
Automatic Test Program Generation for Out-of-Order
Superscalar Processors

Ying Zhang, Ahmed Rezine, Petru Eles, and Zebo Peng
Embedded Systems Laboratory, Linköping University, Sweden

{ying.zhang, ahmed.rezine, petru.eles, zebo.peng}@liu.se

Abstract—This paper presents a high-level automatic test
instruction generation (HATIG) technical that allows, for the
first time, to test the scheduling unit of an out-of-order
superscalar processor. This technique leverages on existing
bounded model checking tools in order to generate software-
based self-testing programs from a global EFSM model of the
processor under test. The experimental results have
demonstrated the efficiency of the proposed technique.

Keywords: Automatic Test Instruction Generation; Bounded
Model Chekcing; Software-Based Self-Testing; Out-of-Order
Superscalar Processor.

I. INTRODUCTION

Hardware defects become more common as silicon designs
include more nanometer scale components [1]. A promising
and effective solution to uncover these defects is to use online
self-testing by executing test instructions. Such a software-
based self-testing (SBST) approach makes use of the
functionality provided by a processor in order to apply tests for
structural faults [2]. In this approach, test programs composed
of test code (i.e., instructions) and test data are first
downloaded into the processor under test (PUT). Then, the
processor executes the instructions and tests at-speed its
component under test (CUT). The resulting test responses are
finally written back to memory for observation. SBST enables
powerful online fault detection for processors without the need
for expensive high speed automated test equipment. However,
this approach has not been able to handle complex superscalar
processors so far.

Mainstream SBST methods develop test programs by
combining functional constraint extraction and gate-level
constrained automatic test pattern generation (ATPG). They
avoid test patterns that never appear during the normal
operational mode (i.e., functional mode) of a processor with the
help of the extracted functional constraints. Originally, SBST
used manually extracted constraints to restrict the randomly
generated test patterns that were applied to the components of
the processor under test [2]. Later, a more scalable SBST
technique [3] was presented for more complex processors. It
applied statistical regression to extract instruction-level
constraints for constrained ATPG (CATPG) [4]. In an effort to
achieve more efficiency than CATPG, learning methods [5]
have been used to deduce, based on simulation runs, relations
between instructions, I/O data and component signals. In [6],
an automatic test instruction generation (ATIG) approach was
proposed where instruction-level constraints are directly
mapped to the ports of the CUT and test patterns are
automatically translated into test programs.

Due to the high complexities involved when dealing with
gate-level implementations, many researchers shifted their
attention to the register-transfer (RT) level for generating
targeted instruction sequences for SBST. In [7], deterministic
tests at RT-level take advantage of the inherent regularity of

the functional components of a processor. It carefully designs
test programs to achieve considerable high fault coverage on
functional components using compact patterns. Based on these
deterministic tests, systematic [8] and hybrid [9] [10] [11]
SBST methods were proposed and applied successfully to test
single-scalar pipeline processors. However, to the best of our
knowledge, there has been no work targeting superscalar
processors with out-of-order instruction execution.

Bounded model checking (BMC) has been used to generate
SBST programs in the context of single-scalar pipeline
processors [12]. The technique presented in [12] translates a
pre-computed test pattern into an assertion. A BMC tool is then
used to check if there is a sequence of instructions that can
violate the assertion. If it is the case, the sequence of
instructions becomes the SBST test program directly. Although
BMC tools typically suffer from time-outs and state space
explosion problems, they do provide a systematic way to
handle complex units in the processors under test.

Both mainstream SBST and RT-level methods have their
limitations when testing out-of-order superscalar processors.
For instance, gate-level methods can extract functional
constraints for combinational circuits, but there is still no
effective way to extract functional constraints for sequential
circuits. Complex sequential control units are inevitable when
out-of-order executions are implemented on superscalar
processors. Omitting to extract constraints for these sequential
units would seriously impact the resulting fault coverage. For
RT-level methods, concurrent and out-of-order execution
results in a combinatorial explosion of the number of valid
instruction sequences. In this context, manually generating test
programs that can cover all functional paths of the sequential
components is a daunting and intractable task. On the other
hand, for the sequential control unit in superscalar processors,
functional programs only excite control signals of functional
paths, but never consider the other signals. There is therefore
usually no guaranty that these functional programs can achieve
a certain fault coverage level for high-quality manufacturing
tests.

