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Abstract

This paper considers the leader-follower control problem for a linear multi-agent system
with directed communication topology and linear nonidentical uncertain coupling subject to
integral quadratic constraints (IQCs). A consensus-type control protocol is proposed based on
each agent’s states relative to its neighbors and leader’s state relative to agents which observe
the leader. A sufficient condition is obtained by overbounding the cost function. Based on
this sufficient condition, a computational algorithm is introduced to minimize the proposed
guaranteed bound on tracking performance, which yields a suboptimal bound on the system
consensus control and tracking performance. The effectiveness of the proposed method is
demonstrated using a simulation example.

1 Introduction

In recent years, theoretical studies of distributed coordination and control for multi-agent
systems have attracted much attention in the literature, with broad applications in various areas
including unmanned air vehicles (UAVs), formation control, flocking, distributed sensor networks,
etc. [1]. As a result, much progress has been made in the study of cooperative control of multi-agent
systems [2, 3, 4].

Efforts have recently been made to consider the leader-following consensus problem. For exam-
ple, the leader-following consensus problem for higher order multi-agent systems is presented for
both fixed and switching topologies in [5]. In [6], distributed observers are designed for the system
of second-order agents where an active leader to be followed moves with an unknown velocity, and
the interaction topology has a switching nature. The consensus-based approach to observer-based
synchronization of multi-agent systems to the leader has been explored in [7, 8].

A common feature of the above literature on leader-following consensus-based control prob-
lems is that interactions between agents are not considered. However, in many physical systems,
interactions between agents are inevitable and must be taken into account. Examples of systems
with a dynamical interaction between subsystems include power systems and spacecraft control
systems [9]. This necessitates considering systems of interconnected agents.

In this paper, the leader-follower control problem for multi-agent systems coupled via linear
unmodelled dynamics is considered. Coupling among the agents is regarded as an uncertainty and
is described in term of time domain integral quadratic constraints (IQCs) [10]. The IQC modeling
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is a well established technique to describe uncertain interactions between subsystems in a large
scale system [11, 12, 13].

The motivation of this paper is to extend our previous work [14] as follows. Firstly, this paper
considers the multi-agent system with directed topology rather than undirected topology, which
poses additional difficulty compared with [14], due to the Laplacian matrix of directed graphs being
in general asymmetric. Therefore a different technique is used in this paper to obtain a sufficient
condition for leader follower tracking which does not involve coordinate transformation; the latter
was used in [14] and required the Laplacian matrix of the graph to be symmetric. Furthermore,
we consider a more general, compared to [14], class of systems with nonidentical time varying
uncertain coupling. In this paper, we also propose a different LQR based cost function which
describes the cost on the tracking error between the leader and all of the followers. In contrast, in
[14] a consensus based cost function is considered, which penalizes the system input, the state error
between the agent and its neighbours, as well as the tracking error between the leader and selected
agents which observe the leader. Furthermore, the graph topology of the control protocol does not
need to be the same as the topology of interconnections between the agents. Even though both
communication topologies are represented as directed graphs, these graphs can be different: the
agents are coupled over one directed graph, but the control protocol for the system uses another
directed graph.

The main contribution of this paper is to propose a sufficient condition for the design of a
guaranteed performance leader-follower control protocol for multi-agent systems with directed
interconnection topology and a quite general linear uncertain coupling subject to IQCs. The
sufficient condition is obtained by using a direct over-bounding technique and involves checking
feasibility of parameterized linear matrix inequalities (LMIs). The computational algorithm is
introduced to minimize the proposed guaranteed bound by choosing local tuning parameters and
guarantee a suboptimal bound on the system tracking performance.

The remainder of the paper proceeds as follows. In Section 2 of the paper, we set up the
leader follower control problem for a multi-agent system with directed topology and nonidentical
linear uncertain coupling and give some preliminaries. The main results are given in Section III.
In section IV, the computational algorithms are introduced. Section V gives an example which
illustrates the theory presented in the paper. Finally, the conclusions are given in Section VI.

2 Problem Formulation and Preliminaries

2.1 Graph theory

Consider a directed graph G = (V , E ,A), where V = {1, 2, · · · , N} is a finite nonempty node set
and E ⊆ V×V is an edge set of ordered pairs of nodes. The edge (i, j) in the edge set of an directed
graph means that the node i can obtain information from node j. Node i is called a neighbor of
node j if (i, j) ∈ E . The set of neighbors of node i is defined as Ni = {j|(i, j) ∈ E}. G is a simple
graph if it has no self-loops or repeated edges. If there is a directed path between any two nodes of
the graph G, then the graph G is strongly connected. The adjacency matrix A = [aij ] ∈ RN×N of
the directed graph G is defined as aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. The in-degree matrix

D = diag{d1, · · · , dN} ∈ RN×N is a diagonal matrix, whose diagonal elements are di =
N
∑

j=1

aij

for i = 1, · · · , N . Also, let qi =
N
∑

j=1

aji be the out-degree of node i. The Laplacian matrix of the

graph is defined as L = D −A.

