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An analytical characterisation of cold-load pickup oscillations in

thermostatically controlled loads

Cristian Perfumo1, Julio Braslavsky1,2, John K. Ward1 and Ernesto Kofman3

Abstract— Large groups of thermostatically controlled loads
can be controlled to achieve the necessary balance between
generation and demand in power networks. When a significant
portion of a population of thermostatically controlled loads is
forced to change their on-off state simultaneously, the aggregate
power demand of such population presents large, underdamped
oscillations, a well-known phenomenon referred to by power
utilities as “cold-load pickup”. Characterising these oscillations
and, in general, the aggregate dynamics of the population
facilitates mathematical analysis and control design. In this
paper we present a stochastic model for the power response
and derive simple expressions for the period and envelope of
the oscillations.

I. INTRODUCTION

Thermostatically controlled loads (TCLs) such as air con-

ditioners (ACs) have been identified as promising loads for

demand response due to their widespread use and inherent

energy storage capabilities [1]. By controlling large groups

of these loads, the necessary balance between generation and

consumption in electricity grids can be achieved from the

demand side, potentially deferring expensive infrastructure

augmentation and facilitate renewable energy integration.

However, remotely controlling groups of TCLs may result

in large transients in the collective power demand, which

might lead to undesired peaks in the demand. Figure 1,

presents one of these situations, in which all of the devices

are subject to a step change in their temperature set point at

t = 1000. Similar oscillations are observed when, following

a power outage, the power of all of the TCLs is restored,

and when a load control (LC) event is finished and full

independent control is returned to the TCLs while they are

still substantially synchronised.

We refer to these events as synchronisation events because

they make a significant proportion of the TCLs in the

population synchronise (i.e., turn on or off at the same time),

causing an observable change in the aggregate demand.

This phenomenon by which the synchronisation of TCLs

produces large oscillations in their aggregate power demand

is traditionally known as cold-load pickup [2]. As shown

in Figure 1, this phenomenon presents damped oscillatory

transients, which eventually converge to a particular value.

We refer to this value as the steady state aggregate demand

of the population. Regardless of the initial conditions, the

heterogeneity in the population causes some of the TCLs
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Fig. 1: Example synchronisation event that can cause oscil-

lations in the aggregate power demand of a population of

TCLs. At t = 1000 all of the TCLs are subject to a common

step change in their temperature set points.

to turn off (and then back on) sooner than others until the

TCLs become unsynchronised (i.e., load diversity is restored)

and the aggregate power demand settles at the steady state

demand.

The exact shape of these oscillations depends on the

characteristics of the TCLs, their operating conditions and

the external event causing the synchronisation. This poses the

question of how to characterise such response as a function

of these parameters.

One alternative to achieve this characterisation is via

System Identification [3]. This approach was applied suc-

cessfully to populations of ACs in [1], using a series of tem-

perature set point changes as the input signal, the aggregate

power demand as the output signal and a first-order ARMAX

model structure.

There are, however, two main drawbacks applying system

identification to model populations of TCLs. Firstly, a new

set of model parameters has to be numerically computed for

every different population considered. Secondly, producing

the input and output data required for the identification

experiment may have undesirable consequences (e.g., it

could disrupt user comfort beyond acceptable limits or cause

undesirable peaks in the electricity network).

There are few analytic alternatives to system identification

that do not result in overly complex models [1], [4], [5]. In

particular, the work in [5] proposes a simple, second-order

model for the aggregate power demand, assuming a 50% duty

cycle in the population to achieve a robust nominal model.

In the present paper we generalise the approach in [5]

to any duty cycle, and satisfactorily validate it against the

oscillations observed by performing Monte Carlo simulations

of the aggregate response for a population of 10,000 ACs.

Specifically, we present a stochastic model for the power

oscillations and derive simple expressions for their period

and envelope. We show that the modelling approach from

[5] readily generalises when the duty cycle assumption is



relaxed, and allows the development of more accurate simple

models for analysis, transient response prediction and tight

control design when the population is not operating at its

“central”, 50% duty cycle point.

