arXiv:1209.1441v1 [quant-ph] 7 Sep 2012

Programming a Topological Quantum Computer

Simon Devitt!

Kae Nemoto!

I'National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo, Japan
{devitt|nemoto } @nii.ac.jp

Abstract—Topological quantum computing has recently proven
itself to be a powerful computational model when constructing
viable architectures for large scale computation. The topological
model is constructed from the foundation of a error correction
code, required to correct for inevitable hardware faults that will
exist for a large scale quantum device. It is also a measurement
based model of quantum computation, meaning that the quantum
hardware is responsible only for the construction of a large,
computationally universal quantum state. This quantum state
is then strategically consumed, allowing for the realisation of a
fully error corrected quantum algorithm. The number of physical
qubits needed by the quantum hardware and the amount of
time required to implement an algorithm is dictated by the
manner in which this universal quantum state is consumed. In
this paper we examine the problem of algorithmic optimisation
in the topological lattice and introduce the required elements that
will be needed when designing a classical software package to
compile and implement a large scale algorithm on a topological
quantum computer.

I. INTRODUCTION

Quantum information science has been one of the extraor-
dinary success stories of theoretical and experimental physics
in the last 20 years. Not only has a complete theoretical
framework for universal quantum computation been estab-
lished, but algorithms have also been discovered that can vastly
outperform their classical counterparts [1]. Multiple physical
systems can now routinely demonstrate fabrication and control
of small arrays of quantum bits (qubits) [2]]. The progress
of experimental systems has allowed, in recent years, for the
development of multiple quantum architectures demonstrating
how a large-scale multi-million qubit machine could be built
(31181

Even with the extraordinary level of experimental control at
the quantum level, imperfections in qubit manufacturing and
control still lead to errors in quantum logic operations, cur-
rently at the level of a few percent (for even the best systems).
This level of hardware error is unacceptable for large scale
algorithms and it is unlikely that hardware imperfections can
be reduced to an acceptable level anytime in the near future.
This problem was well known since the first development of
quantum information science and methods for achieving large
scale computation using inherently faulty components was
quickly formulated [9]. Borrowing from classical information
science, Quantum Error Correction (QEC) and Fault-Tolerant
Quantum Computation (FTQC) allowed for arbitrarily large
algorithms to be run with faulty components, provided that

the error associated with each component is below a certain
threshold level [9].

Theoretical development of QEC and FTQC in the past
ten years has been focused on the construction of codes that
are amenable to physical hardware designs and increasing the
fault-tolerant threshold to a level achievable by experiment
in the next decade. The topological model of QEC [10]-[[12]]
has shown itself to be more promising compared with many
other long-standing techniques and currently forms the basis
of effectively all modern quantum-computing architectures
[5]-[8]. Each of these hardware designs utilise a different
physical system that define the qubit and all allow for a broad
range of physical operational speeds, physical component sizes
and associated ancillary technology such as cryogenic cooling
and ultrahigh vacuums. However, architectures based on the
topological model all have one thing in common; namely that
the realisation of a large algorithm is essentially independent
of the quantum hardware.

This method of computation is very abstract when compared
to classical computer science. One of the more bizarre aspects
of this model is that the physical hardware doesn’t actu-
ally perform any real computation. Instead, the hardware is
only responsible for producing a very large three-dimensional
lattice of qubits which are all linked together to form a
single, massive, universal quantum state. This quantum state
forms the workbench of the computation and information is
created, processed and read-out via the strategic manipulation
of this massive quantum state [[12]], [13]]. For example, if single
photons are used to prepare the lattice, the entangled state can
travel far from the physical location of the actual computer
before each photon is measured and data processing begins.
The algorithmic implementation is consequently dependent on
how this 3D lattice is consumed, rather than how it is prepared.