In this paper, for the first time, the scheduling unit of an
out-of-order superscalar processor is tested with software-
based self-testing programs. Our method, referred to as high-
level automatic test instruction generation (HATIG), makes use
of bounded model checking in order to analyze a global
extended finite state machine (EFSM) model of the unit under
test and to generate SBST programs. First, the whole
superscalar processor is modeled as a global EFSM and slicing
is applied to reduce the size of the global EFSM for the
scheduling unit. Second, test instruction sequences that excite
certain functional paths within the scheduling unit, called
leading sequences, are automatically generated using an off the
shelf bounded model checking tool. Third, the sequential
scheduling unit is flattened into a combinational one on which
the test instruction sequences are imposed as functional
constraints. ATIG is then used to generate the test programs. In
this way, test generation is guided to travel through all
functional paths within the scheduling unit. Our high-level
ATIG approach permits to treat the scheduling unit with its

This work was partially supported by the Swedish Foundation for Strategic
Research with the project RIT08-0056 on “Fault-Tolerant and Secure
Automotive Embedded Systems”.

2012 IEEE 21st Asian Test Symposium

1081-7735/12 $26.00 © 2012 IEEE

DOI 10.1109/ATS.2012.43

338

large sequential depth as a combinational one. It therefore
provides an effective way to detect faults in out-of-order
superscalar processors. Some of these faults are particularly
challenging to uncover as they require several time-frames to
propagate or to get activated.

This paper is organized as follows. Section II briefly
introduces the out-of-order superscalar processor we consider
as a running example in this paper. It also describes the
extraction of the global EFSM and the way bounded model
checking is used. Section III details the three main steps of the
HATIG approach. Section IV reports on the experimental
results and Section V concludes the paper.

II. BACKGROUND
An out-of-order superscalar processor often relies on

extremely complex structures. This poses a great challenge for
the functional test on the involved structures. In order to
automatically generate SBST programs to test such structures,
we model them using global EFSM [13] and make use of
bounded model checking [14].

A. Superscalar and Out-of-order Processors
We illustrate our approach on a 4-issue superscalar and out-

of-order processor described in the Illinois Verilog model
(IVM) [15]. The model is depicted in Fig.1(a). It contains 12
pipeline stages and 132 types of instructions. At each clock
cycle, four instructions are fetched from memory. After the
decoding and renaming steps, the instructions are stored in the
buffer of the scheduling unit, starting from the tail pointer tail.
Each instruction waits in the buffer to be issued to one of the
six different channels, namely SA1 and SA2 for the two simple
ALUs, CA for the complex ALU including the multiply unit,
BR for the branching unit, and AG0 and AG1 for the two
address generating units. The control part of the scheduling
unit arbitrates among the instructions that are ready to be
issued. For example, if a multiply instruction mull has to be
issued to the channel CA, it must first be stored in the
scheduling unit and its operand registers have to be prepared.
Then, if CA is not used by some other instruction, the
scheduling unit will issue mull regardless of its order. To
orchestrate this, an instruction sequence, namely a leading
sequence, is used to initialize and to control the scheduling unit.
After having been issued, instructions can be committed in
order with the reorder buffer.

This work mainly focuses on the scheduling unit which is at

the core of the out-of-order capabilities of a processor. As
shown in Fig.1(a), the unit checks the stored instructions from
the head pointer, head, at each clock cycle, and the first ready
instruction will obtain access to the output channel. It often
requires a large number of clock cycles to initialize, issue or
return the results of the stored instructions. As a result, there

are many faults that need many time-frames to get activated or
to propagate. This makes effective testing of the scheduling
unit extremely difficult.

B. Global EFSM
We use extended finite state machines (EFSM) to capture a

high level model of the structure of the complex superscalar
processor. An EFSM is a finite state machine (FSM) extended
with variables and predicates on their values. It can succinctly
capture sets of values for the variables and therefore allows to
greatly reduce the size of the manipulated representations.
EFSMs can be automatically extracted from RTL description
[16], and are widely used to model large systems and even
whole processors. Formally, an EFSM is a seven-tuple {S, I, O,
D, E, F, T}, where:

S is a set of symbolic states,
I is a set of input symbols,
O is a set of output symbols,
D is an n-dimensional space D1 × … × Dn,
E is a set of enabling functions ei such that ei : D → {0,1},
F is a set of update functions fi such that fi : D → D, and
T is a transition relation such that T : S×E×I → S×F×O.