II. ASSUMED POPULATION AND PRELIMINARY

EXPRESSIONS

Assuming a population of n ACs, the dynamics of the i-th
AC in the population can be modelled by the hybrid state

model

dθi(t)

dt
= − 1

CiRi

[

θi(t)− θa(t) +mi(t)RiPi − wi(t)
]

, (1)

mi(t
+) =











0, if θi(t) ≤ θ−i + u(t),

1, if θ(t) ≥ θ+i + u(t),

mi(t), otherwise,

(2)

presented in [6], where θi(t) is the room temperature, θa
is the ambient temperature outside the rooms (◦C), Ci and

Ri are the i-th room thermal capacitance (kWh/◦C) and

thermal resistance (◦C/kW), and Pi is the cooling thermal

power of the i-th AC (kW). The binary variable mi ∈ {0, 1}
(i ∈ {1, 2, . . . , n},) represents the state of the compressor

which switches on the AC (mi = 1) or off (mi = 0) to

maintain the temperature θi within the pre-specified hystere-

sis band [θ−i , θ
+
i ], centred at θr

i = (θ−i + θ+i )/2. The input

signal wi represents unpredictable thermal disturbances, and

u is the proposed control signal (common to all ACs) to

introduce small temporary temperature set-point offsets to

the population during LC events.

Our objective in this paper is to obtain an analytical

description of the response of the aggregate demand to a si-

multaneous step change in temperature set point in the whole

population. To render this modelling problem tractable, let

us start by defining a set of simplifying assumptions about

the ensemble of ACs to be described:

H.1 Identical hysteresis bands: All of the ACs in the popu-

lation have the same set point temperature θr = (θ+ +
θ−)/2 and the same hysteresis width θ+ − θ− = 1.

H.2 Uniform temperature distribution: At t = 0, the temper-

atures are uniformly distributed in the interval [θ−, θ+].
H.3 Triangular temperature evolution: For each AC, the

temperature changes at a constant rate when the AC

is on and at a different constant rate when it is off.

H.4 Small disturbances: The noise term w(t) in (1) is

negligible for each AC.

H.5 Distributed capacity only: The parameter C is dis-

tributed in the population according to some probability

distribution. The parameters P and R are identical for

all the ACs.

Assumptions H.1–H.5 are required simplifications for our

analysis. While they may seem overly restrictive, it has been

shown that the controllers designed using these simplifying

assumptions still preserve good performance even when these

assumptions are relaxed [5].

The assumption of identical hysteresis bands (H.1) is

considered purely for convenience, as it greatly simplifies

the mathematical analysis. However, note that H.1 is without

loss of generality, as the hysteresis band and the temperature

set point of each device can be normalised.

Regarding the uniform temperature distribution assump-

tion (H.2), the larger the average steady state duty cycle in

the population, the less reasonable it is to assume a uniform

temperature distribution because more and more ACs are

unable to keep their temperatures within the hysteresis band

even for a 100% duty cycle. Also, the steady state distribution

of temperatures is affected by the level of heterogeneity:

the less variability in the population, the more uniform

the temperature distributions within the hysteresis band [1].

Thus, the uniform temperature distribution assumption be-

comes less reasonable for highly heterogeneous populations

operating close to their maximum capacity.

The triangular temperature evolution assumption (H.3)

implies that the rates of change in temperature both for

m(t) = 0 and m(t) = 1 can be approximated as constants.

This approximation has also been used in [7].

We neglect the disturbance w(t) (H.4) because, when

analysing a population of ACs as a whole, the variability that

w(t) introduces is small compared to the one introduced by

the fact that the parameter C is, in general, different for each

AC. Additionally, more heterogeneity in the population (e.g.,

larger variance of w(t)) results in more damped oscillations,

which means that a model developed assuming small w(t)
will constitute an “upper bound” of D(t) for larger w(t).