How large scale algorithms relate to the total number
of devices in the computer and the total amount of time
needed for computation is ultimately related to the 3D size
of the lattice that is required. Computation in this model is
realised via geometric shapes, known as defects, which are
created and manipulated within the lattice. Each pair of these
defects represents a logically encoded qubit, and occupies a
certain amount of space within the lattice. Therefore, a 3D
lattice must be prepared which is physically large enough
to encapsulate all the defect qubits needed for the algorithm
and associated logic gates. Compilation and optimisation in

this model requires the translation of the quantum circuit
into the geometric arrangements of defects and a method
of compactification which allows us to utilise as much of
the lattice as possible, minimising the volume of the lattice
and consequently minimising the physical resources of the
computer.

In this paper we introduce the problem of programming a
topological computer and attempt to outline the issues required
when converting and optimising an abstract quantum algorithm
into the physical operations performed by the computer. We
will attempt to explain these concepts in a way that requires
little knowledge of the background physics of quantum com-
putation. In previous work we have attempted to formulate
a framework of algorithmic optimisation in the topological
model [14], however in this paper we will restrict ourselves
to introducing the nature of the classical problem, rather than
discussing possible solutions.

II. BACKGROUND
A. Quantum Computing

Quantum computing can be, to a certain extent, described by
building parallels to classical computing and a comprehensive
review of quantum information and computation can be found
in Ref. [15]]. The concept of classical bit has its quantum
counterpart, called a quantum bit (qubit). The binary states of
a qubit (]0), |1)) can be, for example, the polarisation state of a
single photon, the spin state of a single electron or the direction
of current flow around a loop of superconducting wire. Unlike
classical bits, a qubit can exist is a general superposition of
the two basis states. This quantum state, |¢)), can can be
represented as a vector [¢)) = ag |0) + aq |1), where g and
o are complex numbers (called amplitudes) that satisfy a
normalisation condition |ag|? + |a;|?> = 1. While the state of
the qubit can be in a generalised superposition, when its state is
measured, it will collapse to one of the two binary states, with
a probability associated with the complex amplitude. Reading
the value of a bit has a quantum counterpart; measurement.
Unlike classical readout, quantum measurement allows us to
read out qubits in multiple ways. The standard measurement in
quantum computation, referred to as a Z-basis measurement.
This measurement discriminates if the qubit is in the |0) or |1)
state, collapsing the wave function (terms in the superposition
inconsistent with the measurement result are discontinuously
removed) describing the qubit array. For example, the state
g |0) + 1 [1) has a probability of |ag|? of being measured
in the |0) state and a probability of |a;|? of being measured
in the |1) state. Another type of measurement is an X-
basis measurement, which measures if the qubit is in the
% (|0) +|1)) state or the % (|0y — |1)) state. This type of
measurement is valid as these two states are orthogonal (the
wavefunctions describing these states have zero overlap).

A quantum gate manipulating m qubits is described by a
2™ x 2™ unitary matrix acting on a column vector of length 2
with entries {c;} where 37 ;' oy|? =1 for i € {0,..,2™ —

m—1

1} representing the m-qubit state |¢) = > " " «;|i). For

example, the controlled-not gate (CNOT) acting on two qubits
is defined by the following 4 x 4 matrix:

0

S O =

0
1
0

_ o o

CNOT =)

0
0
0 01 0

This gate will take a general state of two qubits, |¢p) =
«]00) + B101) 4+ v |10) + §|11) and flips the state of the
second qubit, conditional on the first qubit being in the |1)
state. Hence, CNOT |¢) = «|00) + 5 |01) 4~ |11) 4 6 |10).

B. Topological Quantum Computing

There are two components necessary for a realistic model
of quantum computation. The first is a concept known as
universality.

1) Universality: A general quantum algorithm operating on
an array of m qubits can be described as a series of 2" x 2™
unitary operations, interspersed with selective qubit measure-
ment. However, a large programmable unitary operation is
unrealistic given the restrictions of the physical hardware.
Instead, unitaries must be decomposed into a small discrete
set of gates (ideally operating on very few qubits) that can
be combined to construct any desired m-qubit unitary. This
concept of a universal gate set was first established in the
1980’s by Deutsch [16]], [17]. One such set of gates consists of
the two qubit CNOT gate (illustrated above) and the following
three single qubit gates,

1 /1 1 1 0 1 0
n-d) e) (k) e

The H (Hadamard) gate, takes the state |[0) —
10y + 1)) /v/2, [1) — (]0) — 1)) /v/2 and vice-versa.
While the gates P and T rotate the phase of a single qubit by
an angle of 7 (P) and g (T') respectfully. The set of gates
(H, P and T) can be used to construct an arbitrary single
qubit gate, through the Solovay-Kitaev algorithm [18] and
any arbitrary single qubit gate + the CNOT can be used to
construct any m-qubit unitary.

