrics

that can relate the all the paths are used. These metrics include statement coverage, func-

tion coverage, branch coverage, etc. For instance, 100% branch coverage and 100% statement

coverage indicates that all conditions and statements in the program have been exercised.

This can give a notion of how much the program has been tested.

1.1 Application to Tester Programs

In order to achieve high yields and satisfy the ever-changing market demands, the number of

SKUs (Stock Keeping Units) associated with a micro-processor product has risen sharply over

the last decade. This is also driven by the number of components that are being integrated

into the die along with the processor(s). Table 1.1 shows the number of different SKUs

associated with Intel R© CoreTM desktop processor family (Source: http://ark.intel.com).

Each SKU provides a different configuration option to the end consumer to build a platform

while simultaneously ensuring that each manufactured die can be sold as belonging to one

of these SKUs.

Silicon units need to be tested before they can be shipped to the market. This is done using

http://ark.intel.com

Sarvesh Prabhu Chapter 1. Introduction 3

Table 1.1: SKUs associated with Intel R© CoreTM desktop processor family

Intel R© CoreTM i7 Desktop Processor Extreme Edition 4
Intel R© CoreTM i7 Desktop Processor 15
Intel R© CoreTM i5 Desktop Processor 17
Intel R© CoreTM i3 Desktop Processor 7

testers or ATEs (Automated Test Equipment). A test program is embedded software that

runs on top of the tester operating system. It interacts with the tester software API functions

in order to provide stimulus to the Silicon unit and obtain its corresponding response. Note

that this definition of a test program differs and is bigger in scope than one that refers to a

sequence of instructions used to test processors. The primary objectives of a test program

are:

• Determine whether a Silicon unit is defective or faulty.

• For a defect-free unit, determine the SKU that the Silicon unit belongs to.

• For a defective unit, determine the failure type for faster debug and diagnosis.

In order to meet the above objectives, a test program consists of a large number of tests

that are connected in a complex fashion. The tests are diverse in nature such as DC tests,

structural (scan-based) tests, functional tests, I/O tests, power-based tests, thermal tests

etc. They are executed in a specific sequence in order to meet the above objectives in as

short a time as possible (longer test times have an adverse impact on time-to-market). The

number of lines of code needed to implement such a test program can easily run into 100,000s

to a million. With the increasing complexity of the tester programs that are used to test

manufactured chips, checking for their correctness has become extremely difficult. Given

the nature and complexity of the test program, the threshold for a bug to creep into a test

program is quite high. A test program bug can have disastrous consequences, such as:

Sarvesh Prabhu Chapter 1. Introduction 4

• Defective unit being shipped to market resulting in customer returns.

• A good unit being binned to a wrong SKU which also may result in customer returns

and bad end user experience.

• A good unit being discarded as a defective unit affecting yield.

• Long test times which in turn increase time-to-market and test costs.

The frequently used approach to validate a test program is to run a large number of Silicon

units on ATEs. The SKUs and failure types identified by the test program are verified using

statistical techniques that predict the distribution of the Silicon units across different SKUs.

Any outliers indicate a bug in the test program. Such an approach is associated with quite

a few drawbacks:

• Capital and run-time costs associated with a tester are prohibitively high making

validation an expensive task.

• A good sample set of Silicon units to exercise different corners of a test program is

hard to find early in the product development cycle.

• Statistical verification usually requires a large sample set and does not guarantee that

the test program is bug-free.

• Using Silicon units to validate a test program sometimes turns the validation process

into a chicken or egg problem.

Automatic software validation approaches are not tester dependent and hence, not associated

with any of the above drawbacks. Early feedback regarding test program quality helps in

reducing the length and frequency of test program development cycles and hence, directly

Sarvesh Prabhu Chapter 1. Introduction 5

impact the time-to-market of a product. Thus it is extremely important to efficiently test

the programs running on the ATE.

The test programs running on ATE consists of different tests that are executed sequentially

depending on the outcome of previous tests. Hence, these test programs can be modeled as

loop-free, stateless but control intensive programs. The symbolic execution based strategies

are very effective in generating test inputs that cover all portions of the control intensive

programs. Hence they can be efficiently used to generate intelligent test inputs for the

ATE programs. This helps in comprehensive testing of the test programs in an off-line

environment.

Achieving complete branch coverage of the program effectively means generating inputs that

will exercise all the tests at least once. These inputs cover all the corner cases and help

in comprehensively testing the ATE programs. However, the previous strategies symbolic

execution-based strategies have some drawbacks which make them inefficient for validation

of these test programs. The aim of this thesis is to develop a strategy that can achieve

complete branch coverage in a short time and which is scalable to large test programs.

1.2 Contributions

In this thesis, we propose a 2-Phased strategy for achieving high branch coverage for software

quickly using symbolic execution based test generation. The Phase 1 of the strategy aims at

covering as many branches as possible by targeting the shortest path to each branch node.

Because each branch node is targeted by only one path, Phase 1 covers more number of

branches in a short duration. Also the shorter path prefixes make constraint solving easier

and thus result in fast test generation. For the branches that are unexplored in Phase 1

due to infeasible prefixes, Phase 2 is applied. Phase 2 is begins with a previously proposed

Sarvesh Prabhu Chapter 1. Introduction 6

DFS-based reachability-guided search strategy. This strategy uses the reachability graph

of the program and tries to find paths to unexplored branches. In both phases a simple

light-weight conflict driven learning is used to avoid SMT solver calls for path prefixes that

have earlier encountered conflicting conditions. We also present a new intelligent conflict

driven learning for Phase 2 which intelligently skips many SMT solver calls by checking if

a feasible path exists from the current path to the unexplored branch. In so doing, we can

avoid all the conflicting conditions in the database.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 describes the concepts related symbolic execution-based test generation. The

previous work related to this research is also covered in this chapter.

Chapter 3 describes the Phase 1 of our 2-Phased strategy.

Chapter 4 explains the need for intelligent conflict driven learning for Phase 2 followed by

the Phase 2 algorithm of our 2-Phased strategy.

Chapter 5 shows the effectiveness of the 2-Phase strategy by presenting some experimental

results.

Chapter 6 concludes the thesis and provides ideas for future work.

Chapter 2

Background

Testing of software accounts for about 50% of the development cost [1]. According to a

study by the National Institute of Standards and Technology [2], software bugs or errors are

so prevalent that they cost the US economy an estimated $59.5 billion annually. The study

also found that more than a third of these costs could be saved by improving the testing

infrastructure.

For effective testing of a software program, the desire is that all possible behaviors of the

program can be exercised by the test suite. This is not achievable by applying random inputs

or manual test generation. Random inputs tend to exercise the same execution paths while

hard to reach paths remain untested.

Unit Testing is a commonly used technique for testing of functional behavior of the program.

In unit testing, the program is decomposed into units where each unit is a function or

a collection of functions. Each unit is tested independently by applying random inputs

or manually generated test inputs. But manual specification of such test inputs is labor

intensive and fails to cover corner cases [9].

7

Sarvesh Prabhu Chapter 2. Background 8

Automation of the testing process can result in both reduced development costs and an

increase in confidence in the quality of the software [3]. Hence, various techniques [3–5] have

been developed for automated test generation of test inputs. In [4], data dependence analysis

is used to guide test data generation. Data dependence analysis automatically identifies

statements that affect the execution of some selected statement and this information is used

to guide the search process. [5] applies a cost-function to every possible program input to

measure how good the input is. An input selection technique is presented in [3] which selects

a small subset from a large set of test inputs that is likely to reveal faults in the software

under test.

In recent years, symbolic and concolic execution based techniques have gained popularity for

dynamic test generation of test inputs.

2.1 Symbolic execution-based test generation

In Symbolic execution [10], the program is executed using symbolic variables instead of

concrete values. The program is first instrumented using an intermediate language such as

CIL [11]. When the instrumented code is executed with symbolic inputs, it generates a

trace of the path followed by the program. This trace consists of the symbolic expressions

of the conditions encountered along the path. The conjunction of the symbolic expressions

along the path forms a path constraint. By negating one of the symbolic expressions along

the current path, the path constraint of a target path is constructed. This path constraint

is then converted into a formula that is solved by an underlying constraint solver, such as

a Satisfiability Modulo Theory (SMT) solver [12], [13]. If the SMT solver returns a set

of assignments that satisfies the formula, then the test input can be extracted from the

assignment for which the formulated path can be exercised. If the SMT solver does not

Sarvesh Prabhu Chapter 2. Background 9

Table 2.1: Example of Symbolic Execution

Line Original Symbolic Symbolic Conditional Branch
No program value of x value of y Expression taken

1 int f(int x, int y) x y
{

2 if(x≥0) x≥ 0 true
3 x=x+2; x+2 y
4 if(y<0) y<0 false
5 y=y-3;
6 if(x!=y) x+2!=y true
7 //some function call
8 else
9 //error

}

find a satisfying assignment, then the path is declared infeasible, i.e., the path cannot be

exercised by any valid input. By negating one of the conditional expressions in the previous

path, a new path can be formed, which is again given to the SMT solver. Thus the test

generation continues by finding test inputs for every possible path in the code.

