
HAL Id: hal-01958380
https://hal.science/hal-01958380

Submitted on 7 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Performance investigation of selected NoSQL databases
for massive remote sensing image data storage

Yosra Hajjaji, Imed Riadh Farah

To cite this version:
Yosra Hajjaji, Imed Riadh Farah. Performance investigation of selected NoSQL databases for massive
remote sensing image data storage. 4th International Conference on Advanced Technologies for Signal
and Image Processing (ATSIP), Mar 2018, Sousse, Tunisia. pp.1-6, �10.1109/ATSIP.2018.8364508�.
�hal-01958380�

https://hal.science/hal-01958380
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Performance investigation of selected NoSQL
databases for massive remote sensing image data

storage

Yosra Hajjaji
Riadi Laboratory

National School of Computer Science 
Manouba University, Tunisia 
hajjajiyosra05@gmail.com

Imed Riadh farah
Telecom-Bretagne

National School of computer science 
Manouba University, Tunisia

riadh.farah@ensi.rnu.tn

Abstract—today’s sensors are like eyes in the sky, thanks to
the growth of satellite remote sensing technologies. Therefore, we
see a steady evolution of the usage of different types of sensor,
from airborne and satellites platforms which are generating large
quantities of remote sensing image for divers applications such
as; smart city, disaster management, military intelligence and
others. As a result, the rate of growth in the amount of data
by satellite is increasing dramatically. The velocity has exceeded
1TB per day and it will certainly increase in the future. However,
it becomes crucial for these huge volume data to be stored. So,
how to store and manage it efficiently becomes a real challenge
because traditional ways have intensive issues; they are expensive
and difficult to extend. Therefore, we need some scalable and
parallel models for remote sensing data storage and processing.
In this paper, we describe a scalable and distributed architecture
for massive remote sensing data storage based on three No SQL
databases (Apache Cassandra, Apache HBase, MongoBD). Also,
a Hadoop-based framework is proposed to manage the big remote
sensing data in a distributed and parallel manner.

Index Terms—Big data,Remote sensing data, NoSQL databas-
es, Cassandra,HBase, MongoDB, cluster, Hadoop/ MapReduce.

I. INTRODUCTION

Today, with the high tech world the amount of data and

especially Remote sensing data are growing from day to day.

Actually, very large volume of remote sensing data are now

freely available from the NASA Open Government Initiative.

The Earth Science Data and information System (ESDIS),

is one of NASA archives, holds about 7.5 PB of data with

nearly 7000 unique data sets and 1.5 million users in 2013

[1]. Based on this it can be truly stated that we are already

living in the age of Remote sensing Big Data. Generally, data

collected from sensors are a sort of measurements and reports

of some properties of the environment, such as the pressure,

humidity, temperature and radiation [2]. Generally, databases

are one of the best ways to store these measurements

and lately processed to find particular situations. However,

traditional approaches of remote sensing data storage based

on traditional relational databases could not longer deal

with the Big Data challenges, they either do not support

such volumes or face performances issues, especially where

the volume (scale of Data) and velocity (different forms

of Data) of the data raise at a remarkable rate. In the last

few years, several researchers and engineers demand new

ways to manage image data rapidly, in other word big

volumes of remote sensing image data need to be stored and

processed in real time or nearly-real time [3]. As a result, in

order to deal with these problems, it becomes necessary to

adapt new technologies, such as the technologies of Big Data

in remote sensing Big Data storage and processing approaches.

In order to address the challenges proposed by storing

and processing Big Remote Sensing data, this paper outlines

a method to store massive image data based on No SQL

databases (Cassandra [7], HBase [8] and mongoDB [9]). We

aim to choose the most suitable Database to store our data.

These databases are distributed, so the data stored in each

one of them are actually stored in several different nodes.

In addition, we also use the Hadoop framework [10] to

efficiently manage and process Remote sensing Big Data.

Outline: The rest of the paper is organized as follows.

Section II provides a brief survey of some of the previous

works done in this field. Section III introduces the key

technologies used in the storage strategy. In section IV, the

method of image data storage based on No SQL database

and big data frameworks is discussed. Data source, cluster

configuration and experimental results obtained are presented

in section V. Finally, in Section VI, we conclude this paper.

II. RELATED WORKS

A variety of researches has been recently based on big

data technologies such as the new movement of No SQL

databases and big data frameworks such as Apache Hadoop

into remote sensing missions. They aimed to solve the storage

and processing challenges of image data. Therefore, several

1



domain experts have conducted the research from many

viewpoints.