An EFSM can be easily extracted from an HDL description
by considering each decision node as a symbolic state of the
EFSM [17]. Conditions and operations on the nodes are then
used to extract the corresponding enabling functions and
update actions. For example, the EFSM that captures the part
of the scheduling unit that arbitrates among the instructions that
are ready for the channel SA1 is shown in Fig.1(b). In this
EFSM, there are 16 decision nodes corresponding to 16 cells in
the buffer. The ith decision node has two transitions T2i+1 and
T2i indicating if the functional path from the (head+i)th cell to
the channel is excited or not. To excite T2i+1, the instruction in
the (i+head)th cell has to be valid but not yet issued
(valid[i]&~issue[i]), the instruction must belong to the simple
ALU group (inst[i][`SIMPLE]), its two operand registers must
be ready (RA[i] & RB[i]), and the channel SA1 should not be
used (~channel[1]). The resulting enabling function e2i+1 for
the transition is presented in Fig.1(b). In addition, the SA1
channel has lower priority than that of the SA0 channel, so the
signal channel[0] is applied to avoid using SA1 before the
channel SA0 has been used. Finally, the operation issue[i]=1
corresponds to the action f2i+1 of the transition, and it means
that the functional path is excited and that the instruction is
issued into the channel SA1.

Global EFSMs were originally proposed to model
superscalar processors to verify all pipeline interactions [13]. In
that work, every instruction in the pipeline is modeled as a
single EFSM, and every component in the processor is also
modeled as an EFSM. All EFSMs are then combined together
as one global EFSM. In this work, we only focus on the
components of the processor and directly generate instruction
sequences from a global EFSM. We need not consider how
instructions are pipelined. For this reason, we build on our
earlier work [6] and replace the EFSMs associated to the
instructions by records called extended instructions (EIR).
Each of these records is associated to an instruction and
contains all relevant running information for the current cycle,
as follows.

1 2(, , , , , ,)EIR I D D R F A op=
An EIR record contains, as indicated above, seven elements:

the instruction itself I, two operands D1 and D2, the result R, a
flag F, an address A, and the instruction type op. In this way,
most variables of the EFSM are EIRs instead of single
variables, and the leading sequences can be generated from the
modified global EFSM directly without the need for extra

Fig.1. An out-of-order and 4-issue superscalar processor example

339

EFSMs to model the instructions traversing the pipeline. The
obtained global EFSM includes all valid pipeline interactions.
As a result, the test instruction group generated from the global
EFSM will satisfy all functional constraints imposed by the
processor.

C. Bounded Model Checking
Bounded model checking (BMC) [14] is an automatic

formal verification technology that is particularly suitable for
analyzing EFSMs and for finding input sequences violating
specifications supplied by the user. Given a property, a
bounded model checking tool will exhaustively look for
sequences that violate the property and that are of lengths
smaller or equal to a bound K. If the tool terminates without
returning a sequence, then there are no sequences that violate
the property within this time bound K.

For example, to obtain a leading sequence that issues the
instruction in the (head+i)th cell of the scheduling unit, we can
use the specification "SPEC AG(~(e2i+1))" that asserts that
issuing an instruction from the (head+i)th cell to channel SA1 is
never possible. With a sufficient time bound K, a BMC tool
automatically finds a counter example that violates the
specification and that satisfies the enabling function of the
transition T2i+1 (recall that T2i+1 is the transition that issues the
instruction in the (head+i)th cell to SA1). The counter example
provides an input instruction sequence that we use as a leading
sequence to excite the transition T2i+1.

III. HIGH-LEVEL TEST INSTRUCTION GENERATION FOR
SUPERSCALAR PROCESSORS

We propose a high-level automatic test instruction
generation method to design SBST test programs for the
scheduling unit of out-of-order superscalar processors. The
method builds on both high-level information and gate-level
descriptions. On the one hand, instruction-level leading
sequences are extracted using a BMC tool in order to excite all
functional paths in the considered scheduling unit. On the other
hand, the obtained leading sequences are used to guide, at the
gate level, test generation targeting structural faults. This
combination enables us to achieve high fault coverage.