Table 2.1 shows an example of symbolic execution. The program was first executed with

concrete values of x=0 and y=0. The second column in the table is the original program

to be tested. The next two columns represent the symbolic memory map for input variables

x and y respectively. The next column shows the symbolic conditional expression for all the

conditions encountered along the current execution path of the program. The last column

reports whether the true or false branch was taken during the concrete execution.

It can be observed from the code that when the code was executed with concrete values

x=0 and y=0, the path taken by the program would be along line numbers 1 → 2 → 3 →

4 → 6 → 7. Before concrete execution, the program is instrumented to create a log of

the path followed by the program. Now the program is run with symbolic inputs, say x

Sarvesh Prabhu Chapter 2. Background 10

and y respectively, along the same path. During symbolic execution, the values of symbolic

variables are updated according to the instructions encountered. For example, when the

instruction x=x+2 is executed symbolically the symbolic value of x is updated from x to

x+2. Similarly symbolic expressions are formed for all the conditions encountered along the

path and depending upon whether the true or false branch was taken during the concrete

execution, the conditional expression is evaluated to true or false. For example, during the

concrete run the condition (x≥0) evaluated to true. Hence the symbolic expression for this

branch is formed as (x≥0=true). This expression is termed as the branch constraint .

The collection of all branch constraints along the symbolically executed path form the path

constraint . In the running example the path constraint formed after symbolic execution

will be (x≥0=true)∧(y<0=false)∧(x+2!=y=true)

The set of all values of the input variables that satisfy this path constraint will force the

program execution through the same path. In order to explore a new path we negate one

of the conditional expressions in the path constraint. For example, if the last branch con-

straint is reversed then the path constraint to be solved by the constraint solver will be

(x≥0=true)∧(y<0=false)∧(x+2!=y=false). The constraint solver returns input values that

can satisfy the formula (for example, x=2,y=4). When the program is executed with these

values the error on line number 9 is exposed. If the constraint solver declares the formula

to be unsatisfiable, then it means that the path is infeasible, i.e., there exists no input val-

ues that can force the program execution along the path in consideration. Thus, symbolic

execution can formally prove whether some error condition like the assertion failure can be

reached or not.

In order to systematically explore the path space of the program most of the current tools

first perform a static analysis of the program to be tested and build a static reachability

graph or control flow graph(CFG) of the program. In this graph each condition is given a

Sarvesh Prabhu Chapter 2. Background 11

unique ID. The graph then represents the next condition that will be encountered if true or

false branch of the condition is executed. This CFG is used to maintain a record of code

coverage at any given instance during test generation. Many strategies exist that uses the

CFG to determine which branch constraint from the path constraint is to be reversed in

order to explore a new path. Figure 2.1 shows the reachability or Control Flow Graph of

the program in Table 2.1. Here the condition ID is same as the line number in the table.

4

2

6

���� ������ ��	
� ������

����
��	 ����

������

����
��	 ��	
�

������

Figure 2.1: Example of a Control Flow Graph

2.1.1 Program Instrumentation

The program to be tested is first instrumented using an intermediate language. Program

instrumentation helps in logging details of the path followed during concrete execution which

are used during symbolic execution. A good intermediate language should be simple to

analyze, close to the source and able to handle real-world code.

CIL [11] is an OCaml application for parsing and analyzing C code. The C programming

language is well-known for its flexibility in dealing with low-level constructs. Unfortunately,

it is also well-known for being difficult to understand and analyze, both by humans and

Sarvesh Prabhu Chapter 2. Background 12

by automated tools. Compared to C, CIL has fewer constructs. It parses through the

program and converts complicated constructs in C into simpler ones. All looping constructs

are reduced to a single form. It replaces break and continue statements with goto-label. It

converts multiple conditions into nested conditions. It also adds explicit return statements

to all functions. CIL moves all type declarations to the beginning of the program and gives

them global scope. These simplifications reduce the number of cases that must be considered

when manipulating a C program, making it more amenable to analysis and transformation.

In addition to this we can use CIL to add statement IDs/condition IDs and insert function

calls throughout the program that can generate a trace of the execution.

CIL attempts to both distill the C language constructs into a few constructs with precise

interpretation and also stay fairly close to the high-level structure of the code so that the

results of the source-to-source transformations bear sufficient resemblance to the source code.

This makes it possible to map back the conclusions about the CIL program to the original

C program. CIL syntax has three basic concepts: expressions, instructions and statements.

Expressions represent functional computation, without side-effects or control flow. Instruc-

tions express side effects, including function calls, but have no local control flow. Statements

capture local control flow.

Example 1: Conversion of multiple conditions to nested conditions and addition of explicit

return statement.

Original Code

#include <s t d i o . h>

int main () {

int x , y ;

i f (x==0 && y==1)

p r i n t f (”He l lo world\n”) ;

Sarvesh Prabhu Chapter 2. Background 13

}

CIL output

/∗ Generated by CIL v . 1 . 3 . 7 ∗/

#line 339 ”/ usr / in c lude / s t d i o . h”

extern int p r i n t f (char const ∗ r e s t r i c t f o rmat , . . .) ;

#line 3 ” t e s t . c”

int main (void)

{ int x ;

int y ;

{

#line 5

i f (x == 0) {

#line 5

i f (y == 1) {

#line 6

p r i n t f ((char const ∗ r e s t r i c t) ”He l lo world\n”) ;

} else {

}

} else {

}

#line 7

return (0) ;

}

}

Example 2: Conversion of different looping constructs to while(1) loop

Original Code

i n c l ude <s t d i o . h>

Sarvesh Prabhu Chapter 2. Background 14

int main () {

int x , y ;

for (x=0;x<5;x++)

p r i n t f (”%d” , x) ;

while (y<x)

{

p r i n t f (”%d” , y) ;

y++;

}

}

CIL output

/∗ Generated by CIL v . 1 . 3 . 7 ∗/

/∗ pr in t CIL Inpu t i s t rue ∗/

#line 339 ”/ usr / in c lude / s t d i o . h”

extern int p r i n t f (char const ∗ r e s t r i c t f o rmat , . . .) ;

#line 3 ” t e s t 2 . c”

int main (void)

{ int x ;

int y ;

{

#line 5

x = 0 ;

#line 5

while (1) {

#line 5

i f (x < 5) {

} else {

Sarvesh Prabhu Chapter 2. Background 15

#line 5

break ;

}

#line 6

p r i n t f ((char const ∗ r e s t r i c t) ”%d” , x) ;

#line 5

x = x + 1 ;

}

#line 8

while (1) {

#line 8

i f (y < x) {

} else {

#line 8

break ;

}

#line 10

p r i n t f ((char const ∗ r e s t r i c t) ”%d” , y) ;

#line 11

y = y + 1 ;

}

#line 13

return (0) ;

}

}

When the instrumented program is executed, it generates a trace of the path followed by the

program. This trace is then used to execute the program with symbolic inputs. The trace

generated also includes information about the conditional expressions encountered along the

path and whether they were evaluated to true or false. At the end of the symbolic execution,

Sarvesh Prabhu Chapter 2. Background 16

a path constraint is obtained which is a logical formula in terms of symbolic inputs. All

the concrete input values that satisfy this formula will force the program through the same

path. Depending on the search strategy some conditional expression in the path constraint

is negated and the formula is given to a constraint solver. The input values returned by the

constraint solver will now force the program execution through the new selected path.

2.2 Concolic execution

Concolic execution [9] is an improvement over symbolic execution. Concolic stands for co-

operative concrete and symbolic execution of the program. The program is instrumented to

add a function call per statement of the program. The original code of the program performs

the concrete execution and the inserted function calls perform the symbolic execution. Con-

crete values are used to simplify complex constraints which the underlying constraint solver

cannot handle.

In CUTE [9], the code is first instrumented to add function calls per statement. Then the

instrumented code is run repeatedly. The logical input map I is used to generate concrete

memory input graphs for the program and two symbolic states, one for pointer values and one

for primitive values. The code is run concretely on the concrete input graph and symbolically

on the symbolic states, collecting constraints (in terms of the symbolic variables in the

symbolic state) that characterize the set of inputs that would (likely) take the same execution

path as the current execution path. According to the path exploration strategy one of the

collected constraints is negated. The resulting constraint system is solved to obtain a new

logical input map I’ that is similar to I but (likely) leads the execution through a different

path. Thus the program is executed concretely and symbolically at the same time. On

the other hand, in symbolic execution, the concrete execution generates a trace which is

Sarvesh Prabhu Chapter 2. Background 17

then used for symbolic execution. Hence, concolic execution is usually faster then symbolic

execution.

2.3 Satisfiability Modulo Theory (SMT) solvers

Satisfiability is one of the most fundamental problems in theoretical computer science,

namely the problem of determining whether a formula expressing a constraint has a so-

lution. The most well-known constraint satisfaction problem is propositional satisfiability

SAT, where the goal is to decide whether a formula over Boolean variables, formed using

logical connectives, can be made true by choosing true/false values for its variables[14]. How-

ever, Boolean logic is not expressive enough for representing many problems. Such problems

are expressible in decidable fragments of first order logics (or simply theories henceforth),

where the propositional variables are combined with constraints over individual variables.

