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Abstract—This paper presents a high-level automatic test 
instruction generation (HATIG) technical that allows, for the 
first time, to test the scheduling unit of an out-of-order 
superscalar processor.  This technique leverages on existing 
bounded model checking tools in order to generate software-
based self-testing programs from a global EFSM model of the 
processor under test. The experimental results have 
demonstrated the efficiency of the proposed technique. 
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I. INTRODUCTION 
 

Hardware defects become more common as silicon designs 
include more nanometer scale components [1]. A promising 
and effective solution to uncover these defects is to use online 
self-testing by executing test instructions. Such a software-
based self-testing (SBST) approach makes use of the 
functionality provided by a processor in order to apply tests for 
structural faults [2]. In this approach, test programs composed 
of test code (i.e., instructions) and test data are first 
downloaded into the processor under test (PUT). Then, the 
processor executes the instructions and tests at-speed its 
component under test (CUT). The resulting test responses are 
finally written back to memory for observation. SBST enables 
powerful online fault detection for processors without the need 
for expensive high speed automated test equipment. However, 
this approach has not been able to handle complex superscalar 
processors so far. 

Mainstream SBST methods develop test programs by 
combining functional constraint extraction and gate-level 
constrained automatic test pattern generation (ATPG). They 
avoid test patterns that never appear during the normal 
operational mode (i.e., functional mode) of a processor with the 
help of the extracted functional constraints. Originally, SBST 
used manually extracted constraints to restrict the randomly 
generated test patterns that were applied to the components of 
the processor under test [2]. Later, a more scalable SBST 
technique [3] was presented for more complex processors. It 
applied statistical regression to extract instruction-level 
constraints for constrained ATPG (CATPG) [4]. In an effort to 
achieve more efficiency than CATPG, learning methods [5] 
have been used to deduce, based on simulation runs, relations 
between instructions, I/O data and component signals. In [6], 
an automatic test instruction generation (ATIG) approach was 
proposed where instruction-level constraints are directly 
mapped to the ports of the CUT and test patterns are 
automatically translated into test programs.  

Due to the high complexities involved when dealing with 
gate-level implementations, many researchers shifted their 
attention to the register-transfer (RT) level for generating 
targeted instruction sequences for SBST. In [7], deterministic 
tests at RT-level take advantage of the inherent regularity of 

the functional components of a processor. It carefully designs 
test programs to achieve considerable high fault coverage on 
functional components using compact patterns. Based on these 
deterministic tests, systematic [8] and hybrid [9] [10] [11] 
SBST methods were proposed and applied successfully to test 
single-scalar pipeline processors. However, to the best of our 
knowledge, there has been no work targeting superscalar 
processors with out-of-order instruction execution.  

Bounded model checking (BMC) has been used to generate 
SBST programs in the context of single-scalar pipeline 
processors [12]. The technique presented in [12] translates a 
pre-computed test pattern into an assertion. A BMC tool is then 
used to check if there is a sequence of instructions that can 
violate the assertion. If it is the case, the sequence of 
instructions becomes the SBST test program directly. Although 
BMC tools typically suffer from time-outs and state space 
explosion problems, they do provide a systematic way to 
handle complex units in the processors under test. 

Both mainstream SBST and RT-level methods have their 
limitations when testing out-of-order superscalar processors. 
For instance, gate-level methods can extract functional 
constraints for combinational circuits, but there is still no 
effective way to extract functional constraints for sequential 
circuits. Complex sequential control units are inevitable when 
out-of-order executions are implemented on superscalar 
processors. Omitting to extract constraints for these sequential 
units would seriously impact the resulting fault coverage. For 
RT-level methods, concurrent and out-of-order execution 
results in a combinatorial explosion of the number of valid 
instruction sequences. In this context, manually generating test 
programs that can cover all functional paths of the sequential 
components is a daunting and intractable task. On the other 
hand, for the sequential control unit in superscalar processors, 
functional programs only excite control signals of functional 
paths, but never consider the other signals. There is therefore 
usually no guaranty that these functional programs can achieve 
a certain fault coverage level for high-quality manufacturing 
tests.  