Finally, the assumption H.5, of capacity only being dis-

tributed, constitutes a trade-off between considering a hetero-

geneous population of ACs and a simplification that results

in a tractable mathematical expression for our analysis.

Under assumptions H.1-H.5, we analyse how a population

of ACs, each governed by (1)-(2), reacts when a step change

of amplitude 0.5 (oC) in the temperature set point is applied

at t = 0, moving the boundaries of the hysteresis band as

shown in Figure 2. We will refer to these new boundaries as

θpost
−

= θ−+0.5 and θpost+ = θ++0.5. We can see in Figure 2

that the ACs that were operating and had temperatures in

[θ−, θ
post
−

] before the step, switched off after it.

ON
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post +θ- θθ- θ
post+
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Fig. 2: Schematic distribution of temperatures before and

after a 0.5oC step in the set point (assuming H.1–H.5). The

arrows indicate how the temperatures are moving.

Under assumptions H.1-H.5, the rate at which the temper-

ature θi(t) increases for the i-th AC (as described in (1))

when the device is turned off is given by the constant vi,
defined by

vi =
θa − θr

CiR
. (3)

Let T i
on be the time it takes the i-th AC to bring its



temperature θi(t) down from θpost+ to θpost
−

. Analogously,

let T i
off be the time it takes for the temperature to raise

from θpost
−

to θpost+ when the AC is turned off. Assuming

a hysteresis width of 1 oC (H.1), we have that T i
offvi =

T i
off

θa−θr

CiR
= 1 and, similarly, from (1) and under H.1-H.5

we have that T i
on

θa−θr
−RP

CiR
= −1. Thus,

T i
off

T i
on

=
RP

θa − θr
− 1, (4)

which indicates that the ratio between T i
off and T i

on is the

same for all the ACs in the population (because of the

assumption of distributed capacity only, H.5).

We then define the constants

xoff = T i
offvi = 1, (5)

xon = T i
onvi =

( RP

θa − θr
− 1

)

−1
, (6)

xc = xon + xoff (7)

and

Dc =
xon

xc

=
Ton

Ton + Toff

. (8)

Note that in (8) we have dropped the indices in T i
on and

T i
off because Dc represents the average duty cycle in the

population (in fact, because of H.1–H.5, Dc represents the

duty cycle of each AC in the population).

Let us now introduce the variable

xi(t) = xi(0) + vit, (9)

where

xi(0) =

{

xon + (θi(0)− θpost
−

)xoff if mi(0
−) = 0,

(θpost+ − θi(0))xon if mi(0
−) = 1,

(10)

where mi(t) is the compressor state of the ith AC in the

population, defined in (2).

Intuitively, we can say that xi(t) is the “unwrapped”

mapping of the temperature θi(t) of the ith AC in the

population. Figure 3 illustrates the equivalence between θ
and x. We can see in Figure 3 that when the temperature

θi(t) = θpost+ (the AC switches on), xi(t) = kxc for some

k = 1, 2, . . . Conversely, when θi(t) = θpost
−

(the AC

switches off), xi(t) = kxc + xon. The same applies to θj(t)
and xj(t). We will say that

• xi(t) is in an on interval whenever xi(t) ∈ [kxc, kxc+
xon], for k = 1, 2, . . . , and that

• xi(t) is in an off interval whenever xi(t) ∈ [(k−1)xc+
xon, kxc] for k = 1, 2, . . . .

Because of the assumption of distributed capacity only (H.5),

note in Figure 3 that even though the duty cycles of the ith
and jth ACs are the same in the population, the times they

remain on and off are, in general, different (i.e., T i
on/(T

i
on+

T i
off) = T j

on/(T
j
on+T j

off) even though T i
on 6= T j

on and T i
off 6=

T j
off ).

Conversely, we can define a mapping from xi(t) to θi(t)

post
θ-

θ
post+

x

θ (t)

t

t

1
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Fig. 3: Top: temperatures θi(t) and θj(t) of two ACs.