The problem of evaluating the satisfiability of first order formulas with respect to some

background theories is called Satisfiability Modulo Theory (SMT) [13].

A theory is a set of axioms and rules of inference in which first order logic predicates are

interpreted. Formally, a theory T is the set of axioms and all deducible formulas from the

rules of inference (all true statements). Examples of theories typically used in SMT solvers

are the theory of real numbers, the theory of integers, the theories of various data structures

such as lists, arrays, bit vectors and so on. A formula F is T-satisfiable if F ∧ T is satisfiable

in the first order sense. If not, F is T-inconsistent, or T-unsatisfiable.[12]

SMT solvers can work at mixed level of abstraction and can reason about first order for-

mulas involving a mixture of Boolean values, bit-vectors, linear arithmetic, uninterpreted

functions, difference logic, records, tuples, etc. The path constraints generated during sym-

Sarvesh Prabhu Chapter 2. Background 18

bolic execution can be expressed as first order formulas in theories which the SMT solvers

can handle.

For deciding satisfiability or unsatisfiability of formulas in this kind of logics, during the

last few years many successively more sophisticated techniques have been developed, most

of which can be classified as being eager or lazy. In the eager approaches the input formula

is translated, in a single satisfiability preserving step, into a propositional CNF, which is

checked by a SAT solver for satisfiability. In the lazy approaches each atom in the SMT

formula is internally assigned a Boolean variable. The Boolean formula is solved by an

underlying SAT solver. The assignment returned by the SAT solver is then checked by the

corresponding dedicated theory solvers. If any clause is violated then additional learning

clauses are added in the context by the theory solvers and the search for a satisfying model

continues. This process is repeated until a model compatible with the theory is found or all

possible propositional models have been explored [15].

All the latest SMT solvers are based on DPLL(T) framework. In this framework the responsi-

bility of Boolean reasoning is given to the Davis-Putnam-Logemann-Loveland (DPLL)-based

SAT solver [16, 17] which, in turn, interacts with a solver for theory T through a well-defined

interface. The theory solver need only worry about checking the feasibility of conjunctions

of theory predicates passed on to it from the SAT solver as it explores the Boolean search

space of the formula. For this integration to work well, however, the theory solver must be

able to participate in propagation and conflict analysis, i.e., it must be able to infer new

facts from already established facts, as well as to supply succinct explanations of infeasibil-

ity when theory conflicts arise. In other words, the theory solver must be incremental and

backtrackable [18]. If the formula is satisfiable then the SMT solver returns a model i.e.,

values of the variables that satisfy the formula.

Sarvesh Prabhu Chapter 2. Background 19

Some of the currently popular SMT solvers are Yices [19], MathSAT 5 [20], CVC3 [21]. In

our research we have used the Yices SMT solver.

2.4 Previous work

Symbolic execution was introduced in late 70’s. SELECT [7] and EFFIGY [8] were the first

systems that demonstrated symbolic execution. SELECT was an experimental system for

assisting in formal systematic debugging of programs. It performed symbolic execution of

paths of programs written in C. Effigy was a similar tool that handled programs written in

PL/I style programming language.

Many tools like DART [22], CUTE [9], CREST [23], Java PathFinder [24], have been devel-

oped in recent years that use symbolic execution for automated generation of test inputs.

DART [22] presented a technique for automatic generation of new test inputs to systemat-

ically direct the execution such that the program sweeps through all its feasible execution

paths. DART could handle only integer constraints and used random inputs when the pointer

constraints were encountered. Because of this some paths of the program were missed. CUTE

[9] further extended this technique to a broad class of sequential programs by providing a

method for representing and solving approximate pointer constraints to generate test inputs.

[25] used best-first search heuristic to drive the execution along interesting execution paths,

e.g., that cover unexplored statements.

DART and CUTE are based on the conventional depth-first search (DFS) strategy for path

exploration. In a DFS strategy, after each execution, the branch constraint of the last branch

in the path constraint whose counter branch is unexplored from the current path prefix is

reversed to explore a new path. Thus the DFS based symbolic execution ends after sweeping

though all possible paths in the program. However, such a path exploration strategy is not

Sarvesh Prabhu Chapter 2. Background 20

scalable because the number of paths increases exponentially with the number of conditions

in the code. For large programs the number of paths to be explored is so large that both

symbolic and concolic execution based techniques are able to explore only small parts of

the program state space in a reasonable amount of time. Hence, in [26] an algorithm for

hybrid concolic testing was presented that interleaved random testing and concolic testing

to achieve deep and wide exploration of the program state space. Hybrid concolic testing

starts by performing random testing. When random testing fails to explore new points after

a predetermined number of steps, the algorithm automatically switches to concolic execution

from current program state to perform an exhaustive bounded DFS for an uncovered coverage

point.

CREST [23] is an automatic test generation tool for C. It has a number of heuristic search

strategies for tackling the path explosion problem.

• Bounded Depth-First Search - In the conventional DFS the search ends when all feasible

paths have been explored. But in Bounded DFS for a bound d > 0, the search is

restricted to the first d feasible branches along any path.

• Uniform Random Search - In this strategy the program is executed along random paths

instead of random inputs. Hence it avoids the problem in random testing that often

many inputs are used that lead to same execution paths.

• Random Branch Search - In this strategy a branch along current path is randomly

chosen and the execution is forced to not take that branch. Thus, this strategy takes

a random walk through the path space.

• Control-Flow graph Directed Strategy - This strategy uses the static structure of the

program under test to guide the dynamic search of the program’s path space. A static

control flow graph (CFG) of the program under test is built. Then, the distances of all

Sarvesh Prabhu Chapter 2. Background 21

the uncovered branches from the branches along the current path are determined after

each execution and the branch with the minimum distance to an uncovered branch

is negated to explore a new path that will bring us closer to exploring an uncovered

branch.

A DFS based reachability guided strategy was proposed in [27] which performs branch cov-

erage using the static reachability graph of a program. Since our research is an based on

this strategy it is necessary to analyze at this strategy in detail.

2.4.1 DFS-based reachability-guided strategy

A DFS based reachability guided strategy proposed in [27] performs branch coverage using

the static reachability graph of a program. In a DFS strategy, after each execution, the

branch constraint of the last branch in the path constraint whose counter branch is unex-

plored from the current path prefix is reversed to explore a new path. This strategy makes

use of a reachability graph of the given program, and after each execution, starting from the

terminal node, it checks if the counter edge can reach any unexplored branch. The counter

edge is explored only if it leads to any important conditional that has not yet been visited,

or if it itself is an important condition. This is achieved by performing a DFS on the sub-tree

at the node of the counter edge with the help of the reachability graph. If no new important

branches can be reached from the counter edge then the search procedure backtracks to the

previous node in the CFG and this process continues until all the branches are covered. The

complete algorithm followed by this strategy is shown in Algorithm 2.1 [27].

This strategy was able to achieve complete branch coverage in a reduced execution time, as

compared to the earlier strategies. However, the performance of such an approach can be

limited by focusing too much on trying to reach the unexplored branches from the current

Sarvesh Prabhu Chapter 2. Background 22

Algorithm 2.1 DFS-based reachability-guided search strategy

Path← ∅, Tests← ∅
CurrNode← initial node
append CurrNode to Path

while Path is not empty do
if not covered any branches of CurrNode then
transition← false branch of CurrNode

if transition can reach any unvisited important conditionals then
if transition does not lead to terminal node then
append transition to Path

else
if path constraint of Path has solution then
record Tests

else
record Path as infeasible

end if
end if

end if
else if covered only one branch of CurrNode then
/*symmetric case for true branch*/

else
remove CurrNode from Path

CurrNode← previous node in Path /*backtrack*/
end if

end while

Sarvesh Prabhu Chapter 2. Background 23

execution path as will be explained in next subsection. In other words, there may exist

better paths to reach the unexplored branches.

2.4.2 Disadvantages of the DFS based reachability-guided strat-

egy

Even though the DFS based reachability-guided strategy achieves complete branch coverage

in a reduced execution time, it has some disadvantages which degrade its performance,

explained below:

1. The DFS based strategy tries to explore every node, n, in the reachability graph and

the sub-tree under n through the first path that reaches n. Thus, it may often fail to

take into account the fact that multiple incoming edges (and paths) may exist to a given

node, and hence a target node can be accessed through alternative paths that may be

superior with regard to test generation time and complexity. Because of the lack of

this consideration, the reachability-guided strategy may sometimes end up exploring a

target node through longer paths even though a shorter path exists to that node.

Consider the reachability graph shown in Fig. 2.2. Here the initial path taken is the

bold-faced path as shown in Fig. 2.2a. Since (n3, F) is a terminal edge, the DFS based

strategy checks if (n3, T) leads to any unexplored branch. As n2 and nodes beneath n2

have not yet been explored, it will now explore it though the path in Fig. 2.2b. Now

for node n2 and nodes beneath n2, there exists a shorter path prefix through (n0, T).

The DFS based technique does not take this shorter path into account when extending

the test generation from the current path.