In this paper, for the first time, the scheduling unit of an 
out-of-order superscalar processor is tested with software-
based self-testing programs. Our method, referred to as high-
level automatic test instruction generation (HATIG), makes use 
of bounded model checking in order to analyze a global 
extended finite state machine (EFSM) model of the unit under 
test and to generate SBST programs. First, the whole 
superscalar processor is modeled as a global EFSM and slicing 
is applied to reduce the size of the global EFSM for the 
scheduling unit. Second, test instruction sequences that excite 
certain functional paths within the scheduling unit, called 
leading sequences, are automatically generated using an off the 
shelf bounded model checking tool. Third, the sequential 
scheduling unit is flattened into a combinational one on which 
the test instruction sequences are imposed as functional 
constraints. ATIG is then used to generate the test programs. In 
this way, test generation is guided to travel through all 
functional paths within the scheduling unit. Our high-level 
ATIG approach permits to treat the scheduling unit with its 
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large sequential depth as a combinational one. It therefore 
provides an effective way to detect faults in out-of-order 
superscalar processors. Some of these faults are particularly 
challenging to uncover as they require several time-frames to 
propagate or to get activated. 

This paper is organized as follows. Section II briefly 
introduces the out-of-order superscalar processor we consider 
as a running example in this paper. It also describes the 
extraction of the global EFSM and the way bounded model 
checking is used. Section III details the three main steps of the 
HATIG approach. Section IV reports on the experimental 
results and Section V concludes the paper. 

II. BACKGROUND 
An out-of-order superscalar processor often relies on 

extremely complex structures. This poses a great challenge for 
the functional test on the involved structures. In order to 
automatically generate SBST programs to test such structures, 
we model them using global EFSM [13] and make use of 
bounded model checking [14].  

A. Superscalar and Out-of-order Processors  
We illustrate our approach on a 4-issue superscalar and out-

of-order processor described in the Illinois Verilog model 
(IVM) [15].  The model is depicted in Fig.1(a). It contains 12 
pipeline stages and 132 types of instructions. At each clock 
cycle, four instructions are fetched from memory. After the 
decoding and renaming steps, the instructions are stored in the 
buffer of the scheduling unit, starting from the tail pointer tail. 
Each instruction waits in the buffer to be issued to one of the 
six different channels, namely SA1 and SA2 for the two simple 
ALUs, CA for the complex ALU including the multiply unit, 
BR for the branching unit, and AG0 and AG1 for the two 
address generating units. The control part of the scheduling 
unit arbitrates among the instructions that are ready to be 
issued. For example, if a multiply instruction mull has to be 
issued to the channel CA, it must first be stored in the 
scheduling unit and its operand registers have to be prepared. 
Then, if CA is not used by some other instruction, the 
scheduling unit will issue mull regardless of its order. To 
orchestrate this, an instruction sequence, namely a leading 
sequence, is used to initialize and to control the scheduling unit. 
After having been issued, instructions can be committed in 
order with the reorder buffer. 

 
This work mainly focuses on the scheduling unit which is at 

the core of the out-of-order capabilities of a processor. As 
shown in Fig.1(a), the unit checks the stored instructions from 
the head pointer, head, at each clock cycle, and the first ready 
instruction will obtain access to the output channel. It often 
requires a large number of clock cycles to initialize, issue or 
return the results of the stored instructions. As a result, there 

are many faults that need many time-frames to get activated or 
to propagate. This makes effective testing of the scheduling 
unit extremely difficult. 