Zhifeng Xiao, Yimin Liu [11], provides a view on the

capabilities on the new movement of NoSQL DBs tested in

global image systems. Therefore, they build an application

which they called HBGIS based on HBase as the tile

source. As result, they have come out with that NoSQL

database can involve the huge volume of data, replication

and network partitioning, as well as the good performance in

the simulation of large volume data read and write requests.

Jan Sipke and all in [12] presented a comparative study

of three databases on their relative performance with the

regards to sensor data storage. Results show that Cassandra

read performance is heavily affected by virtualization, both

positively and negatively while MongoDB performance

impact is moderate, with PostgreSQL Small writes are slow,

but are positively affected by virtualization. Yahoo Liu and

all [13] presented a method to store big remote sensing data

based on HBase and process it with Hadoop/MapReduce.

They used a multi-resolution pyramid model to divide the

image into multiples layers and blocks, then they designed

two tables to store respectively the meta-data and spatial

blocks data of the images. Experiments results of the former

model of remote sensing, storage and process show that,

every time they increase both data volume and data node, the

time of data import and process decreases and the quality of

images processed with Mapreduce is much better than before.

LI Chaokui and YANG Wu [14] presented a distributed

Storage strategy research of Remote Sensing image based

on both MongoDB and SQL server. Their objective was to

improve the efficiency of a NoSQL database on the promise

of high concurrent access, without significant decline of

read/write speed. The results shows that MongoDB has

higher time efficiency in data loader and deal with concurrent

access better than SQL server. Lin Wang and all [15] provide

a study of distributed management of massive remote sensing

image data. In the first step, they used an image division

technique called Geosot (a global discrete grid system) to

get image data blocks. Then, they store them into HBase

(a NoSQL database of Hadoop). Experiments results of the

former model of remote sensing, storage and process show

that, every time they increase both data volume and data

node, the time of data import and process decreases.

All of this works mainly focuses on No SQL databases and

relational databases for image data management. They either

compare between No SQL databases and SQL databases to

find how gives better results on distributed parallel storage of

image data, or they focuses on a single No SQL database

to extract their benefits. In this case, we had found that

probably most of the works are sure that No SQL databases are

efficient for image data storage and the performance advantage

is more noticeable for large mass of image data compared

to Relational databases ones. Therefore, According to these

results we are almost certain that No SQL databases are

efficient to store mass image data. So that, we had seen that is

better to compare these No SQL databases themselves (Hbase,

MongoDB) which are used in the former works, as a second

step. Also, some authors think that a comparison with other

massive data management systems is an important issue, for

that reason we had added another database which is Cassandra

to be compared with them (which is not used in the above

literature). In this work we aimed to use larger image data

size and the cloud computing as a framework (which is not

used in the above literature).

III. PRELIMINARIES

A. Sensors and NoSQL-databases

Due to the rapid advances in satellite technologies,

sensors are everywhere. Therefore, the size and variety of

the data they generate are growing from day to day and

increasing with important rates [2]. Consecutively, new

concepts and technologies are rising as the types and usage

of sensors expands regularly. Storing and processing such

Big Data require humongous costs with traditional relational

database SQL. Therefore, non-rational database has arisen

and developing very fast [4]. These new ways of creating

and manipulating data stores are known as NoSQL databases

(commonly defined as ”Not Only SQL”) [5], are mainly

aimed to respond on new requirements, for sensor data

storage platform such as the scalability and availability.

These databases have the ability to efficiently distribute data

over very large number of servers and dynamically add

new attributes to data records. No SQL databases are the

next generation supposed to respond some of this points;

mainly being non relational, open source, distributed, and

horizontally scalable [6].

Souvas MAzumder proposed four main layer structure

of NoSQL databases which are divided into four groups

according to their caracteristics [16] (Fig.1). This paper mainly

introduces Apache Cassandra, Apache HBase, MongoDB.

Fig. 1. The system architecture of NoSQL

2



B. Apache Hadoop, HDFS and MapReduce

Apache Hadoop is an open source project of the Apache

Foundation. This framework is intended for distributed

storage and distributed processing of very massive amounts

of data on computer clusters built from commodity hardware.

It is the best answer to parallel data processing, Hadoop is an

optimized framework to handle large amounts of data type

(structured, unstructured, semi structured) [10]. The main

core of Apache Hadoop consists of two sub projects which

are HDFS [17] (the Hadoop distributed file system) as a

storage part, and MapReduce [18] as a processing part.

1) Key Components of Apache Hadoop:

• Hadoop Common : The common utilities that support the

other Hadoop modules.

• HDFS : A distributed file system that provides high-

throughput access to application data.