While there are many different choices for a universal set of
quantum gates, we choose this particular set for one extremely
important reason; error correction. The necessity of QEC and
fault-tolerant protocols places strong restrictions on the types
of quantum gates that can used on encoded data. The encoding
structure for error corrected qubits does not allow for arbitrary
gates to be applied. For isolated qubits, the implementation of
quantum gates is dependant on the physics of the system, i.e.
performing a rotation on an individual electron by an arbitrary
angle along some arbitrary axis is simply a function of how
the electron is aligned within an external electromagnetic field.
In contrast, for a group of qubits that are used to encode a
protected piece of quantum information, it is the symmetries
of the underlying code that dictates which operations are
valid. For essentially all quantum codes that are experimentally
useful, this set of valid gates is extremely small and the set
given above is the most commonly used.

2) Error Correction: The second component necessary for
a realistic model is that of error correction. As noted in the
introduction, useful algorithms require component accuracies
far beyond what is achievable experimentally. Solving large
factorisation problems or simulating processes in quantum
chemistry would require, if error correction was not used,
component failure rates at least 1015, The best experimental
systems can routinely reach error rates of about 102, hence
an improvement of 13 orders of magnitude would be needed
before a non-error corrected computer could operate.

Error correction solves this problem by encoding logical
qubits into a group of multiple physical qubits using an
appropriate code [9]. By repeated encoding, and by performing
operations in such a way that physical errors do not cascade
(i.e. a single error gets copied to a large number of errors),
a process known as Fault-tolerance, the logical information
can be protected to an arbitrary level at the expense of more
physical qubits and longer processing times.

This process does not work with arbitrarily bad components,
each physical device must have a minimum level of accuracy
such that the additional operations for QEC do not introduce
more errors than the code is designed to correct. This min-
imum level of accuracy is refereed to as the fault-tolerant
threshold and represents the minimum physical error rate
tolerable, per qubit, per time step such that error correction will
be effective and arbitrary computation possible. The goal of
error correction and architectural design is to find and integrate
QEC codes that have a high threshold and can be deployed on
a physical system which may have many constraints associated
with qubit placement, interactions and transport.

III. ToPOLOGICAL COMPUTATION (TQC)

Most modern quantum architectures are based upon the
model of TQC [5]—[7], as this method for computation has
QEC integrated by construction. TQC is the preferred method
for three primary reasons. 1) It has one of the highest
fault-tolerant thresholds of any method of QEC. 2) It is a
local model of computation, i.e. individual physical qubits
in the computer only have to interact with their neighbours.
3) The quantum hardware is only used to prepare a large
three-dimensional lattice of connected qubits (the topological
lattice), algorithmic implementation is a function of how the
lattice is consumed rather than how it is created, i.e. it is
a measurement based model. Therefore the TQC model is a
software driven method of computation.

The specifics of how TQC works can be found in the
following References [12f, [13], we will provide a more
conceptual summary of the basis principals surrounding TQC.
The quantum hardware prepares a massive 3D lattice of qubits
that are all connected (entangled) to form a single enormous
quantum state. The unit cell of this lattice is shown in Fig. [I]
Before computation proceeds, the hardware simply prepares
a “clean” lattice. i.e. it is a single, unique quantum state
and contains no encoded information. Before computation
begins, one dimension of this lattice is identified with the
temporal axis of computation. Information is propagated along

_, ' — ﬁ\

<
Computational Resource
Lattice of Volume V' Unit Cells

Unit Cell

Fig. 1. Structure of the quantum state needed for TQC. The quantum
hardware produces a large lattice of qubits that are connected (entangled)
with four of their nearest neighbours. This massive 3D lattice provides the
workbench where computation proceeds via the strategic consumption of
individual qubits. The large 3D volume is built from unit cells of 18 qubits,
the connections form a regular unit cell that extends in all three dimensions
to fill the volume.