B. Global EFSM 
We use extended finite state machines (EFSM) to capture a 

high level model of the structure of the complex superscalar 
processor. An EFSM is a finite state machine (FSM) extended 
with variables and predicates on their values. It can succinctly 
capture sets of values for the variables and therefore allows to 
greatly reduce the size of the manipulated representations. 
EFSMs can be automatically extracted from RTL description 
[16], and are widely used to model large systems and even 
whole processors. Formally, an EFSM is a seven-tuple {S, I, O, 
D, E, F, T}, where: 

S is a set of symbolic states, 
I is a set of input symbols, 
O is a set of output symbols, 
D is an n-dimensional space D1 × … × Dn, 
E is a set of enabling functions ei such that ei : D → {0,1}, 
F is a set of update functions fi such that fi : D → D, and 
T is a transition relation such that T : S×E×I → S×F×O. 

 

An EFSM can be easily extracted from an HDL description 
by considering each decision node as a symbolic state of the 
EFSM [17]. Conditions and operations on the nodes are then 
used to extract the corresponding enabling functions and 
update actions. For example, the EFSM that captures the part 
of the scheduling unit that arbitrates among the instructions that 
are ready for the channel SA1 is shown in Fig.1(b). In this 
EFSM, there are 16 decision nodes corresponding to 16 cells in 
the buffer. The ith decision node has two transitions T2i+1 and 
T2i indicating if the functional path from the (head+i)th cell to 
the channel is excited or not. To excite T2i+1, the instruction in 
the (i+head)th cell has to be valid but not yet issued 
(valid[i]&~issue[i]), the instruction must belong to the simple 
ALU group (inst[i][`SIMPLE]), its two operand registers must 
be ready (RA[i] & RB[i]), and the channel SA1 should not be 
used (~channel[1]). The resulting enabling function e2i+1 for 
the transition is presented in Fig.1(b). In addition, the SA1 
channel has lower priority than that of the SA0 channel, so the 
signal channel[0] is applied to avoid using SA1 before the 
channel SA0 has been used. Finally, the operation issue[i]=1 
corresponds to the action f2i+1 of the transition, and it means 
that the functional path is excited and that the instruction is 
issued into the channel SA1. 

Global EFSMs were originally proposed to model 
superscalar processors to verify all pipeline interactions [13]. In 
that work, every instruction in the pipeline is modeled as a 
single EFSM, and every component in the processor is also 
modeled as an EFSM. All EFSMs are then combined together 
as one global EFSM. In this work, we only focus on the 
components of the processor and directly generate instruction 
sequences from a global EFSM. We need not consider how 
instructions are pipelined. For this reason, we build on our 
earlier work [6] and replace the EFSMs associated to the 
instructions by records called extended instructions (EIR). 
Each of these records is associated to an instruction and 
contains all relevant running information for the current cycle, 
as follows.  

1 2( , , , , , , )EIR I D D R F A op=     
An EIR record contains, as indicated above, seven elements: 

the instruction itself I, two operands D1 and D2, the result R, a 
flag F, an address A, and the instruction type op. In this way, 
most variables of the EFSM are EIRs instead of single 
variables, and the leading sequences can be generated from the 
modified global EFSM directly without the need for extra 

  
Fig.1.  An out-of-order and 4-issue superscalar processor example 
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EFSMs to model the instructions traversing the pipeline. The 
obtained global EFSM includes all valid pipeline interactions. 
As a result, the test instruction group generated from the global 
EFSM will satisfy all functional constraints imposed by the 
processor. 

C. Bounded Model Checking 
Bounded model checking (BMC) [14] is an automatic 

formal verification technology that is particularly suitable for 
analyzing EFSMs and for finding input sequences violating 
specifications supplied by the user. Given a property, a 
bounded model checking tool will exhaustively look for 
sequences that violate the property and that are of lengths 
smaller or equal to a bound K. If the tool terminates without 
returning a sequence, then there are no sequences that violate 
the property within this time bound K. 