Applying the HATIG method on the scheduling unit of an
out-of-order superscalar processor involves three main steps as
depicted in Fig.2(a). In the first step, a global EFSM that
models the whole processor is extracted as described in Section
II. Slicing is then used to obtain a model that captures the
scheduling unit while preserving the constraints imposed by the
other components of the processor. In the second step, bounded
model checking is applied on the obtained model in order to
automatically generate leading instruction sequences that excite
all functional paths of the scheduling unit. In the third step, the
scheduling unit is flattened and the leading sequences
generated in the previous step are mapped to the ports of the
obtained circuit in order to excite the corresponding functional
paths of the scheduling unit. Test patterns are then generated
using ATPG and are automatically translated into test programs.
A detailed description of the three steps follows.

A. Slicing on the Global EFSM for the Scheduling Unit
To reduce the design space, we apply slicing techniques [18]

before using BMC on superscalar processors. To illustrate this,
let us take the IVM processor as an example, which contains
approximately 50,000 bit registers [15]. Considering that it
takes at least 12 clock cycles to complete one instruction,
giving the whole IVM as input for the BMC tool would force
the latter to exhaustively explore a state space of at least
(50000)12 in size. This explosion in the size of the state space to
be explored typically exceeds the capabilities of existing model
checkers.

Slicing away details that are irrelevant to the function of the
scheduling unit greatly reduces the size of the manipulated
model [18], thereby enabling the application of a BMC tool.
The global EFSM is first extracted from the HDL description
of the processor as described in Fig.2(b). Since the scheduling
unit issues instructions to five different executing units, the 132
instruction types are clustered into six instruction groups: ADD,
SLL, MUL, CMOV, BEQ, and LD. The conditional move
instructions are clustered in an independent group CMOV
because they are fetched only one instruction per cycle with the
three other concurrent instructions being forced to be invalid.

In this work, the variables appearing in the enabling

functions ei of the transitions of the scheduling unit, such as the
variables corresponding to the valid and to the register ready
signals, are defined as chosen variables. The transitions and
states that do not affect these variables are said to be non-
contributing. A description of the EFSM resulting from slicing
away non-contributing variables and transitions is shown in
Fig.3. In addition to the scheduling unit, transitions of other
components of the global EFSM are preserved by the slicing
step because of their contribution to the chosen variables.
These include transitions in the fetch stage, in the executing
unit, and in the scoreboard. Transitions in the fetch stage are
kept because they force the valid bits of the instructions that
follow a CMOV or BEQ instruction to be invalid. Also, the
feedback transitions in the executing unit are retained because
they are used to delete instructions stored in the scheduling unit.
In a similar manner, parts of the scoreboard unit that store the
register ready signals are also preserved by the slicing step.
These additional transitions correspond to the functional

(a) The framework of HATIG

(b) The flow chart of HATIG

Fig. 2. High-level automatic test instruction generation

340

constraints imposed by components other than the scheduling
unit. The size of the input and output EIRs of the resulting
model is strongly reduced and the new fi actions only contain
the contributing variables. In other words, slicing greatly
reduces the size of the model for the scheduling unit without
violating the sequential constraints imposed by the other
components of the processor.

We use Table I to give an idea of the reductions achieved

by the slicing step. The sliced global EFSM only contains 149
state variables and 1477 combinational variables. Compared to
the scheduling unit of the original EFSM, the sliced EFSM has
only 7.5% as many state variables and 1% as many
combinational variables. This significant reduction alleviates
state space explosion problems when generating, in the
following step, leading sequences using BMC tools.

B. Leading Sequences Generated using BMC
We use an off the shelf bounded model checker (the SMV

tool [19]) in order to automatically generate sequences that
excite certain functional paths in the EFSM of the scheduling
unit resulting from slicing. From now on, we mean the sliced
global EFSM when we mention the global EFSM. We refer to
the instruction sequences obtained in this step as the leading
sequences. As an example, assume the global EFSM contains
three CMOV instructions initially. In addition, suppose the
instruction in the 11th cell of the buffer has to be issued into
channel SA1 when head points to the 3rd cell. Observe that the
instruction is at the (head+i)th=(3+8)th=11th cell. To excite this
functional path, the transition T2*8+1 (the T2i+1 of the 8th node)
in the EFSM of channel SA1 has to be excited, so that the
specification sent to the BMC tool to be checked is "SPEC
AG(~(e17 & (head==3)))". The tool generates a sequence that
violates the property, hence exciting the considered functional
path (here within a time bound of 4 clock cycles).