2. Since the strategy is reachability based, it sometimes can get stuck in a subspace of the

reachability graph. This occurs when a node has many paths but very few (or none)

Sarvesh Prabhu Chapter 2. Background 24

��

��

��

��

(a)

��

��

��

��

(b)

���� ����� !�"#� �����

���$%��" ����

�����

���$%��" !�"#�

�����

����� �"&�'

������()�(

Figure 2.2: A reachability graph where the DFS based reachability guided strategy explores
a node through a longer path even though shorter paths exist

of them are feasible. Consider the reachability graph in Fig. 2.3. Here the initial path

taken is (n0, F)→ (n1, T)→ (n4, F)→ (n5, F)→ (n6, T)→ (n7, F). After reversing

the last condition according to DFS we try to explore the path (n0, F) → (n1, T) →

(n4, F) → (n5, F) → (n6, T) → (n7, T) which turns out to be infeasible. Now, we

backtrack and continue with the path exploration. It can be seen that the node n7 is

reachable from the nodes n0 to n6. So with the DFS based search, node n7 is attempted

from all these nodes. For a path like (n0, F) → (n1, F) → (n2, F) → (n3, F), node

n7 is reachable from (n3, T), so this path is considered just to explore (n7, T). And it

might take multiple hops to reach (n7, T). By intelligent observation it can be seen that

in the worst case around 15 SMT solver calls can be made just to attempt to explore

(n7, T) while the nodes beneath (n0, T) remain unexplored for a long time. Thus, the

branch exploration can be confined to a subspace and this reduces the efficiency of the

DFS based reachability-guided strategy and makes it less scalable for larger programs.

Sarvesh Prabhu Chapter 2. Background 25

*+

*,

*-

*.

*/

*0

*1

*2

*3

4567 859:;< =9>?7 859:;<

475@A:9> 4567

859:;<

475@A:9> =9>?7

859:;<

859:;< 9>B:C

;6557:D E9D<

Figure 2.3: A reachability graph where a DFS based strategy gets confined in a subspace for
a long time

3. While trying to explore an unexplored branch, the DFS based strategy may often

find many paths infeasible due to same set of conflicting conditions. For example,

in the previous example the branch (n7, T) was tried to be explored through path

(n0, F) → (n1, T) → (n4, F) → (n5, F) → (n6, T) → (n7, T) which was infeasible.

If the conflicting branches making this path infeasible were {(n0, F), (n7, T)} then all

the paths that start with branch (n0, F) and reach (n7, T) will be infeasible because

of the same set of conflicting branches.

The aim of this research is to overcome these disadvantages and develop a strategy which

achieves very high branch coverage quickly and which is not bogged down by regions that

Sarvesh Prabhu Chapter 2. Background 26

consume excessive search due to presence of infeasible paths. In this thesis, we address

the aforementioned challenges by favoring short paths first and then cleverly targeting the

remaining unexplored branches. To do so, we propose a 2-phase strategy that explores each

branch through the shortest path to that branch in Phase 1, and then explores the branches

that were infeasible in Phase 1 through other available paths. To reduce the computational

cost further, in Phase 1, a basic conflict driven learning is used to skip all the paths that

may have any of the earlier encountered conflicting conditions, while in Phase 2, a more

intelligent conflict driven learning is used to skip regions that do not have a feasible path to

any unexplored branch. This results in considerable reduction in unnecessary SMT solver

calls and significant speedup can be achieved [28].

Chapter 3

Phase 1

The 2-phased strategy makes use of the reachability graph of the program and tries to explore

every node only through the shortest path to that node in Phase 1.

3.1 The Strategy for Phase 1

In Phase 1, we first perform a quick breadth-first search (BFS) on the reachability graph as

a preprocessing step. We mark those input edges to any node, n, which do not form the

shortest path prefixes to n and the nodes beneath it.

After the edges are marked, there is exactly one path from root node to every node in the

reachability graph such that the path does not contain any of the marked edges. This is the

shortest path from the root node to that node. This information is used to make sure that

each node and the sub-tree under it are explored only through the shortest possible path in

Phase 1.

We start with the path obtained after executing the code with an initial test input (could

27

Sarvesh Prabhu Chapter 3. Phase 1 28

be random). After execution of the initial input, we check if the path taken contains any of

the edges that were marked earlier. If so, we truncate the path till a marked edge closest to

the root of the graph, and we record the coverage only till that marked edge. We now find

the next path by flipping the direction of the last node if it has not been already covered.

Otherwise, we backtrack to the previous node. A detailed algorithm of our approach is given

in Algorithm 3.1.

Algorithm 3.1 Algorithm for Phase 1

not to be visited edges← BFS of reachability graph
Path← execute the code with initial inputs
if Path has any not to be visited edges then
Path← truncate Path up to the first edge in not to be visited edges

end if
record the coverage for Path

while Path is not empty do
Path← drop all trailing edges with explored counter edges
if Path is not empty then
Path← reverse the last branch
if path constraint of Path has solution then
record test inputs

Path← execute code for test inputs
if Path has any not to be visited edges then
Path← truncate Path up to the first edge in not to be visited edges

end if
record the coverage for Path

end if
end if

end while

An example of the procedure followed in Phase 1 is shown in the Fig. 3.1. Here, a por-

tion of a reachability graph is shown (nodes below n6 are not shown). After performing

the BFS on the reachability graph the edges that are marked as not to be explored are

{(n2, T), (n3, T), (n3, F), (n5, T)}. These are marked because they are not a part of shortest

path to any of nodes.

The initial inputs take the path (n0, F) → (n2, F) → (n3, F) → (n5, F) as shown in Fig.

Sarvesh Prabhu Chapter 3. Phase 1 29

FG

FH

FI

FJ

FK

FL

(a)

MN

MO

MP

MQ

MR

MS

(b)

TU

TV

TW

TX

TY

TZ

(c)

[\

[]

[^

[_

[`

[a

(d)

bc

bd

be

bf

bg

bh

(e)

ij

ik

il

im

in

io

(f)

pqrs tquvwx yuz{s tquvwx

psq|}vuz pqrs

tquvwx

psq|}vuz yuz{s

tquvwx

tquvwx uz~v�

wrqqsv� �u�x

Figure 3.1: An example of procedure followed in Phase 1

Sarvesh Prabhu Chapter 3. Phase 1 30

3.1a. The edge (n3, F) was marked as not to be explored for n5 and nodes beneath n5.

Hence, we truncate the path till (n3, F) and then record the coverage of the truncated

path. Then we backtrack and explore the other edge of n3. The path taken in this case is

(n0, F)→ (n2, F)→ (n3, T)→ (n4, F)→ (n5, F) as shown in Fig. 3.1b. Again (n3, T) is a

marked edge. We truncate the path up to (n3, T) and record the coverage. Since both the

edges of n3 have been explored we backtrack and explore the other edge of n2 and take path

(n0, F)→ (n2, T)→ (n4, F)→ (n5, T)→ (n6, F) as shown in Fig. 3.1c. This path contains

two marked edges (n2, T) and (n5, T). We truncate the path till (n2, T) because it is the edge

that is closest to the root node n0. We now backtrack and explore other edge of n0 and take

path The path taken is (n0, T)→ (n4, F)→ (n5, F) as shown in Fig. 3.1d. Now, (n0, T) is

the shortest path prefix for node n4. So, all the nodes beneath n4 will be explored through

this path prefix. Similarly (n0, T)→ (n4, F) is the shortest path for n5. Since this path does

not have any marked edge, we record the coverage of the entire path and then explore the

other edge of n5. The path taken is (n0, T)→ (n4, F)→ (n5, T)→ (n6, F) as shown in Fig.

3.1e. This path has a marked edge (n5, T). So we truncate the path till this edge and we

backtrack to explore other edge of n4. Now the path taken is (n0, T) → (n4, T) → (n6, F)

as shown in Fig. 3.1f. This path does not have any marked edge which means this is the

shortest path to node n6. We continue to explore the nodes beneath n6 in a similar way by

using the smallest path prefix to each node.

3.1.1 Lower coverage reported

In the Phase 1 algorithm explained before, at every step we check if the path contains any

marked edge. If it does then we truncate the path till the marked edge closest to the root and

then record the coverage of the truncated path. This results in reporting of lower coverage

Sarvesh Prabhu Chapter 3. Phase 1 31

than the actual coverage that is achieved because some branches that were covered by the

path are not reported as covered.

n1

n2

n3

n5n4

n6

���� ������ ����� ������

�������� ����

������

�������� �����

������

Figure 3.2: A reachability graph showing the need to report low coverage in Phase 1

The reason for choosing to report the lower coverage can be explained with the following

example. In the reachability graph shown in Figure 3.2, (n2, T) is the only branch marked

as not to be explored after the BFS on the reachability graph. Let the path taken by initial

inputs be (n1, F) → (n2, T) → (n3, F) → (n4, F) → (n6, F)). This path contains the

marked edge (n2, T). Suppose we report the coverage of the entire path and then truncate

the path to (n1, F)→ (n2, T)). According to the Phase 1 algorithm the next path taken is

(n1, F) → (n2, F). This path has no marked edge so we record the coverage of the entire

path. No we backtrack to explore the branch (n1, T). Let the path taken after executing

the inputs generated for this path prefix be (n1, T) → (n3, F) → (n4, T). Since this path

does not contain the marked edge, we record the coverage of entire path. According to the

Phase 1 algorithm we check if the counter edge of the last branch i.e. (n4, F) is covered or

not. This branch was reported as covered by the first path. So we backtrack. Here we can

see that the branch (n6, T) and the other nodes below this branch were to be explored with

Sarvesh Prabhu Chapter 3. Phase 1 32

the path prefix (n1, T) → (n3, F) → (n4, F). But since we backtracked without exploring

(n4, F) through the current path prefix, these branches will remain unexplored in Phase

1. To prevent this we can perform a DFS at node n6 (i.e. node at end of counter edge

(n4, F) to check if it reaches any unexplored node. This will make the strategy similar to

the DFS based reachability guided strategy and we will face all the shortcomings of DFS

based reachability guided strategy that were explained in section 2.4.2. Hence we choose

to report the coverage of the truncated path and not the entire path. This results in early

completion of Phase 1.