For example, to obtain a leading sequence that issues the 
instruction in the (head+i)th cell of the scheduling unit, we can 
use the specification "SPEC AG(~(e2i+1))" that asserts that 
issuing an instruction from the (head+i)th cell to channel SA1 is 
never possible. With a sufficient time bound K, a BMC tool 
automatically finds a counter example that violates the 
specification and that satisfies the enabling function of the 
transition T2i+1 (recall that T2i+1 is the transition that issues the 
instruction in the (head+i)th cell to SA1). The counter example 
provides an input instruction sequence that we use as a leading 
sequence to excite the transition T2i+1.   

III. HIGH-LEVEL TEST INSTRUCTION GENERATION FOR 
SUPERSCALAR PROCESSORS 

We propose a high-level automatic test instruction 
generation method to design SBST test programs for the 
scheduling unit of out-of-order superscalar processors. The 
method builds on both high-level information and gate-level 
descriptions. On the one hand, instruction-level leading 
sequences are extracted using a BMC tool in order to excite all 
functional paths in the considered scheduling unit. On the other 
hand, the obtained leading sequences are used to guide, at the 
gate level, test generation targeting structural faults. This 
combination enables us to achieve high fault coverage. 

Applying the HATIG method on the scheduling unit of an 
out-of-order superscalar processor involves three main steps as 
depicted in Fig.2(a). In the first step, a global EFSM that 
models the whole processor is extracted as described in Section 
II. Slicing is then used to obtain a model that captures the 
scheduling unit while preserving the constraints imposed by the 
other components of the processor. In the second step, bounded 
model checking is applied on the obtained model in order to 
automatically generate leading instruction sequences that excite 
all functional paths of the scheduling unit. In the third step, the 
scheduling unit is flattened and the leading sequences 
generated in the previous step are mapped to the ports of the 
obtained circuit in order to excite the corresponding functional 
paths of the scheduling unit. Test patterns are then generated 
using ATPG and are automatically translated into test programs. 
A detailed description of the three steps follows. 

A. Slicing on the Global EFSM  for the Scheduling Unit 
To reduce the design space, we apply slicing techniques [18] 

before using BMC on superscalar processors. To illustrate this, 
let us take the IVM processor as an example, which contains 
approximately 50,000 bit registers [15]. Considering that it 
takes at least 12 clock cycles to complete one instruction, 
giving the whole IVM as input for the BMC tool would force 
the latter to exhaustively explore a state space of at least 
(50000)12 in size. This explosion in the size of the state space to 
be explored typically exceeds the capabilities of existing model 
checkers. 

Slicing away details that are irrelevant to the function of the 
scheduling unit greatly reduces the size of the manipulated 
model [18], thereby enabling the application of a BMC tool. 
The global EFSM is first extracted from the HDL description 
of the processor as described in Fig.2(b). Since the scheduling 
unit issues instructions to five different executing units, the 132 
instruction types are clustered into six instruction groups: ADD, 
SLL, MUL, CMOV, BEQ, and LD. The conditional move 
instructions are clustered in an independent group CMOV 
because they are fetched only one instruction per cycle with the 
three other concurrent instructions being forced to be invalid. 

 
In this work, the variables appearing in the enabling 

functions ei of the transitions of the scheduling unit, such as the 
variables corresponding to the valid and to the register ready 
signals, are defined as chosen variables. The transitions and 
states that do not affect these variables are said to be non-
contributing. A description of the EFSM resulting from slicing 
away non-contributing variables and transitions is shown in 
Fig.3. In addition to the scheduling unit, transitions of other 
components of the global EFSM are preserved by the slicing 
step because of their contribution to the chosen variables. 
These include transitions in the fetch stage, in the executing 
unit, and in the scoreboard. Transitions in the fetch stage are 
kept because they force the valid bits of the instructions that 
follow a CMOV or BEQ instruction to be invalid. Also, the 
feedback transitions in the executing unit are retained because 
they are used to delete instructions stored in the scheduling unit. 
In a similar manner, parts of the scoreboard unit that store the 
register ready signals are also preserved by the slicing step. 
These additional transitions correspond to the functional 

  
(a)  The framework of HATIG 

 

 
(b) The flow chart of HATIG 

Fig. 2.  High-level automatic test instruction generation 
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constraints imposed by components other than the scheduling 
unit. The size of the input and output EIRs of the resulting 
model is strongly reduced and the new fi actions only contain 
the contributing variables. In other words, slicing greatly 
reduces the size of the model for the scheduling unit without 
violating the sequential constraints imposed by the other 
components of the processor.   