Bottom: their “unwrapped” equivalents xi(t) and xj(t).

as

θi(t) =

{

xi(t) − xc(xi(t) ÷ xc) + θ− if mi(0
−) = 0,

θ+ − (xi(t) − xc(xi(t) ÷ xc)− xon)
xoff

xon
if mi(0−) = 1.

(11)

where y ÷ z represents the integer part of the division y/z.

Lastly, for a large enough number n of ACs in

the population, we can model the distribution of

{x1(t), x2(t), . . . , xn(t)} with a random variable X(t).
Now we are ready to derive a stochastic expression that

models the step response of a population of ACs to a

common change in the temperature set point of the devices.

III. STOCHASTIC CHARACTERISATION OF THE

AGGREGATE POWER DEMAND OF A POPULATION OF ACS

Proposition 1 (Characterisation of D(t)): Let us con-

sider a population of ACs where the dynamics of each device

are described by (1) and (2). Assuming H.1-H.5, if the

temperature set points of all the devices in the population

are raised by 0.5 oC at time t = 0, the probability D(t) that

a randomly-picked AC be operating at time t is given by:

D(t) =
Pr[X(t) < xon]

2 + xon/xoff

(12)

+

∞
∑

k=1

Pr[X(t) < kxc + xon]− Pr[X(t) < kxc]

where xoff , xon and xc are defined as (5), (6) and (7) respec-

tively, X(t) is a random variable modelling the distribution

of {x1(t), x2(t), . . . , xn(t)}, xi(t) is defined in (9), and Pr[·]
is the probability operator.

The proof of Proposition 1 can be found in Section A of

the Appendix.

Proposition 1 says that the probability that one randomly-

picked AC be operating at time t is given by the probability

that x(t) is in an on interval (i.e., xi(t) ∈ [kxc, kxc+xon], for

k ≥ 1) plus a term divided by a correction factor 2+xon/xoff



to take into account an anomaly in the first on interval (for

details, see proof in Section A of the Appendix).

Note that for a large enough population, the probability

(12) is equivalent to the proportion of ACs in the population

operating at time t. Also, because all of the ACs have the

same power (H.5), this proportion is equal to the power

consumption of all of the devices operating at time t,
normalised by the maximum demand. We deliberately use

the notation D(t) to refer to the probability of a randomly-

selected AC be operating, the proportion of operating ACs

in the population and the normalised power consumption,

unless stated otherwise.

In order to calculate actual values for (12), it is necessary

to know how the parameter C is distributed in the population.

A corollary of Proposition 1 follows from considering C log-

normally distributed in the population of TCLs. We adopt

a log-normal distribution (as done in [1]) because it is

suitable for non-negative parameters and has a complexity

of description that is only moderate.

Corollary 1: Characterisation of D(t) for lognormally

distributed parameters: Under the assumptions of Propo-

sition 1, let all of the ACs have the same thermal resistance

R and the same thermal power P, and let the thermal

capacitance C be distributed log-normally with mean µC and

standard deviation σC . Then the speed v at which the tem-

perature changes (Equation (3)) is log-normally distributed

in the population with standard deviation σv and mean µv

satisfying the ratio

σr =
σv

µv
=

σC

µC
. (13)

Furthermore, the probability D(t) that a randomly picked
AC be operating at time t can then be approximated by

D(t) ≈ α

2
+

α

2
erf

[

log(xon)− τ√
2σr

]

+
1

2

∞
∑

k=1

erf

[

log(kxc + xon)− τ )√
2σr

]

− erf

[

log(kxc)− τ√
2σr

]

,

(14)

where

µx(0) =
7

8
xon(xon/xoff + 1)(1−Dc), (15)

τ = log(µx(0) + µvt),

µx(t) is the mean of the values xi(t) at time t, Dc is defined

in (8), α = 1
2+xoff/xon

and erf[·] is the Gauss error function.

See the proof of Corollary 1 in the Appendix of [8].

Figures 4, 5 and 6 plot in dashed lines the expected power

response according to (14) to a 0.5 oC step at t = 0.