A Logical Identity gate

—
[P\
o — T
B Defects Propagate encoded
nformation from the input
— - layer to output layer as

lattice is consumed along
the temporal axis

Blue Box is a Logical Volume
A figure used to measure the size

of a TQC circuit 4

=

<> Inside defects, there are no qubits

Input layer

Lattice Bulk, For QEC

-
Output layer

Temporal Axis of the lattice

Fig. 2. A Logical Identity operation. One axis of the 3D lattice is defined
as the temporal axis for computation. An encoded qubit is defined via a pair
of defects (holes in the lattice). These defects propagate encoded information
from the input layer (consumed at some time ¢) to the output layer (consumed
at time ¢’ > t). Information is protected from errors by creating large defects
that are significantly separated by the lattice bulk. A logical cell can be defined
(the outer boxes surrounding each defect) allowing us to measure the size of
a quantum circuit in terms of the spatial/temporal resources produced by the
hardware.

this temporal axis and gate operations are arranged in this
direction, reflecting the underlying algorithm.

Logical information is introduced and error protected by de-
liberately creating holes in this lattice, called defects. Shown in
Fig. 2] is an example of a logically encoded qubit, undergoing
a simple identity operation, defined via a pair of defects. For
the identity gate, information is propagated from an input layer
to an output layer (at a later time step) along the defect. The
defect is created and propagated along the temporal axis by
simply removing the physical qubits internal to its boundary.
In Fig. [2| the defects are the red rectangular structures and all
physical qubits internal to these structures are removed from
the lattice. This removal can be achieved one of two ways.
Either the physical qubits are physically discarded from the

Measurement in (|0),|1)) States Measurement in (|0) + [1)) /v/2 States

Identity Gate

Identity Gate

Initialisation in |0) State

Initialisation in (|0) + 1)) /v/2 State Temporal Axis

Fig. 3. Diagrams of initialisation and measurement in the TQC model,
illustrating the two types of initialisation states and measurement bases
allowed by the topological code.

lattice or these qubits can be measured in the |0), |1) basis.
Measurement in this basis disconnects all the bonds from the
respective qubit and has the same effect as simply removing
them.

The defect is surrounded by a region of the lattice which
is the bulk. The bulk is responsible for the error correction.
Logical information is corrupted in this model if a chain of
physical qubits that connect one defect to another or create a
closed loop encircling a defect experience errors. Therefore,
if a defect has a large cross-section and is surrounded by a
large “buffer” of the bulk, the information is heavily protected.
Increasing the cross sectional size of the defect or the size
of the bulk linearly reduces the error rate of the encoded
information by approximately an exponential factor.

As one axis of the lattice represents the temporal direction
of computation, the encoded information propagates from an
input layer to the output layer. The purpose of computation
with this model is to, in a controlled manner, manipulate
the shape and movement of the defects within a large lattice
produced by the hardware.

A. Other gates

The previous section illustrated one gate that can be im-
plemented in the TQC model, here we will examine the
other operations that can be implemented directly. This section
will focus on the geometric structures that represent certain
operations, the details of why these structures realise such
gates can be found in [12],

1) Measurement and Initialization: The lattice allows for
only a restricted set of states that can be initialised directly and
a restricted set of possible measurements. Only the states |0)
and (]0) + |1)) /+/2 can be initialised fault-tolerantly. Fault-
tolerant measurements can only be made of the states (|0),
|1)) and (|0) 4 [1)) /v/2. The geometric structures for these
operations are illustrated in Fig. [3]

We have shown two sets of structures. The one on the left
illustrates the initialisation of an encoded qubit in the |0) state,
a horseshoe structure that is created at a certain point as the
lattice is consumed, an identity gate by maintaining the defects
in straight lines and a measurement in the (|0), |1)) basis,