 
We use Table I to give an idea of the reductions achieved 

by the slicing step. The sliced global EFSM only contains 149 
state variables and 1477 combinational variables. Compared to 
the scheduling unit of the original EFSM, the sliced EFSM has 
only 7.5% as many state variables and 1% as many 
combinational variables. This significant reduction alleviates 
state space explosion problems when generating, in the 
following step, leading sequences using BMC tools. 

 

B. Leading Sequences Generated  using BMC 
We use an off the shelf bounded model checker (the SMV 

tool [19]) in order to automatically generate sequences that 
excite certain functional paths in the EFSM of the scheduling 
unit resulting from slicing. From now on, we mean the sliced 
global EFSM when we mention the global EFSM. We refer to 
the instruction sequences obtained in this step as the leading 
sequences. As an example, assume the global EFSM contains 
three CMOV instructions initially. In addition, suppose the 
instruction in the 11th cell of the buffer has to be issued into 
channel SA1 when head points to the 3rd cell. Observe that the 
instruction is at the (head+i)th=(3+8)th=11th cell. To excite this 
functional path, the transition T2*8+1 (the T2i+1 of the 8th node) 
in the EFSM of channel SA1 has to be excited, so that the 
specification sent to the BMC tool to be checked is "SPEC 
AG(~(e17 & (head==3)))". The tool generates a sequence that 
violates the property, hence exciting the considered functional 
path (here within a time bound of 4 clock cycles).  

The situation is illustrated in Fig.4. The scheduling unit has 
three CMOV instructions in the initial state C0, where the 
second CMOV is just issued, and the branch instruction BEQ is 
the input instruction in C0. The head and tail pointers of the 
buffer of the scheduling unit are respectively represented by a 
light and a dark pointer. The fetch unit forces the instructions 
concurrent to a BEQ instruction to be invalid because the 
instructions following a BEQ instruction are often uncertain. In 
the first cycle C1, the feedback of the first CMOV instruction 
arrives, so the later is deleted from the buffer and the head 
pointer head advances to the 0th cell. In the same cycle, the 
third CMOV is issued and four load instructions LDs become 

the input instructions in C1. In the second cycle C2, the second 
CMOV instruction is deleted and head moves to the 1st cell 
while two LDs and two ADDs instructions are input. In the 
third cycle C3, head points to the 2nd cell after deleting the BEQ 
instruction, and the first couple of LD instructions are issued 
into the channels AG0 and AG1. At this point, the second pair 
of LD instructions has to wait since there are no available 
channels. In the fourth cycle C4, head moves to the 3rd cell. The 
second pair of LD instructions is issued and the third pair of LD 
instructions has to wait. The channels SA0 and SA1 are 
available and the pair of ADD instructions is issued before the 
third pair of LD instructions regardless of their previous order. 
At this point, head points to the 3rd cell and the ADD 
instruction in the 11th cell is issued into the channel SA1. The 
functional path (in red in the figure) is successfully excited by 
this sequence. The third cycle, namely C3, where the leading 
sequence has initialized the scheduling unit, so that the 
functional path can be excited in the next cycle, is called the 
ready cycle CR. The input instructions from the initial cycle to 
the ready cycle define the leading sequence. 