• Hadoop YARN : A framework for job scheduling and

cluster resource management.

• Hadoop MapReduce : A YARN-based system for parallel

processing of large data-sets.

The fundamental assumption of Hadoop , is that all it’s

modules are designed to automatically handle any hardware

failures. First of all, HDFS splits files into blocks, and dis-

tributes them across different nodes in the cluster. Then, to

process those data, it transfer packaged code for nodes to

be processed in parallel by Mapreduce. To resume, Apache

Hadoop framework, is a best solution to develop applications

which are capable to be runs on clusters of computers,

moreover it could perform complete statistical analysis for

large volume of data [10].

C. Blocs Image Encoding Method

Fig. 2. Pyramid map model of bloc

Is a kind of storage structure of multi-resolution images,

in accordance with the resolution of the image from high to

low level (see (a) in Fig.2). According to the multi-resolution

pyramid design, a large map should separate to some different

zoom layers and split it into some same scale little tile (see (b)

in Fig.2). Later this tiles can be stored in the NoSQL database

by using its ID as the row key and its data as the value. The

subdividing image process is as follow; first original image

is considered as the bottom layer of the pyramid, signed as

level 0. Then a new upper layer will be created by image re-

sampling method. The next step to do is to repeat the step

two to the top layer which is defined in advance. The pyramid

dimension, reading speed, image depository with four or five

layers are very important information which can be given to

take highest performance .

IV. SYSTEM DESIGN

We have illustrated our approach in Fig.3. The system

architecture was mainly based on big data technologies in

order to provide a distributed and scalable infrastructure for

remote sensing image data management. However, it consists

of three main parts which are ; (1)Remote sensing data

collection, and (2) Remote sensing data storage subsystem.

A. Remote sensing data collection

In this study we used remote sensing sensors as data

generators. It is important to keep in mind that sensors

have served in the advancement of various technologies,

we can list world mapping, arial photography for military

surveillance, assessment of condition of rural roads ; GPS

(Global positioning system) and so on. However, sensors

applications are not limited as only imaging devises. Instead

they have much more missions. For example, Remote sensing

which is one of the various innovations that were possible,

thanks to many satellites roaming around the earth. In our

project we used ”Copernicus” [19] as our Remote Sensing

data source. However our system architecture is convenient

for other types of sensor networks.

B. Remote sensing data Storage subsystem

Usually, data collected from the sensors devices are s-

tored in some sort of a data storage solution. However it

becomes a non-trivial task to continuously store these data’s,

especially because the number of sensors and the amount of

data continues to increase. The traditional sensor data storage

solutions are able to store data’s for only few period of times.

However there is a big value in the data collected from sensors

since they might carry hidden motifs for faults or diagnostic

information. As result, we aim in this section to create a scal-

able and distributed data storage subsystem in order to store

massive satellite images from sensors, until they are processed

and lately analyzed. To this end we come out with the new

movement of NoSQL databases. These databases are open

source and provide an efficient alternatives for big amount

of sensor data storage. In this study we used three popular

databases (See the former section), MongoDB [9], Cassandra

[7] and HBase [8]. MongoDB the document-oriented database

which store data on a JSON-Style documents, provides high

availability, high performance and easy scalability. Cassandra

the column oriented database, provides a very high availability

with No Single Point Of Failure (NSPOF), high scalability,

3



Fig. 3. Architecture of Remote Sensing data management system.

fault tolerant and a tunable consistency. This database is totally

distributed thanks to it’s ”master-less” architecture. HBase, the

Hadoop database which is also a column oriented database. It

provides a quick random access to huge amounts of structured

data and it’s run on the top of HDFS (Hadoop Distributed File

System).

C. Storage method

According to the idea of partition ”the model of Blocks

of pyramid map”, (Fig. 2) ,we used to divide the image

data into various layers and various blocks. Each image has

several bands, for example (multi-spectral, hyper-spectral and

ultra-spectral images). Each band is a compound of multiple

pyramid layers and a number of blocks can constitute a

pyramid layer. The block can be used to identifies in the

pyramid layer with its row number and column number. The

implementation of our methodology is illustrated in flow chart

in Fig. 4. First of all, we have an image data which is

considered as our data-set. Then for each band, a group of

pyramids are created. For each pyramid, we extract the blocks

in sequence and write them into each database API (HBase,

Cassandra, MongoDB). Lastly, we insert a new record into

each database table’s or collection’s to represent the new image

file.