Fig. 4. The primal and dual spaces of the lattice. If you combine eight
unit cells of the lattice, then at the intersection of those eight cells, you find
an identical unit cell. Defects can be created by removing qubits from the
faces of primal cells (giving arise to primal qubits) or dual cells (giving dual
defects). Qubits can be encoded using either type.

which is the time reversed horseshoe structure corresponding
to initialisation. Each of these steps requires a logical volume
of two logical cells. The total volume for this small circuit
is therefore six. The second structure on the right illustrates
the same, but this time we initialise the encoded qubit in
the (|0) + |1)) /V/2 state and measured in the (|0) & [1)) /v/2
basis. Again this circuit requires a logical volume of six. When
we initialise or measure the encoded qubits we are again
simply choosing to begin removing qubits from the lattice at
the points defined by the defects.

B. Primal and Dual defects

Before we discuss a more complicated gate, we first need
to introduce the idea of primal and dual defects. The structure
of the lattice imbeds two self similar lattices. Fig. [5 illustrates.
By combining eight cells of the lattice an identical unit cell
structure exists at the intersection of these eight cells. This is
a unit cell in the dual lattice. The dual lattice is offset from the
primal lattice by half a unit cell along all three spatial axes.
As defects can be defined via the removal of selected face
qubits from primal lattices, we can do the same for face qubits
in the dual cells. This then defines a dual type defect. Dual
defects behave identically to primal defects except that the
initialisation and measurement structures shown in Fig. [3] are
reversed (i.e. the horseshoe structures represent initialisation in
(]0) 4+ |1)) /+/2 and measurement in the (|0) 4 |1)) /+/2 basis
rather than |0), |1)).

1) CNOT gate: The main reason for introducing the con-
cept of primal and dual defects is to explain the structure of
the logical CNOT gate. The logical CNOT gate is achieved
using a concept known as braiding. This is where defects are
moved around each other. For this gate to be effective, it must
be performed using defects of opposite type. If braiding is
performed using defects of the same type, no interaction will
take place.

Ilustrated in Fig. [5]is a CNOT performed between a primal
defect (red) and dual defect (black). It should be noted that
the dual qubit is always the control qubit for the interaction.
As with the other gates illustrated, movement of the defects
occurs as the lattice is consumed and is defined by which
physical qubits are removed from the lattice.

This CNOT is the main interaction gate that is utilised in
the topological model. However it can only occur between

Fig. 5. A braided CNOT gate. A CNOT interaction takes place between
two defects of opposite type. One of the two defects of the encoded qubit is
manipulated such that it braids around one defect of the other encoded qubit
as the lattice is consumed.

Target In Target Out
Ancilla [+) 1,
Ancilla |0), Control Out
Control In @

Fig. 6. In this circuit identity a CNOT is constructed using four qubits
and three CNOT gates. Here the control for each CNOT is the same qubit.
Therefore, if this qubit is a dual qubit, then each of the other three can be
primal. This allows a CNOT between two primal encoded qubits.

defects of opposite type. This is not desirable for large scale
computation as many different pairs of encoded qubits need
to be interacted during an algorithm and we cannot simply
partition all of them into sets of primal and dual. We ideally
want to perform a CNOT between defects of the same type.

C. Performing a CNOT between two primal encoded qubits

Being able to perform a CNOT between two primal encoded
qubits requires us to consider the following circuit identity
[Fig. [6]l. This identity simply allows for a CNOT gate between
the control and target input by introducing two extra qubits
(initialised into the |0) and |4+) = (]0) +[1)) /v/2 states),
performing three CNOTS and measuring out two of the qubits.
The reason this identity is useful is because one of the ancilla
qubit act as control for all three gates. Therefore, if this qubit
is an encoded dual qubit, we can realise a CNOT between two
primal encoded qubits.

This circuit structure can be mapped directly to a braiding
pattern for topological computation, illustrated in Fig. [7] This
modified CNOT is constructed by using the structure in Fig.
[5] and the circuit of Fig.