 
We use the algorithm in Fig.2(b) to generate all leading 

sequences for all the functional paths. We consider that a 
functional path depends on both the transition of the EFSM and 
on the value of the head (or tail) pointer. We assume that if all 
transitions of the EFSM are covered whatever the value of the 
head (or tail) pointer is, then all of the functional paths are 
excited. The algorithm of Fig.2(b) therefore iterates through all 
pairs of transitions from the global EFSM and values for the 
head pointer. For each such property, the BMC tool is initially 
started with a time bound K equal to 4. If a sequence is found, 
then the property, as well as any additional properties excited 
by this sequence, is removed from the property set. If no 
sequences are found for the considered bound, the analysis is 
repeated after having increased K up to Kmax = 16. If a property 
does not result in a leading sequence within the maximal time 
bound Kmax, it is deemed to hold for any bound and is removed 
from the property set. We report in Table II on both maximum 
and average bounds K, execution times in seconds and 
consumed memory in Bytes. SMV was able to efficiently 
check all properties and did not timeout on any of them. 

Finally, it was possible to generate the leading sequences 
for all of the considered functional paths except for some 
redundant ones. Indeed, some functional paths, called 
redundant paths, are never excited during the operations of the 
processor. For example, the functional paths where the 
instruction in the (head)th cell is issued into channel SA1 are 
never excited because SA0 is not used when the (head)th cell is 
pointed to by head and SA0 has a higher priority than SA1. The 
instruction in the (head)th can therefore not be issued to the SA1 
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Fig.4.  Bounded model checking on the sliced global EFSM 

TABLE I 
MODEL SIZE OF THE SCHEDULING UNIT AND THE SLICED GLOBAL EFSM 

Variables State Var. 
(bits) 

Com. Var. 
(bits) 

The Complete Scheduling Unit 1976 148666 
The Sliced Global EFSM 149 1477 

Percentage (EFSM/The S Unit) 7.5% 1.0% 

 

( , , )EIR I F op=

 
Fig.3.  The sliced global EFSM targeting the scheduling unit 
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channel. For these redundant paths, the algorithm of Fig.2(b) 
will reach the maximal bound Kmax before removing them from 
the property set. In Table III, 672 sequences are generated to 
cover 2048 of a total of 2080 functional paths in the scheduling 
unit. This corresponds to about 98.5% of functional coverage. 

 
C. ATIG Guided by Leading Sequences 

We can completely test the functionally testable faults 
within the scheduling unit by guiding the test generation using 
leading sequences for all functional paths. More specifically, 
we generate the test patterns just at the ready cycle when the 
considered leading sequence has appropriately initialized the 
scheduling unit in order to excite the related functional path. 
We detail this process in the following.  

First, the scheduling unit is flattened by removing its inner 
registers and by transforming the inputs, respectively outputs, 
of the removed registers into new primary outputs (PO), 
respectively primary inputs (PI), of the unit. This is illustrated 
in Fig.5(a). The values of the inner registers in the ready cycle 
are then imposed on these PIs resulting in a constrained circuit 
(CC). A constrained circuit involves three parts. First, the old 
PIs for the four input instructions are constrained by the input 
instructions of the ready cycle, while the new PIs for the 16 
cells of the buffer are constrained by the part of the leading 
sequence stored in the buffer. For example, the PIs for the 11th 
cell in Fig.5(a) are constrained by the second ADD instruction 
of the leading sequence. This instruction type op belongs to the 
simple ALU group (ADD). The controlling signals are set 
based on the instruction type op, and the rest of the signals are 
left unconstrained and can be searched by ATPG.  Second, the 
PIs of the chosen variables (i.e., the variables appearing in the 
enabling function used to generate the functional path) are set 
according to their values at the ready cycle (the sequence 
generated by the BMC tool constrains the variable values in 
each cycle). Third, the PIs of the remaining registers are left 
unconstrained and can also be searched by ATPG. In this way, 
the flattened unit is at a similar state as the one of the 
scheduling unit at the ready cycle. If ATPG is applied to the 
constrained unit, all detectable faults along the excited 
functional path can be tested by changing the instruction types 
or the values of the unconstrained signals. 