1) Data model storage on Hbase: we designed two

tables, HRaster MetaDataInfo ColumnFamily and HRaster

DataInfo ColumnFamily, to respectively store the metadata

and the spatial data block of the images. When a new

image is imported, a new record will be created in HRaster

MetaDataInfo ColumnFamilye to store meta-data and a new

HRaster DataInfo ColumnFamily will be created to store the

specifc blocks. As result,there will be many HRaster DataInfo

ColumnFamily Column Family’s to store different images.

2) Data model storage on MongoDB: In order to store

the our images data in the MongoDB databases which are

in XML format were transformed into JSON files. Then

we have used the GridFS (Grid File system) which is a

specification for storing and retrieving files that exceed the

BSON-document size limit of 16 MB. Instead of storing a

file in a single document, GridFS divides the file into parts,

or chunks, and stores each chunk as a separate document. By

default, GridFS uses a chunk size of 255 kB. The GridFS

uses two collections to store files. One collection stores the

file chunks, and the other stores file metadata.

3) Data model storage on Cassandra: Just like in HBase,

we designed two tables, CRaster MetaDataInfo ColumnFamily

and CRaster DataInfo ColumnFamily, to respectively store the

metadata and the spatial data block of the images. When a new

image is imported, a new record will be created in CRaster

MetaDataInfo ColumnFamilye to store metadata and a new

CRaster DataInfo ColumnFamily will be created to store the

specific blocks. As result,there will be many CRaster DataInfo

ColumnFamily Column Family’s to store different images.

V. EVALUATION

A. Experiment Environment and Datasets

We designed five groups of Hadoop and databases cluster

for our tests, each cluster has different number of nodes. The

Specific composition and node feature are respectively shown

in the following tables I, II

TABLE I
USED DATA NODES UNDER DIFFERENT CLUSTER CONFIGURATIONS

Cluster Members
1 node master
2 nodes master, 1*slave
4 nodes master, 3*slave
8 nodes master, 7*slave
16 nodes master, 15*slave

4



Fig. 4. Implementation of the storage schema

TABLE II
CLUSTER NODE FEATURES INFORMATION

Node type Master Slave
Model m4.large t2.small
vCPU 2 1
RAM 8 GB 2 GB
Credit CPU per hour 12 $ /hour 6 $ /hour
Processor 2,3 GHz Intel Xeon 2,4 GHz Intel Xeon

B. Remote sensing image data information

We used five different groups of remote sensing image data

in this experiment respectively as follows 274MB, 1.16GB,

8GB, 16GB 100GB more detailed descriptions of these remote

sensing images are in the table below III

TABLE III
REMOTE SENSING IMAGE INFORMATION

File groups Number of images Size Bands
Dimension
(width*height)

1 group 1 image 274MB 4 6000*6000
2 group 1 image 1.16GB 4 21267*14652
3 group 6 image 8GB 4 21267*14652
4 group 13 image 16GB 4 21267*14652
5 group 86 image 100GB 4 21267*14652

1) Scalability on cluster size: to measure the performance

of the cluster databases implementations with regard to com-

putation time, the total image size was kept constant while

increasing the number of nodes in the cluster. First, we

evaluate the computation time on a single computer and

then increase number of nodes in the system until 16 nodes.

Fig.5 show the time consumed to store the eight images

files from the first group (Tab.III). From this figure it can

be observed that the importation time significantly decreases

with increasing number of computers for all databases. The

Cassandra database has better performance compared to the

HBase and MongoDB databases. For more clarity of the

observation above we used to compute the Speedup and

Efficiency from the above results.

Fig. 5. Histogram of Scalability of Cassandra, HBase, and MongoDB
databases

Speedup(n) =
T ime on single node

T ime on n nodes
(1)

Efficiency(n) =
speedup (n)

n
(2)

Fig. 6. Speedup

In an ideal situation the speedup increases linearly with

increase in number of computing processors. According to

[20] processes with greater than 0.5 (50%) efficiency are

considered to have achieved good performance. However,

a significant deterioration of speed up and efficiency is

observed when the four node was added to HBase and

MongoDB while Cassandra database retains its linearity.

Then the speedup increased again when the 8th node is

5



Fig. 7. Efficiency

added to the system and better than the previous rate.

From this it can be deduced that better performance can be

achieved if the number of computing nodes are increased or

if there is a high-speed network connection between the nodes.