3.2 Conflict Driven Learning

As explained earlier, during path exploration some paths may be infeasible. Many of these

infeasible paths may have the same set of conflicting conditions. To avoid unnecessary

time spent by the SMT solver to solve a path constraint which can be predetermined to be

unsatisfiable, a simple conflict-driven learning such as that introduced in [27] is sufficient for

Phase 1. Every time the SMT solver returns a path constraint as infeasible we extract the

unsatisfiable core which is the set of conflicting clauses that make the formula unsatisfiable.

3.2.1 UNSAT core

An unsatisfiable core can be defined as any subset of the original formula that is unsatisfiable.

Consequently, there may exist many different unsatisfiable cores, with different number of

clauses, for the same problem instance, such that some of these cores are subsets of others.

Also, and in the worst case, the unsatisfiable core corresponds exactly to the set of original

clauses [29].

Sarvesh Prabhu Chapter 3. Phase 1 33

An unsatisfiable core is C minimal iff the formula obtained by removing any of the clauses

of C is satisfiable. A minimum unsat core is a minimal unsat core with the smallest possible

cardinality[30]. The minimal unsat core is also known as minimal unsatisfiable subformula

(MUS).

A naive algorithm for minimal unsatisfiable core works as follows: For every clause C in an

unsatisfiable formula F, the algorithm checks if it belongs to the minimal core by invoking

a propositional satisfiability (SAT) solver on F, but without clause C. Clause C does not

belong to a minimal core if and only if the solver finds that F\{C} is unsatisfiable, in which

case C is removed from F. In the end, F contains a minimal unsatisfiable core[31].

Many techniques have been proposed in recent years for the extraction of unsat core [29–

34]. SMT solvers CVC3 and MathSAT 5 can compute unsatisfiable cores as a byproduct of

the generation of proofs, in a way similar to that in [34]. Yices instead uses the following

technique: a selector variable is introduced for each original clause, which is forced to false

before starting the search. In this way, when a conflict at decision level zero is found, the

conflict clause contains only selector variables, and the unsat core returned is the union of

the clauses whose selectors appear in such conflict clause[30].

In our context the formula to be solved by the SMT solver is the new path prefix. In the

formula each clause represents a branch i.e. true or false of a conditional expression of the

program. The unsatisfiable core consists of the set of branches that made the path infeasible.

For example, consider the path prefix (x > 0 = false) ∧ (x > z = true) ∧ (z > x = true) ∧

(z == 3)). It can be observed that this formula is unsatisfiable i.e. this path is infeasible.

The reason for infeasibility is that the two clauses (x > z = true) and (z > x = true) cannot

be satisfied together. These two clauses are reported by the SMT solver as the unsatisfiable

core. However, it must be noted that the unsatisfiable core reported by any SMT solver is

Sarvesh Prabhu Chapter 3. Phase 1 34

not guaranteed to be minimal. If the same set of branches are present in any other path

then that path will also be infeasible.

In Yices, each branch constraint is given a different ID. When the path constraint is unsat-

isfiable, Yices returns the IDs of the branch constraints in the unsat core. These are the

conflicting branches in the path that make the path infeasible. Here each branch is a true

or false direction of a condition in the code being tested. We then store these conflicting

branches in a database. Henceforth, we will use the term unsat constraint for each set of

conflicting branches and an entire list of such unsat constraint as unsat constraint list. Be-

fore calling the SMT solver, we check if the path whose formula is to be solved contains

any of the unsat constraint already present in the database. If so, we assume the path to

be infeasible and skip the solver call and move on to explore the next path. This conflict

driven learning works only if the program is stateless. The stateless nature of the program

guarantees that the value of variables do not change and hence are path independent. Hence,

if the same set of conflicting conditions are encountered by some other path then that path

is also infeasible. This conflict driven learning saves considerable amount of time because

for long paths with large number of branches the solver call can be expensive.

3.2.2 Advantages of Proposed Phase 1

The advantages of the proposed Phase 1 are listed below.

1. Phase 1 quickly explores every node through the shortest path to the node, thereby

reducing the time needed to explore a large portion of the nodes.

2. As Phase 1 covers only the shortest path to every node in the reachability graph, this

strategy is scalable because the number of paths explored will increase linearly rather

than exponentially with the increase in number of conditions in the code.

Sarvesh Prabhu Chapter 3. Phase 1 35

3. Since every node is explored through only one fixed path in Phase 1, the search will

not be stuck in a specific region due to infeasible paths. If the shortest path to the

node is found to be infeasible we move on to next node.

4. By using a simple low-cost conflict driven learning, unnecessary SMT solver calls are

avoided.

Chapter 4

Phase 2 with Intelligent

Conflict-driven Learning

If there are no infeasible paths during Phase 1, then Phase 1 will guarantee maximum possible

branch coverage in the least amount of time. In that case, Phase 2 is unnecessary. However, it

is possible that for some nodes the shortest path is infeasible. For those unexplored branches

in Phase 1, we need a Phase 2 to explore these branches through alternative paths.

Phase 2 uses a DFS based reachability guided strategy similar to previous approaches, with

an intelligent conflict driven learning. Phase 2 starts with all the information of the branches

already covered by Phase 1 and aims at covering only the remaining branches. We note that

since the DFS based reachability guided technique has been shown to be complete, maximum

possible coverage will be achieved at end of Phase 2. However, this can be a time consuming

phase since it is trying to find a feasible path to all the nodes that were not reached during

Phase 1. Some of these nodes may have a large number of paths but very few of them

feasible. In this phase, our main goal is to reduce the computational cost needed.

36

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 37

��

��

�� ��

�� ��

��

��

���� ���� ¡ ¢�£¤� ���� ¡

���¥¦��£ ����

���� ¡

���¥¦��£ ¢�£¤�

���� ¡

���� ¡ �£§�¨

 �����© ª�©¡

Figure 4.1: A reachability graph showing the need for an intelligent conflict driven learning
in Phase 2

4.1 Need for an intelligent conflict driven learning

The simple conflict driven learning that was used in Phase 1 is not efficient for Phase 2. This

can be explained with the following example.

Consider Fig. 4.1. After Phase 1 the only unexplored branch remaining is (n9, T). The

branch (n9, T) was infeasible in Phase 1 because of the conflicting conditions {(n0, F), (n9, T)}.

According to the DFS based reachability guided strategy we try to find a path to node n9

from the last executed path. Let last executed path be (n0, F) → (n1, F) → (n2, F) →

(n4, F).

According to the DFS-based reachability guided strategy, we check if node at end of counter

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 38

edge of the last edge in the last executed path reaches node n9. In this case the counter edge

of the last executed path is (n4, F) and it is a terminal edge. Hence it cannot reach node n9 so

we backtrack. Now, the counter edge of (n2, F) (i.e, (n2, T)) reaches node n5. So we perform

a DFS on the sub-tree under node n5 and find that branch (n9, T) is reachable. So the new

path prefix chosen is (n0, F) → (n1, F) → (n2, T). The SMT solver solves the path prefix

and generates the inputs for which the code will follow this path prefix. After running the

code with these inputs the path taken is (n0, F)→ (n1, F)→ (n2, T)→ (n5, F). Following

the same procedure the next two paths taken are (n0, F)→ (n1, F)→ (n2, T)→ (n5, T)→

(n7, F) and (n0, F)→ (n1, F)→ (n2, T)→ (n5, T)→ (n7, T)→ (n9, F). Now, by changing

the last condition we reach the unexplored branch (n9, T). The path prefix to be solved by

SMT solver for this path is (n0, F) → (n1, F) → (n2, T) → (n5, T) → (n7, T) → (n9, T).

However, after applying the basic conflict driven learning we find that this path consists of

the conflicting conditions present in the database {(n0, F), (n9, T)}. So we avoid the solver

call and look for the next available path to reach (n9, T). Thus, although the basic conflict

driven learning can help us avoid one solver call, the earlier three solver calls made to reach

this particular path were also unnecessary. We explain this as follows. Since (n0, F) is

already present in the path prefix of n2, there is no feasible path to (n9, T) from (n2, T).

So the conflict driven learning used in Phase 2 needs to be modified with a more intelligent

conflict driven learning which not only checks if branch (n9, T) is reachable from (n2, T) but

also checks if it is reachable by avoiding all the conflicting conditions in the database.