The algorithm in Fig.2(b) is proposed to test all functionally 
testable faults using the leading sequences generated with the 
help of the BMC tool. Given a new leading sequence, the 
algorithm uses the leading sequence to generate a constrained 
circuit and imposes it on the flattened unit. It then loads the 
constrained unit as well as the list of all possible faults and 
applies constrained ATPG on the resulting unit. It removes all 
of the detected faults from the fault list, and stores the test 
patterns. The algorithm continues until there are no remaining 
leading sequences to be used. This method can effectively 
detect all functionally testable faults in the scheduling unit 
because the leading sequences already excite all functional 
paths and because ATPG excites all testable faults along each 
functional path. As depicted in Fig.5(b), fault coverage 
increases in relation to the number of used  leading sequences. 

In our experiments, the method achieved 96.6% fault coverage 
during test pattern generation. Finally, each test pattern 
generated from the constrained ATPG application is first 
translated as a group of test instructions using the ATIG 
method proposed in [6]. The test instructions from tail to head 
in the buffer are set using the leading sequence as shown in 
Fig.5(a). The test program is obtained after inserting observing 
instructions and a number of CMOV instructions. The CMOV 
instructions are inserted at the end of the test sequence to make 
the scheduling unit return to its initial state without using an 
external reset signal. 

 
IV. EXPERIMENTAL RESULTS 

We applied the HATIG approach to generate test programs 
for the IVM processor [15]. We evaluate the resulting fault 
coverage on the scheduling unit. We use random testing with 
the same number of instructions and sequential ATPG for 
comparison. We introduced three modifications to the IVM 
processor. First, the buffer sizes of the scheduling unit and the 
reorder buffer are reduced to 16 cells as we encountered out-of-
memory problems when synthesizing the original IVM 
processor. Second, since we focus on the scheduling unit, we 
bypass both the rename unit and the data cache. WAR and 
WAW data dependencies are resolved on software level. Third, 
we delete the redundant segments directly from the RT-level 
description of the scheduling unit. Examples of such segments 
are the PC_TAG signals that do not affect the outputs of the 
processor. Finally, the modified IVM processor contains 1.043 
million gates. 

 
With our HATIG method, the slicing step greatly reduces 

the size of the global EFSM and the SMV tool only takes 
2551.0s to generate the leading sequences for all the functional 
paths. In the test pattern generation step, the sequential ATPG 
problem on the scheduling unit is turned into a combinational 
one. As a result, the ATPG algorithm does not need to explore 

TABLE IV 
THE SBST GENERATION TIME OF HATIG 

 Time (s) 
Bounded Model Checking 2551.0 

ATPG on the Flattened Unit 530.7 
Test Program Generation Time 70.0 

Total  3151.7 

  
(a)  ATIG on the flattened scheduling unit 

(b) The fault coverage of ATPG 
Fig.5.  ATIG on the flattened scheduling unit and ATPG fault coverage  

TABLE II 
THE COST FOR BOUNDED MODEL CHECKING 

Value Max Average 
Time Bound K 15 7 

Time (s) 5.38 3.80 
Memory (Bytes) 278,497 185,216 

 
TABLE III 

FUNCTIONAL TEST COVERAGE FOR THE SCHEDULING UNIT 
Total Functional Path 2080 

Leading Sequence 672 
Excited Functional Path 2048 

Functional Test Coverage 98.5% 
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several time frames to excite or to propagate the faults and it 
takes 530.7s to generate all test patterns. The translation of the 
test patterns into test programs takes 70.0s. Overall, the whole 
SBST generation time for the scheduling unit is 3151.7s, as 
shown in Table IV. 

In the HATIG method, the leading sequences guide the test 
generation through each inner segment of the scheduling unit. 
This allows the HATIG method to effectively test complex 
sequential units. Table V shows that the test programs 
generated by the HATIG method achieve 90.0% of fault 
coverage for the scheduling unit during fault simulation on the 
whole processor. The test programs take 90184 instructions 
and 87780 clock cycles. 