2) Scalability on size of the data: To investigate how the

each database model reacts to very large remote sensing

images, the Scale-up approach was evaluated where the im-

portation time was measured while increasing the data size

and number of nodes by the same fold. By using the Scale-up

approach we can investigate the bottlenecks in the distributed

system as the each computer node is storing the same amount

of data and the effect load balancing problem and inefficiencies

caused by the distributed method is avoided according to

[21]. In our opinion this metric is the best way of evaluating

the capability of the databases implementation to cope with

different sizes of data. Ideally the graph of Scale-up will have

a straight horizontal line where data size makes no impact

with the importation time staying constant. In this experiment

we started with data size of 1.16 GB then the size data was

increased by adding other data size respectively , 4.64 GB, 8

GB, 16 GB, 100 GB and every time we add an instance node.

Fig. 8. Scale-Up

Fig 8 shows the Scale-Up results. All databases (Cassandra,

HBase, and MongoDB) scale well until the second comput-

ing node but it increases again when the third computer is

added to the system indicating that the network connection

bandwidth is the main bottleneck of the distributed system.

According to this result we can infer that if the data-nodes

has been connected through high speed network, they would

have scaled-up well and the graph would have looked more

flat. Cassandra database Scale well, better that the other two

databases.

VI. CONCLUSION

In this work we studied the distributed management of

massive remote sensing image data based on NoSQL database

and pyramid map . We presented a storage method to divide

remote sensing image data into blocks based on pyramid

map and store the data blocks into three different database

model Cassandra, HBase and Mongodb. The feasibility of the

presented storage model for massive remote sensing image

data has been verified. Finally, we came out with the Cassandra

as the most suitable database model for our big remote sensing

data management approach.

REFERENCES

[1] By Mingmin Chi, Antonio Plaza, Jon Atli Benediktsson, Zhongyi
Sun, ”Big Data for Remote Sensing: Challenges and Opportunities”.
Proceedings of the IEEE. Vol. 104, No. 11, November 2016.

[2] G. Aydin, I. Riza Hallac, and B. Karakus, ”Architecture and
Implementation of a Scalable Sensor Data Storage and Analy-
sis System Using Cloud Computing and Big Data Technologies”,
Journal of Sensors Volume 2015, Article ID 834217, 11 pages
http://dx.doi.org/10.1155/2015/834217, 2015.

[3] Y. Liu, H.Yu, Y.Zhao, Z. Huang, Y. Fang,”Applying GPU and POSIX
Thread Technologies in Massive Remote Sensing Image Data Process-
ing,” Proceedings of the 19th International Conference on Geoinformat-
ics, pp. 1-6, 2011.

[4] Yuehu Liu1, Bin Chen1*, Wenxi He2,Yu Fang1, ”Massive Image Data
Management using HBase and MapReduce,2015.

[5] https://nosql-database.org/
[6] Book of Martin Fowler and Pramod J. Sadalage, ”NoSQL Distilled : A

Brief Guide to the Emerging World of Polyglot”, 2013.
[7] https://hbase.apache.org/
[8] http://cassandra.apache.org/
[9] https://www.mongodb.com/fr

[10] http://hadoop.apache.org/
[11] Zhifeng Xiao, Yimin Liu, ’Remote sensing image database based on

NoSQL Database’. IEEE 978-1-61284-848-8/11/26.00 ,2011
[12] Jan Sipke van der Veen, Bram van der Waaij, Robert J. Meijer, ’Sensor

Data Storage Performance : SQL or NoSQL, Physical or Virtual’. IEEE
Fifth International Conference on Cloud Computing, 2012.

[13] Yuehu Liu ,Bin Chen ,Wenxi He ,Yu Fang, ’Massive Image Data Man-
agement using HBase and MapReduce’, Published in : Geoinformatics
(GEOINFORMATICS) 21st International Conference on 20-22 June,
2013.

[14] LI Chaokui, YangWu, ’The Distributed Storage Strategy Research of
Remote Sensing Image based on Mongo BD’. IEEE 978-1-4799-4184-
1/14, 2014.

[15] Lin Wang, Chengqi Cheng, ’Massive remote sensing image data man-
agement based on Hbase and Geosot’. IEEE 978-1-4799-7929-5/15,
2015.

[16] Shen Shu. Research on NoSQL data technology and application[D].
Nanjing: Nanjing University of Infonnation Science and Technology,
2012.

[17] https://hadoop.apache.org/docs/r1.2.1/hdfs-design.html
[18] https://hadoop.apache.org/docs/r1.2.1/mapred-tutorial.html
[19] http://www.copernicus.eu/
[20] Eager, D. L., J. Zahorjan, and E. D. Lazowska, Speedup versus efficiency

in parallel systems, Computers,IEEE Transactions, 1989.
[21] I. Glendinning, Goller, A., D. Bachmann, and R. Kalliany, ”Parallel and

Distributed Processing, in Digital Image Analysis” , Springer New York,
2001.

6