The situation is illustrated in Fig.4. The scheduling unit has
three CMOV instructions in the initial state C0, where the
second CMOV is just issued, and the branch instruction BEQ is
the input instruction in C0. The head and tail pointers of the
buffer of the scheduling unit are respectively represented by a
light and a dark pointer. The fetch unit forces the instructions
concurrent to a BEQ instruction to be invalid because the
instructions following a BEQ instruction are often uncertain. In
the first cycle C1, the feedback of the first CMOV instruction
arrives, so the later is deleted from the buffer and the head
pointer head advances to the 0th cell. In the same cycle, the
third CMOV is issued and four load instructions LDs become

the input instructions in C1. In the second cycle C2, the second
CMOV instruction is deleted and head moves to the 1st cell
while two LDs and two ADDs instructions are input. In the
third cycle C3, head points to the 2nd cell after deleting the BEQ
instruction, and the first couple of LD instructions are issued
into the channels AG0 and AG1. At this point, the second pair
of LD instructions has to wait since there are no available
channels. In the fourth cycle C4, head moves to the 3rd cell. The
second pair of LD instructions is issued and the third pair of LD
instructions has to wait. The channels SA0 and SA1 are
available and the pair of ADD instructions is issued before the
third pair of LD instructions regardless of their previous order.
At this point, head points to the 3rd cell and the ADD
instruction in the 11th cell is issued into the channel SA1. The
functional path (in red in the figure) is successfully excited by
this sequence. The third cycle, namely C3, where the leading
sequence has initialized the scheduling unit, so that the
functional path can be excited in the next cycle, is called the
ready cycle CR. The input instructions from the initial cycle to
the ready cycle define the leading sequence.

We use the algorithm in Fig.2(b) to generate all leading

sequences for all the functional paths. We consider that a
functional path depends on both the transition of the EFSM and
on the value of the head (or tail) pointer. We assume that if all
transitions of the EFSM are covered whatever the value of the
head (or tail) pointer is, then all of the functional paths are
excited. The algorithm of Fig.2(b) therefore iterates through all
pairs of transitions from the global EFSM and values for the
head pointer. For each such property, the BMC tool is initially
started with a time bound K equal to 4. If a sequence is found,
then the property, as well as any additional properties excited
by this sequence, is removed from the property set. If no
sequences are found for the considered bound, the analysis is
repeated after having increased K up to Kmax = 16. If a property
does not result in a leading sequence within the maximal time
bound Kmax, it is deemed to hold for any bound and is removed
from the property set. We report in Table II on both maximum
and average bounds K, execution times in seconds and
consumed memory in Bytes. SMV was able to efficiently
check all properties and did not timeout on any of them.

Finally, it was possible to generate the leading sequences
for all of the considered functional paths except for some
redundant ones. Indeed, some functional paths, called
redundant paths, are never excited during the operations of the
processor. For example, the functional paths where the
instruction in the (head)th cell is issued into channel SA1 are
never excited because SA0 is not used when the (head)th cell is
pointed to by head and SA0 has a higher priority than SA1. The
instruction in the (head)th can therefore not be issued to the SA1

Sc
he

du
lin

g

Le
ad

in
g

In
st

ru
ct

io
ns

Fig.4. Bounded model checking on the sliced global EFSM

TABLE I
MODEL SIZE OF THE SCHEDULING UNIT AND THE SLICED GLOBAL EFSM

Variables State Var.
(bits)

Com. Var.
(bits)

The Complete Scheduling Unit 1976 148666
The Sliced Global EFSM 149 1477

Percentage (EFSM/The S Unit) 7.5% 1.0%

(, ,)EIR I F op=

Fig.3. The sliced global EFSM targeting the scheduling unit

341

channel. For these redundant paths, the algorithm of Fig.2(b)
will reach the maximal bound Kmax before removing them from
the property set. In Table III, 672 sequences are generated to
cover 2048 of a total of 2080 functional paths in the scheduling
unit. This corresponds to about 98.5% of functional coverage.