IV. COMPACTIFYING CIRCUITS

The topological circuit of Fig. [7]1ooks to be very inefficient
in terms of lattice volume. The CNOT of Fig. [6] occupies
a volume of eight cells, but the CNOT between two primal
encoded qubits requires a volume of 126 logical cells. This is
where the idea of compactifying circuits can be introduced.

What follows is essentially the essence of this introduction
and represents the primary goal for a compiler for topological
computation. Defects are allowed to be manipulated in various

Fig. 7. CNOT between to primal qubits. Combining the braiding structure in
Fig. [5] with the circuit of Fig. [f] allows us to generate the required operation.
The volume of lattice occupied by this gate is quite large.

Fig. 8. Compactifying the CNOT. A series of continuous deformations can
be used to reduce the size of the circuit. Moves are valid if they preserve the
topology (i.e. the manner in which defects are braided together)

ways provided the underlying topology of the circuit is main-
tained IH In the case of the CNOT, this simply requires us to
maintain the manner in which each individual defect strand is
braided with the others.

As the CNOT is a relatively simple example, we can
illustrate explicitly some of the movements that can be made
to the defect structure that reduces the total lattice volume
needed to implement the gate. This sequence is illustrated in
Fig. [§] The final, reduced version of the circuit has a volume
of 16, representing a reduction in lattice volume of a factor of
7.9. This represents a significant saving of hardware resources

Follow up papers will introduce an array of legal moves and how they can
be used to compactly circuits

as each logical cell of the lattice may contain many thousands
of physical qubits. Additionally the number of cells along the
temporal axis of the lattice has been reduced from 6 to 2, this
increases the speed of the logical gate by a factor of three.

V. AN EXAMPLE OF A LARGER CIRCUIT

Finally, as an example, we illustrate the structure for a larger
quantum circuit. Fig. ?? is the quantum circuit for a process
known as state distillation [19], with the braid pattern shown in
Fig.[9] This circuit is required for the fault-tolerant application
of the T" gate [Eq. 2], which by far is the most used circauit in
a large scale quantum algorithm. By some estimates [[7] this
circuit can represent above 80% of all operations within a large
quantum algorithm. Only the CNOT, identity, initialisation and
measurement can be applied directly to the topological lattice.
The other three gates (H, P and T') forming a universal gate
set are applied through teleportation operations and distillation
protocols, ultimately constructed from large CNOT networks
[13]], [14].

|0y
(DGl
loy
03

15 Qubits Measured

/

Output Single Qubit

RNo—
&=
=

é
e

Ho

s

|w) Output

Preparation of a two qubit Bell state Quantum Circuit

Fig. 9. Purification braiding circuit for the state (\O) + el%) /+/2. This
is the most used single circuit in a quantum algorithm. The actual quantum
circuit is also shown on the right. The circuit requires 16 qubits, and five sets
of multi-target CNOT gates. The small pyramid structures that are slightly
visible towards the output are known as injection points, which introduce
high error states that are purified by the circuit [12], [13] (these circuits are
used to implement H, P and T gates).

The circuit is designed to increase the purity of a single
qubit encoded state |Y) = (|0) +€'% [1)) /v/2 from 15
”dirty” copies of the same state. This is to allow us to perform
certain very low error quantum gates than cannot be directly
implemented in the TQC model [[12], [[13]]. This specific circuit
has a volume in the topological lattice of 384. Reducing the
volume required for this circuit will significantly decrease the
qubit/time resources required for any large scale algorithm.
Hence for any optimisation process, this circuit should be
considered first [20].

VI. CONCLUSION

In this paper we have introduced the concept of topological
quantum computation and described the problem of optimisa-
tion for large quantum circuits. This introduction was done
in a very conceptual manner. The goal of any successful
optimisation program is to compact a large quantum algorithm
consisting of many components into a 3D geometric braid
diagram that occupies the smallest possible volume of the
lattice produced by the hardware. Future papers will explain
the rules of how encoded defects can be manipulated.

This paper is intended as a very preliminary explanation of
the general problem. Those fluent in the language of quantum
information science can read the associated papers to gain a
better understanding of the issues related to optimisation.