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 39

4.2 Phase 2 Algorithm with intelligent conflict-driven

learning

The intelligent conflict driven learning in Phase 2 currently assumes the stateless property of

the program. However, the learning can be extended to general programs by ensuring that the

variables and the paths associated with the conflict exhibit stateless property. During path

exploration in Phase 1, we choose the next path by reversing the direction of some condition

in the path that was currently taken. The new path constraints are then formulated and

given to the SMT solver. If the SMT solver returns the formula unsatisfiable, then the new

branch with the reversed direction will be a part of the unsat core since the direction of only

one condition was changed between the last path and the new path. Since each branch is

explored through only one path in Phase 1, each unsat constraint generated (in Phase 1)

would include an unexplored branch. In particular, the unexplored branch is the last branch

in the unsat constraint. So at the end of Phase 1 the branches left to be explored are the last

branches in every set of unsat constraints as well as the nodes below these branches. Now,

Phase 2 only needs to target these unexplored branches. The procedure followed in Phase 2

is described in Algorithm 4.1.

In Phase 2, after each execution we check if the counter branch of the last branch is unex-

plored. If it is unexplored, we choose the new path by reversing the direction of last branch.

If it has been explored, we perform a reachability check on the counter branch to check if

the counter branch reaches any unexplored branch by avoiding all the unsat constraints in

the database. The detailed procedure for checking the reachability of a branch (n, V) is

explained in Algorithm 4.2. If no conclusion about the presence of a feasible path can be

made at the branch (n, V), then this algorithm recursively performs the reachability check

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 40

Algorithm 4.1 Algorithm for Phase 2

while Path is not empty do
if counter branch of last condition is unexplored and it is not an unreachable branch
then
to explore← true

else
to explore← reachability check (counter branch)

end if
if to explore then
reverse the direction of last condition in Path

give the new path formula to SMT solver
if satisfiable then
record coverage
Path← execute for new inputs

else
get the unsat core and add a new entry to the unsat constraint list
Path← remove last branch from Path

end if
else
Path← remove last branch from Path

end if
end while

Algorithm 4.2 Algorithm for reachability check of branch (n, V)

Let m be the node at the end of branch (n, V)
if sub-tree at node m has at least one unexplored branch then
trim the unsat constraint list with path prefix up to (n, V)
divide the infeasible branches into the three groups
if reachable branch list is not empty then
return true

else
if possibly reachable branch list is not empty then
return reachability check (child branches with (n, V) added to path prefix)

else
return does m reach any totally unexplored node by avoiding all unreachable
branches

end if
end if

end if
return false

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 41

on the child nodes. This process is continued till a conclusion about the presence of feasible

path is reached.

We explain Algorithms 4.1 and 4.2 with the following example. Let the current path prefix

for node nj be (na, T) → (nc, F) → (nd, T) → (ne, F) → (ng, T) → (ni, F). Let the unsat

constraint list after Phase 1 be

{(nc, F), (nm, T)}

{(na, F), (nd, T), (ns, F)}

{(ne, F), (no, T), (nz, F)}

{(nd, T), (nr, T), (nx, F)}

By looking at the last branches of each of the unsat constraints, the branches (nm, T),

(ns, F), (nz, F) and the sub-trees following these branches are unexplored after Phase 1

based on our previous discussion. Further, let the nodes under the sub-tree of nj be nk, nl,

nm, no, np, nr, ns, nv, nw and nz.

For each of the three unsat constraints, it may either fall within or outside of the current

path. We can thus examine each unsat constraint and make certain deductions. For example,

consider the first unsat constraint {(nc, F), (nm, T)}. Since (nc, F) is on the current path,

and the fact that {(nc, F), (nm, T)} is unsat, we can readily deduce that (nm, T) is not

feasible along the current path.

To generalize the technique, each unsat constraint can be reduced to a trimmed unsat

constraint in the following manner. For every unsat constraint, we first check if the root

branch matches the first branch in an unsat constraint. If so, we delete the branch from

that unsat constraint. We then follow the same procedure for every branch along the path

prefix. For above example, the three trimmed unsat constraint would be

{(nm, T)}

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 42

{(na, F), (nd, T), (ns, F)}

{(no, T), (nz, F)}

{(nr, T), (nx, F)}

Lemma 4.2.1. If only one branch remains in a trimmed unsat constraint after trimming

the unsat constraint list with the current path prefix, then that branch is guaranteed to not

have a feasible path with the current path prefix.

Proof. Follows from the preceding discussion on branch (nm, T).

Hence, we classify branch (nm, T) and all such branches that satisfy Lemma 4.2.1 as an

unreachable branch with the current path prefix.

Lemma 4.2.2. If a trimmed unsat constraint has multiple branches and if any branch in

the trimmed unsat constraint is unreachable from the ending node of the current path prefix,

then that unsat constraint is said to be irrelevant with respect to the current path as it cannot

be present in any path that has this current path prefix.

Proof. For any unsat constraint to be present in a path, all the branches in that unsat

constraint must be in the path. Hence, if the first branch of the trimmed unsat constraint

is unreachable from the ending point of the current path prefix, then that unsat constraint

cannot be present in any path starting from the current path prefix. Likewise, if the second

branch of the trimmed unsat constraint is unreachable from the current path prefix, then

the unsat constraint is also irrelevant, and so on for other branches in the trimmed unsat

constraint.

If the last branch of such an irrelevant unsat constraint is reachable from the ending node of

current path prefix, then we term the last branch of that unsat constraint as a reachable

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 43

branch as the current path prefix has a path to that branch that avoids the unsat con-

straint in question. In our running example, consider the second trimmed unsat constraint

{(na, F), (nd, T), (ns, F)}. Since node na is not in the sub-tree of nj (end point of current

path prefix), this constraint is irrelevant with respect to the current path prefix. However,

node ns is in the subtree of nj, hence branch (ns, F) of the second unsat constraint is a

reachable branch, since there exists a path from nj to ns that avoids this second unsat

constraint.

Now, if the last branch of such an irrelevant unsat constraint is not reachable from the end

node of current path prefix then there is no path to that branch from the current path prefix.

So we ignore this branch while exploring paths through the current path prefix. Consider

the fourth trimmed unsat constraint, {(nr, T), (nx, F)}. Since node nx is not in subtree of

nj, there is no path to node nx from the current path prefix. So we ignore the unexplored

branch (nx, F) of this unsat constraint for the current path prefix.

Lemma 4.2.3. If the trimmed unsat constraint has multiple branches and if the first branch

in a trimmed unsat constraint is reachable from the ending node of the current path pre-

fix, then there definitely exists a topological path to each of the following branches in the

constraint. (Note that this topological path may or may not be sensitizable.)

Proof. Since the unsat constraint is obtained after solving a path constraint, there is at

least one path that has all the branches in the unsat constraint. So if the first branch in the

trimmed unsat constraint is reachable from the ending point of the current path prefix, there

definitely exists at least one topological path that can lead to all the remaining branches in

the trimmed unsat constraints.

But we cannot guarantee that the topological path will be a feasible path, because all the

paths with the current path prefix leading to the last branch of the unsat constraint may

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 44

have the unsat constraint in it. Hence, we term the last branch of the unsat constraint as

possibly reachable. In the above example, since no is reachable from nj, (nz, F) (from

the third trimmed unsat constraint) is a possibly reachable branch.

When dividing the infeasible branches into the above three groups we must make sure that

each branch is present in only one of the three groups. In the unsat constraint list obtained

after Phase 1, the infeasible branches will be unique as each branch is explored through only

one path in Phase 1. But during Phase 2, we might get another unsat constraint for the

same branch. Hence, we prioritize the lists in descending order of priority as unreachable

branches, possibly reachable branches and reachable branches.

From Algorithm 4.2 it can be seen that the reachability check can be computationally in-

tensive for some reachability graphs. To avoid some unnecessary reachability checks, we use

the no feasible path nodes list. To keep the algorithm listings simple, no feasible path nodes

list is absent in the Algorithm 4.1 and 4.2.

The no feasible path nodes list is a list of nodes that do not lead to any feasible paths

to any unexplored branch for the current path prefix. It is used to improve the speed of the

reachability check in a heavily connected graph as shown in Fig. 4.2

Here, consider the current path is (n1, T) → (n3, F) → (n4, T) → (n5, F) → (n7, F) →

(n9, F). We are performing a reachability check for branch (n9, T) under the path prefix up

to (n7, F). The reachability check algorithm first checks if there exists a feasible path in the

sub-tree under the (n10, T) branch with the current path prefix. If not, it will check if there

is a feasible path in the sub-tree under the (n10, F) branch. When the reachability check

is performed on branch (n10, T) it recursively covers nodes in the sub-tree, namely n12,

n14, n15, n17, n18, n19, n20 and n21. Again, when the reachability check is performed on

branch (n10, F), it will also recursively perform the reachability check on the corresponding

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 45

«¬­

«¬¬ «¬®

«¬¯ «¬°

«¬±

«¬² «¬³
«¬´

«¬µ

«®­

«®¬

«µ

«³

«´

¶·¸¹ º·»¼½¾ ¿»ÀÁ¹ º·»¼½¾

¶¹·ÂÃ¼»À ¶·¸¹

º·»¼½¾

¶¹·ÂÃ¼»À ¿»ÀÁ¹

º·»¼½¾

º·»¼½¾ »ÀÄ¼Å

½¸··¹¼Æ Ç»Æ¾

Figure 4.2: A reachability graph showing the use of no feasible path nodes list

sub-tree, which includes nodes n11, n13, n14, n16, n17, n18, n20 and n21. Here, we notice

that the reachability check will be performed twice on nodes n14, n17, n18, n20 and n21.