C. ATIG Guided by Leading Sequences

We can completely test the functionally testable faults
within the scheduling unit by guiding the test generation using
leading sequences for all functional paths. More specifically,
we generate the test patterns just at the ready cycle when the
considered leading sequence has appropriately initialized the
scheduling unit in order to excite the related functional path.
We detail this process in the following.

First, the scheduling unit is flattened by removing its inner
registers and by transforming the inputs, respectively outputs,
of the removed registers into new primary outputs (PO),
respectively primary inputs (PI), of the unit. This is illustrated
in Fig.5(a). The values of the inner registers in the ready cycle
are then imposed on these PIs resulting in a constrained circuit
(CC). A constrained circuit involves three parts. First, the old
PIs for the four input instructions are constrained by the input
instructions of the ready cycle, while the new PIs for the 16
cells of the buffer are constrained by the part of the leading
sequence stored in the buffer. For example, the PIs for the 11th
cell in Fig.5(a) are constrained by the second ADD instruction
of the leading sequence. This instruction type op belongs to the
simple ALU group (ADD). The controlling signals are set
based on the instruction type op, and the rest of the signals are
left unconstrained and can be searched by ATPG. Second, the
PIs of the chosen variables (i.e., the variables appearing in the
enabling function used to generate the functional path) are set
according to their values at the ready cycle (the sequence
generated by the BMC tool constrains the variable values in
each cycle). Third, the PIs of the remaining registers are left
unconstrained and can also be searched by ATPG. In this way,
the flattened unit is at a similar state as the one of the
scheduling unit at the ready cycle. If ATPG is applied to the
constrained unit, all detectable faults along the excited
functional path can be tested by changing the instruction types
or the values of the unconstrained signals.

The algorithm in Fig.2(b) is proposed to test all functionally
testable faults using the leading sequences generated with the
help of the BMC tool. Given a new leading sequence, the
algorithm uses the leading sequence to generate a constrained
circuit and imposes it on the flattened unit. It then loads the
constrained unit as well as the list of all possible faults and
applies constrained ATPG on the resulting unit. It removes all
of the detected faults from the fault list, and stores the test
patterns. The algorithm continues until there are no remaining
leading sequences to be used. This method can effectively
detect all functionally testable faults in the scheduling unit
because the leading sequences already excite all functional
paths and because ATPG excites all testable faults along each
functional path. As depicted in Fig.5(b), fault coverage
increases in relation to the number of used leading sequences.

In our experiments, the method achieved 96.6% fault coverage
during test pattern generation. Finally, each test pattern
generated from the constrained ATPG application is first
translated as a group of test instructions using the ATIG
method proposed in [6]. The test instructions from tail to head
in the buffer are set using the leading sequence as shown in
Fig.5(a). The test program is obtained after inserting observing
instructions and a number of CMOV instructions. The CMOV
instructions are inserted at the end of the test sequence to make
the scheduling unit return to its initial state without using an
external reset signal.

IV. EXPERIMENTAL RESULTS

We applied the HATIG approach to generate test programs
for the IVM processor [15]. We evaluate the resulting fault
coverage on the scheduling unit. We use random testing with
the same number of instructions and sequential ATPG for
comparison. We introduced three modifications to the IVM
processor. First, the buffer sizes of the scheduling unit and the
reorder buffer are reduced to 16 cells as we encountered out-of-
memory problems when synthesizing the original IVM
processor. Second, since we focus on the scheduling unit, we
bypass both the rename unit and the data cache. WAR and
WAW data dependencies are resolved on software level. Third,
we delete the redundant segments directly from the RT-level
description of the scheduling unit. Examples of such segments
are the PC_TAG signals that do not affect the outputs of the
processor. Finally, the modified IVM processor contains 1.043
million gates.