This field, which we are dubbing “Quantum Informatics”
has just begun, and hopefully in the near future many in the
field of classical computer science will examine the issues
related to programming a topological quantum computer and
help us develop appropriate software packages to design and
optimise massive topological quantum circuits.

ACKNOWLEDGEMENTS

This work is supported by the Quantum Cybernetics
(MEXT) and FIRST projects, Japan.

REFERENCES

[11 P. Shor, “Polynomial-Time algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM Journal of Sci.
Statist. Comput., vol. 26, p. 1484, 1997.

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and
J. O’Brien, “Quantum Computers,” Nature (London), vol. 464, p. 45,
2010.

[3] T. Metodi, D. Thaker, A. Cross, F. Chong, and I. Chuang, “A general
purpose architecture layout for arbitrary quantum computations,” Proc.
SPIE, vol. 5815, p. 91, 2005.

[4] A. Fowler, W. Thompson, Z. Yan, A. Stephens, B. Plourde, and F. K.
Wilhelm, “Long-range coupling and scalable architecture for supercon-
ducting flux qubits,” Phys. Rev. B., vol. 76, p. 174507, 2007.

[5] S. Devitt, A. Fowler, A. Stephens, A. Greentree, L. Hollenberg,
W. Munro, and K. Nemoto, “Architectural design for a topological
cluster state quantum computer,” New. J. Phys., vol. 11, p. 083032, 2009.

[6] R. Van Meter, T. Ladd, A. Fowler, and Y. Yamamoto, “Distributed Quan-
tum Computation Architecture Using Semiconductor Nonophotonics,”
Int. J. Quant. Inf., vol. 8, p. 295, 2010.

[7]1 N. C. Jones, R. Van Meter, A. Fowler, P. McMahon, J. Kim, T. Ladd,
and Y. Yamamoto, “A Layered Architecture for Quantum Computing
Using Quantum Dots,” Phys. Rev. X., vol. 2, no. 031007, 2012.

[8] N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, and
M. Lukin, “Scalable Architecture for a Room Temperature Solid-State
Quantum Information Processor,” arxiv:1012.2864, 2010.

[9] S. Devitt, W. Munro, and K. Nemoto, “The Beginners Guide to Quantum
Error Correction,” arXiv:0905.2794, 2009.

[10] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys.,
vol. 303, p. 2, 2003.

[11] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological Quantum
Memory,” J. Math. Phys., vol. 43, p. 4452, 2002.

[12] R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-
tolerance in cluster state quantum computation,” New J. Phys., vol. 9,
p- 199, 2007.

[13] A.Fowler and K. Goyal, “Topological cluster state quantum computing,”
Quant. Inf. Comp., vol. 9, p. 721, 2009.

[14] A. Paler, S. Devitt, K. Nemoto, and I. Polian, “Synthesis of Topological
Quantum Circuits,” Proc. NANOARCH’12, 2012.

[15] M. Nielsen and I. Chuang, Quantum Computation and Information,
2nd ed. Cambridge University Press, 2000.

[16] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the
universal Quantum Computer,” Proc. Royal Society of London A., vol.
440, p. 97, 1985.

[17] ——, “Quantum Computational Networks,” Proc. R. Soc. Lond. Ser. A,
Math. Phys. Sci., vol. 425, p. 73, 1989.

[18] C. Dawson and M. Nielsen, “The Solovay-Kitaev Algorithm,” Quant.
Inf. Comp., vol. 6, no. 1, p. 81, 2006.

[19] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Phys. Rev. A., vol. 71, p. 022316,
2005.

[20] A. Fowler and S. Devitt, “A bridge to lower overhead quantum compu-
tation,” arxiv:1209.0510, 2012.

	I Introduction
	II Background
	II-A Quantum Computing
	II-B Topological Quantum Computing
	II-B1 Universality
	II-B2 Error Correction

	III Topological Computation (TQC)
	III-A Other gates
	III-A1 Measurement and Initialization

	III-B Primal and Dual defects
	III-B1 CNOT gate

	III-C Performing a CNOT between two primal encoded qubits

	IV Compactifying circuits
	V An example of a Larger circuit
	VI Conclusion
	References