Now, if the unsat constraint list trimmed with path up to (n10, T) remains unchanged

when branch (n10, T) is removed from the path, the nodes which have returned false while

recursively performing the reachability check of (n10, T) will definitely remain false during

reachability check of (n10, F). This is because the outcome of reachability check depends

only on the trimmed unsat constraint list, rather than the complete path. But if there

is a change in any of the trimmed unsat constraint after removing branch (n10, T), then

some branch that did not have any feasible path earlier through (n10, T) may now have a

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 46

feasible path through (n10, F). Hence, if removing branch (n10, T) does not affect any of

the trimmed unsat constraint, then we pass the no feasible path nodes list obtained after

performing reachability check on branch (n10, T), when performing reachability check on

branch (n10, F). This allows us to avoid many unnecessary reachability checks on nodes that

are reachable from both (n10, T) and (n10, F). By using the same reasoning, we continue

to hold the no feasible path list when we backtrack to the previous node in the current path

if removing the last branch from the path does not affect the trimmed unsat constraint list.

Thus by using the no feasible path list a considerable time is saved in the reachability check.

During the reachability check it is not sufficient just to check if any of the last branches in the

unsat constraint is reachable. Once we have concluded that there are no reachable or possibly

reachable branches from branch (n, V), we also need to check if branch (n, V) reaches any

totally unexplored node (i.e., a node with both branches unexplored). For example, node

n12 in Fig. 4.3 is totally unexplored because branch (n10, T), which is on the shortest path

to node n12, was infeasible in Phase 1. Hence, branches (n12, T) and (n12, F) will not be

a part of any unsat constraint list. Now in Phase 2, while performing reachability check for

some node before node n10, we conclude that branch (n10, T) is unreachable. But there may

still exist a path through (n10, F)→ (n11, T) that can reach node n12 by avoiding the unsat

constraint of branch (n10, T). To check for such cases, once the possibly reachable branch

list gets empty we perform a quick DFS by avoiding all the branches in the unreachable

branch list on node m, which is at the end of branch (n, V). After avoiding all the branches

in unreachable branch list, if node m reaches any totally unexplored node, there definitely

exists a feasible path to that totally unexplored node through node m.

Sarvesh Prabhu Chapter 4. Phase 2 with Intelligent Conflict-driven Learning 47

ÈÉÊ

ÈÉÉ

ÈÉË

ÌÍÎÏ ÐÍÑÒÓÔ ÕÑÖ×Ï ÐÍÑÒÓÔ

ÌÏÍØÙÒÑÖ ÌÍÎÏ

ÐÍÑÒÓÔ

ÌÏÍØÙÒÑÖ ÕÑÖ×Ï

ÐÍÑÒÓÔ

ÐÍÑÒÓÔ ÑÖÚÒÛ

ÓÎÍÍÏÒÜ ÝÑÜÔ

Figure 4.3: A reachability graph showing a totally unexplored node

Chapter 5

Experimental Results

We implemented the DFS based reachability guided strategy and our 2-phase strategy on

Intel’s internal tool. The two strategies were tested on several test cases derived from the test

programs used in high volume manufacturing of Intel’s semiconductor devices. As mentioned

earlier, these test cases are stateless, loop free but control intensive C programs. We further

compared the number of SMT solver calls needed by our 2-phase strategy with the iterations

needed by the CFG directed strategy of CREST [23] which is an open source automatic test

generation tool for C. Both the tools can use any SMT solver. To make a fair comparison

we chose the same solver, Yices [19], for both. The experiments were performed on 3.2GHz

Intel R© CoreTMDuo machine with 1 GB RAM.

Table 5.1 shows the coverage obtained after Phase 1. The name of each test case reported

in column 1 denotes the number of conditions present in that test case. For example test

case tc50 has 50 conditions, i.e., 100 branches. We then report the number of iterations (#

of SMT solver calls) performed in Phase 1, the % of branch coverage achieved, # of the

branches covered, # of infeasible paths encountered and the time taken in Phase 1. The

next 2 columns report the branches covered by the CFG and uniform random strategies of

48

Sarvesh Prabhu Chapter 5. Experimental Results 49

Table 5.1: Phase 1 Results

name
Phase 1 CREST-CFG CREST-UR

iterations
coverage branches infeasible time branches branches

(%) covered paths (s) covered covered
tc50 47 92 92 2 6.88 88 72
tc100 84 84 168 0 5.67 158 138
tc154 139 89 276 2 326.24 269 229
tc160 147 91 293 1 14.89 287 245
tc200 178 89 356 0 21.76 344 293
tc475 428 89 851 5 127.64 827 715
tc525 497 94 988 6 167.31 955 827
tc550 443 80 880 6 154.28 919 792
tc700 624 88 1240 10 292.35 1197 1059
tc750 451 59 892 9 215.49 1141 988
tc800 730 91 1458 2 406 1455 1217
tc875 686 77 1363 9 417.37 1506 1266
tc900 806 89 1605 7 521.79 1547 1339

CREST in the same number of iterations as that of our Phase 1. It can be clearly seen

that in most of the cases the coverage achieved by Phase 1 is over 80% and this coverage

is achieved in a very short amount of time. Also, the # of branches covered by Phase 1 is

already greater than that of the strategies of CREST for the same number of iterations for

most cases.

Table 5.2 shows the results after Phase 2 is applied. The first column reports the name of

the test case. The next 4 columns report the # of iterations, # of branches covered, # of

infeasible paths encountered, and the time taken by the basic DFS-based reachability guided

strategy. The next 4 columns report the corresponding numbers for the 2-phase strategy.

However, the numbers reported in all columns of our 2-phase approach are cumulative and

include both Phase 1 and Phase 2. The next column shows the speed up of our 2-phase

strategy over the DFS based reachability guided strategy. The last column reports the

S
a
rv
esh

P
ra
b
h
u

C
h
a
p
ter

5
.
E
x
p
erim

en
ta
l
R
esu

lts
50

Table 5.2: Phase 2 Results

name
DFS based reachability guided 2-Phase CREST-CFG

iterations
branches inf. time

iterations
branches inf. time

speed-up iterations
covered paths (s) covered paths (s)

tc50 73 94 9 10.69 51 94 2 7.71 1.38 51
tc100 84 168 0 7.13 84 168 0 5.77 1.23 90
tc154 144 288 0 399.52 146 288 2 348.92 1.14 142
tc160 151 300 151 24.88 152 300 1 16.54 1.50 151
tc200 61315 195 30651 - 178 356 0 22.21 > 324.17 182
tc475 22561 338 6981 - 445 867 6 187.71 > 38.00 480
tc525 17070 455 7545 - 508 997 6 211.69 > 34.01 527
tc550 8198 626 3993 - 509 990 6 279.5 > 25.76 3476
tc700 16169 450 5787 - 644 1253 13 468.96 > 15.35 659
tc750 17632 459 8850 - 691 1326 14 683.82 > 10.52 11460
tc800 14689 494 5899 - 741 1462 4 608.57 > 11.83 734
tc875 13759 589 6794 - 802 1570 11 845.2 > 8.51 12088
tc900 12987 572 5598 - 828 1624 9 762.43 > 9.44 828

‘-’: timeout of 2 hrs

Sarvesh Prabhu Chapter 5. Experimental Results 51

number of iterations needed for achieving complete coverage by the CFG strategy of CREST.

A time out of 2 hrs was set while performing the experiments.

By comparing the execution time and the number of iterations (i.e., # of SMT solver calls)

needed by both the strategies, we found that for the same number of solver calls, the new

strategy is often faster because of smaller path prefixes used in Phase 1. For example,

consider test case tc160 in Table 5.2, the DFS based reachability-guided strategy took 24.88

sec for 151 solver calls whereas the new strategy took just 16.54 sec for 152 solver calls. Also,

as discussed earlier, if no infeasible path is encountered in Phase 1, then complete coverage

is achieved in Phase1. For example, consider test case tc100 in Table 5.1 and Table 5.2.

The number of iterations reported in Phase 1 and at the end of Phase 2 for tc100 are same

because as there are no infeasible paths in Phase 1, complete coverage is achieved in Phase

1 and there was no need for Phase 2.

It can also be seen that for all the test cases having 200 or more conditions, the DFS-based

reachability guided strategy timed out. This is because of the huge number of infeasible

paths encountered by the basic DFS strategy. In contrast, the 2-phase strategy encountered

only a minimal number of infeasible paths and was able to achieve complete coverage. Also,

the high coverages achieved in a very short time in Phase 1 significantly reduces the time

required to achieve complete coverage. For tc200 and larger, significant speedup (generally

> 10×) has been achieved.