The output is normalised to the maximum power output (all

ACs turned on). The figures also show, as a solid line, the

output to the same input when we simulate the response

of 10000 ACs (using (1)-(2)) assuming C distributed log-

normally in the population and P and R not distributed. The

only difference between Figures 4, 5 and 6 is the standard

deviation to mean ratio σr (0.05, 0.1 and 0.2 respectively) of

the parameter C.

The parameters used for our simulations are based on those

presented in [1], most of which are derived from a list of

references in the literature that investigate thermal properties

of buildings. One exception is the hysteresis width, which

was considered 0.5 oC in [1] but we double to 1 oC here,

as it has more typically been observed in practice. Table I

summarises our simulation parameters.

The ambient temperature was adjusted in each case to

obtain a different duty cycle. For a given duty cycle Dc

and a given reference temperature set point θr, the ambient

temperature can be computed as
θa(Dc) = θr +DcRP. (16)

Parameter Value Description

R 2 oC/kW Thermal resistance
C 10 kWh/oC Mean thermal capacitance
P 14 kW Thermal power
θ− 19.5 oC Lower end of hysteresis band
θ+ 20.5 oC Higher end of hysteresis band
σw 0.01 Standard deviation of the noise pro-

cess w in Eq. (1)
σr 0.05/0.1/ 0.2/0.5 Ratio between standard deviation

and mean thermal capacity C

TABLE I: Simulation parameters.

We observe in Figures 4 and 6 that the expression (14)

agrees with the simulated D(t) most closely for medium

duty cycles (e.g., Dc = 0.5). Additionally, very high duty

cycles (e.g. 0.9) present better fit that very low ones (e.g.

0.2) in terms of amplitude of the oscillations. This is due to

the nature of the fist term in (12), which becomes a worst

estimation of the initial state of the on and off populations

when the duty cycle is lower than 0.5 (see Figure 9 in the

Appendix). The frequency of the simulated D(t) is captured

by (14) in all cases.

The following proposition uses (14) to analytically charac-

terise the oscillations in the aggregate power demand caused

by a step change in the temperature set point of the devices.

Proposition 2: Period and envelope of oscillations in

D(t) Under the assumptions of Corollary 1, the initial

transients in the response of the aggregated power D(t)
to a step change in temperature set point display damped

oscillations with period

T ≈
xon + xoff

µv
, (17)

within an envelope that can be approximated by

1− erf(xoff/z(t)) ≤ D(t) ≤ erf(xon/z(t)), (18)

where
z(t) = 2

√
2σr(µx(0) + µvt− xon/2), (19)

µv =
θa − θr

R
e(−µ̃C+σ̃C

2/2), (20)

considering that log(C) ∼ N (µ̃C , σ̃C
2). The definitions

of xon, xoff and µx(0) are given in (6), (5) and (15)

respectively.

For the proof of Prop. 2 see the the Appendix in [8].

Note in (17) and (18) that because erf(xon/z(t)) and

erf(xoff/z(t)) decrease monotonically from 1 to 0 for pos-
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Fig. 4: For σr = 0.05, analytical (as per (14)) and simulated D (normalised power demand) response to a common 0.5 oC
step change in temperature set point. Simulated results: 10000 ACs with log-normally distributed C, and constant R and P
for all the ACs, with parameters from Table I. The different duty cycles were obtained by setting θa according to (16).
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Fig. 5: Same as Figure 4, except for σr = 0.1.
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Fig. 6: Same as Figure 4, except for σr = 0.2.

itive values of z, the amplitude in the oscillations in D(t)
decreases over time. Moreover, as we can see in (18) and

(19), the larger σr (more heterogeneity in the population),

the faster the envelope decreases, as observed in [5].