With our HATIG method, the slicing step greatly reduces

the size of the global EFSM and the SMV tool only takes
2551.0s to generate the leading sequences for all the functional
paths. In the test pattern generation step, the sequential ATPG
problem on the scheduling unit is turned into a combinational
one. As a result, the ATPG algorithm does not need to explore

TABLE IV
THE SBST GENERATION TIME OF HATIG

 Time (s)
Bounded Model Checking 2551.0

ATPG on the Flattened Unit 530.7
Test Program Generation Time 70.0

Total 3151.7

(a) ATIG on the flattened scheduling unit

(b) The fault coverage of ATPG
Fig.5. ATIG on the flattened scheduling unit and ATPG fault coverage

TABLE II
THE COST FOR BOUNDED MODEL CHECKING

Value Max Average
Time Bound K 15 7

Time (s) 5.38 3.80
Memory (Bytes) 278,497 185,216

TABLE III

FUNCTIONAL TEST COVERAGE FOR THE SCHEDULING UNIT
Total Functional Path 2080

Leading Sequence 672
Excited Functional Path 2048

Functional Test Coverage 98.5%

342

several time frames to excite or to propagate the faults and it
takes 530.7s to generate all test patterns. The translation of the
test patterns into test programs takes 70.0s. Overall, the whole
SBST generation time for the scheduling unit is 3151.7s, as
shown in Table IV.

In the HATIG method, the leading sequences guide the test
generation through each inner segment of the scheduling unit.
This allows the HATIG method to effectively test complex
sequential units. Table V shows that the test programs
generated by the HATIG method achieve 90.0% of fault
coverage for the scheduling unit during fault simulation on the
whole processor. The test programs take 90184 instructions
and 87780 clock cycles.

For comparison, we generate random test programs with

the same amount of instructions. This approach only achieves
50.7% of fault coverage. Recall that the IVM processor can
issue 4 instructions at each clock cycle with 132 types of
instructions. As a result, the number of possible input
combinations of the scheduling unit is very large, and the
random programs only cover a small proportion of that
combination. What is worse, the responses of the excited faults
do not propagate to the output immediately, and they are easily
changed by other instructions. Compared with random
programs, the HATIG method uses structural test patterns by
applying constrained ATPG on the flattened scheduling unit.
This allows the HATIG method to avoid having to test all
possible input combinations of the unit under test. Furthermore,
observing instructions are inserted just after the generated test
instruction sequence, and test responses can be stored into
memory at once. As a result, the HATIG method effectively
tests the scheduling unit, and achieves about 40% higher fault
coverage when compared to randomly generated programs
with the same number of instructions. On the other hand, the
HATIG program contains more loops than the random program,
so that it requires more cycles to execute.

As shown in Table V, we have also applied a state of the art
sequential ATPG on the scheduling unit, and it takes 240h on
an 8-cpu computer and only achieves 0.2% of fault coverage.
The reason for this is that faults in sequential units often
require several clock cycles to be excited or to propagate. In
addition, there are many loops in such large circuits and,
without proper guidance, the ATPG tool ends up in an endless
search among many possible combinations and paths.
Compared with the sequential ATPG method, the HATIG
method generates leading sequences using bounded model
checking in order to ensure that each leading sequence
activates a functional path within the sequential unit. Each
leading sequence is then imposed on the flattened circuit of the
scheduling unit and only then is the ATPG applied to detect the
faults on the remaining parts of the unit. In other words, the
leading sequences guide ATPG across the inner segments of
the scheduling unit. This allows the HATIG method to achieve
very high fault coverage.

Finally, it is worth observing that it is not necessary to
achieve comparable fault coverage in functional tests as in full-
scan tests in the context of a complex microprocessor
architecture. Indeed, some faults will never be activated in
functional mode. More specifically, there are two types of
faults in the scheduling unit. First, the processor structure
imposes some constraints on the signals of that unit. For

example, as explained in Section III.B, the instruction at the
(head)th cell cannot be issued to the SA1 channel. As a result,
the faults under that path cannot be tested under normal
operations of the processor. Second, the instruction set
architecture also imposes some constraints on the signals of the
unit under test. For example only the jump/branch instructions
are issued to the BR channel. These instructions do not use
registers for their second operand, so that the register ready
signal for the second operand are always set to be true.