From the last column in Table 5.2, it can be seen that for some test cases our 2-phase strategy

outperforms CREST. For example, for test cases tc750 and tc875 the number of iterations

needed by CREST are 15 times more than our 2-phase strategy. This is mainly because

of the intelligent conflict driven learning used in Phase 2. We do not compare the actual

execution time between the two tools, because of the difference in the implementation of the

Sarvesh Prabhu Chapter 5. Experimental Results 52

two tools. However, the presented 2-phase strategy is not tool-specific and can be equally

effective if implemented on any symbolic execution based test generation engines.

Chapter 6

Conclusion and Future Direction

Symbolic and Concolic execution based techniques are becoming popular for dynamic test

generation. However, these techniques are not yet scalable to large programs. In this thesis,

we proposed a 2-phase strategy for achieving high branch coverage quickly. We first identify

edges and paths in the reachability graph that ought to be avoided in Phase 1, thus allowing

us to avoid searching through longer paths that are deemed less promising. Phase 2 then

explores the remaining branches using a DFS based approach with an intelligent conflict

driven learning. This learning allows for a clever classification of unexplored branches with

the help of unsat constraints. This helps in avoiding the exploration of many unnecessary

paths.

The strategy was implemented on Intel’s internal tool and was used to test large test pro-

grams that are used in high volume manufacturing of Intel’s semiconductor devices. Exper-

imental results show that Phase 1 alone achieves very high branch coverage (generally more

than 80%) in a very short time. Sometimes Phase 1 alone is able to achieve a higher coverage

than previous methods. Also, for the same number of solver calls, the 2-phase strategy takes

less time than the DFS based strategy because of smaller path prefixes. Finally, the total

53

Sarvesh Prabhu Chapter 6. Conclusion and Future Direction 54

number of SMT solver calls needed to achieve complete branch coverage is significantly lower

for our strategy.

The strategy was also compared to the CFG directed strategy and uniform random search

strategy of CREST. We observed that our strategy was able to achieve complete coverage

in less number of iterations for most of the test cases.

Although the proposed flow is applicable to general classes of programs, the current conflict-

driven-learning engine in Phase 2 targets stateless programs suitable for programs such as

those used in ATEs. In the future, the conflict-driven learning technique can be generalized

to broader classes of programs. In particular, instead of using only a control flow graph of

the program, the data flow graph of the program can be used to check which variables change

values along which paths. This information can then be used to check whether the unsat

constraint found is applicable to all the sub paths between the conflicting branches or not.

Further, instead of using BFS to mark edges in Phase 1, we can investigate the existence

of better heuristics that will reduce the number of infeasible paths encountered in Phase 1,

thus improving the coverage achieved at end of Phase 1.

Bibliography

[1] G. J. Myers, Art of Software Testing. New York, NY, USA: John Wiley & Sons, Inc.,
1979.

[2] G. Tassy, “The economic impacts of inadequate infrastructure for software testing,”
tech. rep., National Institute of Standards and Technology, 2002.

[3] C. Pacheco and M. D. Ernst, “Eclat: Automatic Generation and Classification of Test
Inputs,” in ECOOP, pp. 504–527, 2005.

[4] B. Korel, “Automated Test Data Generation for Programs with Procedures,” in Pro-
ceedings of the 1996 ACM SIGSOFT International Symposium on Software testing and
analysis, ISSTA ’96, (New York, NY, USA), pp. 209–215, ACM, 1996.

[5] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An Automated Framework for
Structural Test-Data Generation,” in Automated Software Engineering, 1998. Proceed-
ings. 13th IEEE International Conference on, pp. 285 –288, Oct. 1998.

[6] J. Darringer and J. King, “Applications of Symbolic Execution to Program Testing,”
Computer, vol. 11, pp. 51 –60, April 1978.

[7] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT-A Formal System for Testing
and Debugging Programs by Symbolic Execution,” in Proceedings of the International
Conference on Reliable software, (New York, NY, USA), pp. 234–245, ACM, 1975.

[8] J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM, vol. 19,
pp. 385–394, July 1976.

[9] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C,”
in Proceedings of the 10th European Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, (New York, NY, USA), pp. 263–272, ACM, 2005.

[10] P. D. Coward, “Symbolic Execution Systems - a review,” Softw. Eng. J., vol. 3, pp. 229–
239, November 1988.

55

Sarvesh Prabhu Bibliography 56

[11] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs,” in Compiler Construction
(R. Horspool, ed.), vol. 2304 of Lecture Notes in Computer Science, pp. 209–265,
Springer Berlin / Heidelberg, 2002.

[12] I. Johnson, “Formal Verification with SMT solvers: Why and How.”

[13] A. Cimatti, “Beyond Boolean SAT: Satisfiability Modulo Theories,” in Discrete Event
Systems, 2008. WODES 2008. 9th International Workshop on, pp. 68 –73, May 2008.

[14] L. M. de Moura and N. Bjørner, “Satisfiability Modulo Theories: An Appetizer,” in
SBMF, pp. 23–36, 2009.

[15] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Dpll(t): Fast
decision procedures,” pp. 175–188, Springer, 2004.

[16] M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory,” J.
ACM, vol. 7, pp. 201–215, July 1960.

[17] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem-Proving,”
Commun. ACM, vol. 5, pp. 394–397, July 1962.

[18] B. Dutertre and L. M. de Moura, “A Fast Linear-Arithmetic Solver for DPLL(T),” in
CAV, pp. 81–94, 2006.

[19] B. Dutertre and L. D. Moura, “The Yices SMT solver,” tech. rep., 2006.

[20] A. Griggio, “A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic,”
JSAT, vol. 8, pp. 1–27, January 2012.

[21] C. Barrett and C. Tinelli, “CVC3,” in Proceedings of the 19th International Confer-
ence on Computer Aided Verification (CAV ’07) (W. Damm and H. Hermanns, eds.),
vol. 4590 of Lecture Notes in Computer Science, pp. 298–302, Springer-Verlag, July
2007. Berlin, Germany.

[22] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random Testing,”
in Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’05, (New York, NY, USA), pp. 213–223, ACM, 2005.

[23] J. Burnim and K. Sen, “Heuristics for Scalable Dynamic Test Generation,” in Automated
Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on,
pp. 443 –446, 2008.

[24] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test Input Generation with Java
PathFinder,” SIGSOFT Softw. Eng. Notes, vol. 29, pp. 97–107, July 2004.

Sarvesh Prabhu Bibliography 57

[25] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE: Auto-
matically Generating Inputs of Death,” in Proceedings of the 13th ACM conference on
Computer and communications security, CCS ’06, (New York, NY, USA), pp. 322–335,
ACM, 2006.

[26] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in Software Engineering, 2007.
ICSE 2007. 29th International Conference on, pp. 416 –426, May 2007.

[27] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the Path Explosion Prob-
lem in Symbolic Execution-Driven Test Generation for Programs,” Asian Test Sympo-
sium, pp. 59–64, 2010.

[28] S. Prabhu, M. S. Hsiao, S. Krishnamoorthy, L. Lingappan, V. Gangaram, and J. Grundy,
“An Efficient 2-Phase Strategy to Achieve High Branch Coverage,” in 20th Asian Test
Symposium (ATS), pp. 167 –174, Nov. 2011.

[29] I. Lynce, J. Marques-Silva, and I. E. Desenvolvimento, “On Computing Minimum Un-
satisfiable Cores,” 2003.

[30] A. Cimatti, A. Griggio, and R. Sebastiani, “A Simple and Flexible way of Comput-
ing Small Unsatisfiable Cores in SAT Modulo Theories,” in Proceedings of the 10th
international conference on Theory and applications of satisfiability testing, SAT’07,
pp. 334–339, Springer-Verlag, 2007.

[31] N. Dershowitz, Z. Hanna, and E. Nadel, “A Scalable Algorithm for Minimal Unsatisfi-
able Core Extraction,” in In Proc. SAT06, Springer, 2006.

[32] M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. M. Silva, and K. A. Sakallah, “A Branch-
and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable Formulas,” in SAT,
pp. 467–474, 2005.

[33] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, and I. Markov, “AMUSE: A Minimally-
Unsatisfiable Subformula Extractor,” in Design Automation Conference, 2004. Proceed-
ings. 41st, pp. 518 –523, July 2004.

[34] L. Zhang and S. Malik, “Extracting Small Unsatisfiable Cores from Unsatisfiable
Boolean Formula,” in SAT, vol. 3, 2003.

	Introduction
	Application to Tester Programs
	Contributions
	Thesis Organization

	Background
	Symbolic execution-based test generation
	Program Instrumentation

	Concolic execution
	Satisfiability Modulo Theory (SMT) solvers
	Previous work
	DFS-based reachability-guided strategy
	Disadvantages of the DFS based reachability-guided strategy

	Phase 1
	The Strategy for Phase 1
	Lower coverage reported

	Conflict Driven Learning
	UNSAT core
	Advantages of Proposed Phase 1

	Phase 2 with Intelligent Conflict-driven Learning
	Need for an intelligent conflict driven learning
	Phase 2 Algorithm with intelligent conflict-driven learning

	Experimental Results
	Conclusion and Future Direction
	Bibliography