Figure 7 depicts the envelope bound (18) of the oscillations

in the step power response along with the simulated power

output of 10000 ACs (Table I) for different values of σr as

a function of the offset and rescaled time z, as defined in

(19). Plotting as a function of z allows us to show responses

for different values of σr within a common envelope. Each

subplot represents a different duty cycle. The curves start at

the corresponding value of z that makes t = 0. We can see in

the curves that (18) is a poorer approximation of the envelope

for duty cycles far from 0.5 (an especially for low duty

cycles, where the computed envelope is too conservative).

Figure 8 depicts the same envelope (18), but the power

responses within it are the ones approximated with (14). By

comparing Figures 7 and 8, we can see why (18) is too

conservative for low duty cycles: as shown in Figures 4, 5

and 6, (14) approximates D(t) poorly for these average duty

cycles.

IV. CONCLUSIONS

The step response of the aggregate power of a popula-

tion of ACs under the assumptions H.1-H.5 is dominated
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Fig. 8: Envelope of power peaks for 20% duty cycle. Dotted

lines: normalised power demand D for different values of σr

according to (14), adjusted to the offset and rescaled time

variable z. Continuous line: envelope as per (18).

by decaying oscillations, which corroborates the simulation

results reported by a number of authors [2], [9], [10], [1].

We have characterised these oscillations by describing how

the proportion of operating ACs varies over time, following

a step change in the temperature set point of all the ACs.

The evolution of this proportion of operating ACs is directly

related to the their aggregate demand (and directly propor-
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Fig. 7: Envelope of power peaks for different duty cycles. Dotted lines: normalised power demand D of 10000 ACs simulated

according to (1)-(2) for different values of σr, adjusted to the time variable z. Continuous line: envelope given by (18).

tional if all of the ACs have the same electrical power), and

therefore is also captured in D(t). Our model satisfactorily

captures the dynamics of a numerically simulated population

of ACs for medium and large steady state demands.

In spite of its complexity, we successfully used this

stochastic model to derive simple mathematical approxima-

tions of the period and amplitude envelope the response.

These expressions are of particular interest when assessing

the implications of using TCLs for demand response.

APPENDIX

A. Proof of Proposition 1 (Characterisation of D(t))

Proof: From (9) and (10), the operational state mi(t)
of the i-th AC in the population is defined by

mi(t) =

{

0 if (k − 1)xc + xon ≤ xi(t) < kxc

1 if kxc ≤ xi(t) < kxc + xon,
(21)

for k = 1, 2, . . . Thus, for a number of ACs sufficiently large,
the probability that a randomly picked AC be operating at
time t given X(t) > xon is

Pr[m(t) = 1|X(t) > xon] =
∞
∑

k=1

Pr[X(t) < kxc+xon]−Pr[X(t) < kxc].

(22)

The fraction of ACs that are on when xi(t) < xon is

calculated in a different way. When (10) is applied to every

point in the temperature distributions before and after the

step change shown in Figure 2(b), the distribution of the

initial values of X(t) for all of the ACs, namely X(0−) and

X(0+), is as shown in Figure 9.
Note that only a fraction α of the ACs that satisfy xi(0) <

xon is turned on. Let Aj be the area of the rectangle number
j in Figure 9. Then

α =
A1

A1 +A2 + A4
=

A1

2A1 +A2
=

A1

2A1 + A1xoff/xon
=

1

2 + xoff/xon
.

(23)

Assuming H.1-H.5, the probability of a randomly-picked

AC operating at time t given X(t) < xon is

Pr[m(t) = 1|X(t) < xon] = αPr[X(t) < xon]. (24)

Thus, for a number of ACs sufficiently large, the propor-
tion D(t) of operating ACs in the population at time t is
equivalent to the probability of an AC being operating at
time t; namely,

D(t) = αPr[X(t) < xon]+
∞
∑

k=1

Pr[X(t) < kxc+xon]−Pr[X(t) < kxc].

(a) Before step

(b) After step

Fig. 9: Distribution of X(0−) and X(0+) (before and after

the temperature set point step change at t = 0). 1: ON before

and after the step; 2 and 3: OFF before and after the step;

4: ON before the step, OFF after it (same area as 4).
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