V. CONCLUSIONS
In this work, the scheduling unit in an out-of-order

superscalar processor is effectively and efficiently tested using
a new method called HATIG. First, the processor is modeled as
a global EFSM on which slicing is applied to reduce the size of
the resulting representation and to target the scheduling unit.
Second, bounded model checking is applied on the resulting
EFSM in order to generate leading instruction sequences that
activate all functional paths of the scheduling unit. Third, the
flattened scheduling unit is constrained by these leading
sequences and ATPG is applied on the constrained units in
order to detect all functionally testable faults. The obtained test
patterns are then turned into test programs using ATIG. The
experimental results show that HATIG achieves 90% of fault
coverage for the scheduling unit during fault simulation on the
whole processor.

REFERENCES
[1] K. Constantinides and T. Austin, “Using Introspective Software-Based

Testing for Post-Silicon Debug and Repair”, DAC’2009, pp.537-542.
[2] L. Chen and S. Dey, “Software-Based Self-Testing Methodology for

Processor Cores”, IEEE Trans on CAD, Vol. 20, 2001, pp. 369-380.
[3] L. Chen, et al., “A Scalable Software-Based Self-Test Methodology for

Programmable Processors”, DAC’2003, pp. 548-553.
[4] R. S. Tupuri and J. A. Abraham, “A Novel Functional Test Generation

Method for Processors Using Commercial ATPG,” ITC’1997, pp. 743-
752.

[5] C. H.-P. Wen, L. C. Wang, and K. T. Cheng, “Simulation-Based
Functional Test Generation for Embedded Processors”, IEEE Trans on
Computers, Vol. 55, 2006, pp.1335-1343.

[6] Y. Zhang, H. Li, and X. Li, “Software-Based Self-Testing of Processors
Using Expanded Instructions”, ATS’2010, pp.415-420.

[7] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
Based Self-Testing of Embedded Processors”, IEEE Trans on
Computers, Vol. 54, 2005, pp.461-475.

[8] D. Gizopoulos, et al., “Systematic Software-Based Self-Test for
Pipelined Processors”, IEEE Trans on VLSI Systems, Vol. 16, 2008, pp.
1441-1452.

[9] N. Kranitis, A. Merentitis, and D. Gizopoulos, “Hybrid-SBST
Methodology for Efficient Testing of Processor Cores”, IEEE Design &
Test of Computers, Vol. 25, 2008, pp. 64-75.

[10] C.-H. Chen, C.-K. Wei, T.-H. Lu, and H.-W. Gao, “Software-Based
Self-Testing With Multiple-Level Abstractions for Soft Processor
Cores”, IEEE Trans on VLSI Systems, Vol. 15, 2007, pp. 505-516.

[11] T.-H. Lu, C.-H. Chen, and K.-J. Lee, “Effective Hybrid Test Program
Development”, IEEE Trans on VLSI Systems, 2009.

[12] S. Gurumurthy, S. Vasudevan, and J.A. Abraham, “Automated Mapping
of Pre-Computed Module-Level Test Sequences to Processor
Instructions”, ITC’2005, pp.294-303.

[13] D. Thanh, A. Roychoudhury, T. Mitra, and P. Mishra, “Generating Test
Program to Cover Pipeline Interactions”, DAC'2009, pp.142-147.

[14] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Journal of Formal Methods in System
Design, Vol.19, 2001, pp.7-34.

[15] http://www.crhc.illinois.edu/ACS/tools/index.html
[16] K.T. Cheng, and A.S.Krishnakumar, “Automatic Functional Test

Generation Using the Extended Finite State Machine Model”,
DAC’1993, pp.86-91.

[17] A.Y. Duale, and M.U. Uyar, “A Method Enabling Feasible
Conformance Test Sequence Generation for EFSM Models”, IEEE
Trans. on Computers, Vol. 53, 2004, pp.614-627.

[18] M. K. Ganai, and A. Gupta, "Accelerating High-level Bounded Model
Checking", ICCAD'2006, pp.794-801.

[19] http://w2.cadence.com/webforms/cbl_software/index.aspx.

TABLE V
FAULT COVERAGE WITH DIFFERENT METHODS ON THE SCHEDULING UNIT

 Inst
Num.

Gen
Time (s)

Exec
Time (cycles)

Fault
 Cov. (%)

Sequential ATPG -- 240h -- 0.2
Random program 90184 4.71 67957 50.7

HATIG 90184 3151.7 87780 90.0

343