 

 
For comparison, we generate random test programs with 

the same amount of instructions. This approach only achieves 
50.7% of fault coverage. Recall that the IVM processor can 
issue 4 instructions at each clock cycle with 132 types of 
instructions. As a result, the number of possible input 
combinations of the scheduling unit is very large, and the 
random programs only cover a small proportion of that 
combination. What is worse, the responses of the excited faults 
do not propagate to the output immediately, and they are easily 
changed by other instructions. Compared with random 
programs, the HATIG method uses structural test patterns by 
applying constrained ATPG on the flattened scheduling unit. 
This allows the HATIG method to avoid having to test all 
possible input combinations of the unit under test. Furthermore, 
observing instructions are inserted just after the generated test 
instruction sequence, and test responses can be stored into 
memory at once. As a result, the HATIG method effectively 
tests the scheduling unit, and achieves about 40% higher fault 
coverage when compared to randomly generated programs 
with the same number of instructions. On the other hand, the 
HATIG program contains more loops than the random program, 
so that it requires more cycles to execute. 

As shown in Table V, we have also applied a state of the art 
sequential ATPG on the scheduling unit, and it takes 240h on 
an 8-cpu computer and only achieves 0.2% of fault coverage. 
The reason for this is that faults in sequential units often 
require several clock cycles to be excited or to propagate. In 
addition, there are many loops in such large circuits and, 
without proper guidance, the ATPG tool ends up in an endless 
search among many possible combinations and paths.  
Compared with the sequential ATPG method, the HATIG 
method generates leading sequences using bounded model 
checking in order to ensure that each leading sequence 
activates a functional path within the sequential unit. Each 
leading sequence is then imposed on the flattened circuit of the 
scheduling unit and only then is the ATPG applied to detect the 
faults on the remaining parts of the unit. In other words, the 
leading sequences guide ATPG across the inner segments of 
the scheduling unit. This allows the HATIG method to achieve 
very high fault coverage.  

Finally, it is worth observing that it is not necessary to 
achieve comparable fault coverage in functional tests as in full-
scan tests in the context of a complex microprocessor 
architecture. Indeed, some faults will never be activated in 
functional mode. More specifically, there are two types of 
faults in the scheduling unit. First, the processor structure 
imposes some constraints on the signals of that unit. For 

example, as explained in Section III.B, the instruction at the 
(head)th cell  cannot be issued to the SA1 channel. As a result, 
the faults under that path cannot be tested under normal 
operations of the processor. Second, the instruction set 
architecture also imposes some constraints on the signals of the 
unit under test. For example only the jump/branch instructions 
are issued to the BR channel. These instructions do not use 
registers for their second operand, so that the register ready 
signal for the second operand are always set to be true. 

V. CONCLUSIONS 
In this work, the scheduling unit in an out-of-order 

superscalar processor is effectively and efficiently tested using 
a new method called HATIG. First, the processor is modeled as 
a global EFSM on which slicing is applied to reduce the size of 
the resulting representation and to target the scheduling unit. 
Second, bounded model checking is applied on the resulting 
EFSM in order to generate leading instruction sequences that 
activate all functional paths of the scheduling unit. Third, the 
flattened scheduling unit is constrained by these leading 
sequences and ATPG is applied on the constrained units in 
order to detect all functionally testable faults. The obtained test 
patterns are then turned into test programs using ATIG. The 
experimental results show that HATIG achieves 90% of fault 
coverage for the scheduling unit during fault simulation on the 
whole processor. 
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TABLE V 
FAULT COVERAGE WITH DIFFERENT METHODS ON THE SCHEDULING UNIT 

 Inst 
Num. 

Gen  
Time (s) 

Exec  
Time (cycles) 

Fault 
 Cov. (%) 

Sequential ATPG -- 240h -- 0.2 
Random program 90184 4.71 67957 50.7 

HATIG 90184 3151.7 87780 90.0 
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