2.2 Problem Formulation

Consider a system consisting of N agents and a leader. All N agents are assumed to be
linear dynamical agents, coupled with their neighbors via, in general nonidentical, linear uncertain
coupling. The connection between N agents is described by a directed graph G1, with the node



set V = {1, . . . , N}, an edge set E1 and a corresponding adjacency matrix A1. The dynamics of
the ith agent are described as

ẋi = Axi +B1ui +B2

∑

j∈Si

ϕij(t, xj(.)|t0 − xi(.)|t0), (1)

where the summation is over the set Si of neighbors of node i in the graph G1. The notation
ϕij(t, y(.)|t0) describes a linear uncertain operator mapping functions y(s), 0 ≤ s ≤ t into ℜm.
Also, xi ∈ ℜn is the state, ui ∈ ℜp is the control input. We note that the last term in (1) reflects
a relative, time varying nature of interactions between agents.

Let Ln
2e[0,∞) be the space of functions y(.) : [0,∞) → ℜn such that

∫ T

0 ‖y(t)‖2dt < ∞, ∀T > 0.

Assumption 1 All the mappings ϕij(., .) satisfy the following assumptions:

1. ∀y ∈ Ln
2e[0,∞), ϕij(., y(.)|.0) ∈ Lm

2e[0,∞).

2. ∀t > 0, ϕij(t, y) is linear in the second argument, i.e., if y = τ1y1+τ2y2, then ϕij(t, y(.)|t0) =
τ1ϕij(t, y1(.)|t0) + τ2ϕij(t, y2(.)|t0).

3. Given a matrix Cij ∈ ℜr×n, there exists a sequence {tl}, tl → ∞, such that for every tl, the
following IQC holds

∫ tl

0

‖ϕij(t, y(.)|t0)‖2dt ≤
∫ tl

0

‖Cijy‖2dt, (2)

∀y ∈ L2e[0,∞).

The sequence {tl} is assumed to be the same for all ϕij . The class of operators that satisfy these
assumptions will be denoted by Ξ0. We note that matrices Cij are assumed to be fixed.

In addition to the system (1), suppose a leader is given. The dynamics of the leader, labeled
0, is expressed as

ẋ0 = Ax0, (3)

where x0 ∈ ℜn is its state. The control communication topology between N agents is described
by a directed graph G2, with the same node set V = {1, . . . , N}, but possibly different edge set
E2 and a corresponding adjacency matrix A2. The Laplacian matrix of the graph G2 is denoted
as L2. We assume throughout the paper that the leader node can be observed from a subset of
nodes of the graph G2. If the leader is observed by the node i, we extend the graph G2 by adding
the edge (0, i) with weighting gain gi = 1, otherwise let gi = 0. We refer to node i with gi 6= 0 as
a pinned or controlled node. The diagonal matrix G = diag{gi} ∈ ℜN×N is commonly referred to
as the pinning matrix. The system is assumed to have at least one agent connected to the leader,
hence G 6= 0.

Define error vectors as ei = x0 − xi, i = 1, 2, . . . , N . Then dynamics of the synchronization
errors satisfy the equation

ėi = Aei −B1ui −B2

∑

j∈Si

ϕij(t, ei(.)|t0 − ej(.)|t0). (4)

In this paper we are concerned with finding a control protocol for each node i of the form

ui = −K{
∑

j∈Ti

(xj − xi) + gi(x0 − xi)}, (5)

where K is the feedback gain matrix to be found, and Ti is the set of neighbors of node i in the
graph G2. As a measure of system performance, we will use the quadratic cost function,

J (u) =

N
∑

i=1

∫

∞

0

(

e′iQei + u′iRui

)

dt, (6)

where Q = Q′ > 0 and R = R′ > 0 are given weighting matrices.



Remark 1 In [14] we considered a different cost function,

J ′(u) =
N
∑

i=1

∫

∞

0

(
1

2

∑

j∈Ni

(ei − ej)
′Q(ei − ej)

+gie
′

iQei + u′iRui)dt.

Each addend in this cost function penalizes the ith system input, the disagreement between the
ith and the jth system states, where j is a neighbor of i, as well as the tracking errors between
the leader and the pinned agents which observe the leader. In contrast, the cost function (6) in
this paper describes the cost on the tracking error between the leader and all of the followers and
system input. �

Taking linearity of the operator ϕij into account, the synchronization error dynamic (4) can
be represented as

ėi = Aei −B1ui −B2

∑

j∈Si

(ϕij(t, ei(.)|t0)− ϕij(t, ej(.)|t0)). (7)

The problem in this paper is to find a control protocol (5) which solves the leader following
consensus control problem as follows:

Problem 1 Under Assumption 1, find a control protocol of the form (5) such that

sup
Ξ0

J (u) < ∞. (8)

Here sup
Ξ0

means that the supremum is taken over the set of all operators ϕij that belong to

the class Ξ0 of operators. Since Q > 0, then (8) implies

∫

∞

0

‖ei‖2dt < ∞ ∀i = 1, . . . , N. (9)

Hence, solving Problem 1 implies synchronization of all agents to the leader in the L2 sense.

3 The Main Result

In this section, the main result of this paper is presented which is a sufficient condition for the
system (1) to be able to track the leader with guaranteed tracking performance.

First we present the following result of [15] and some notation.

Assumption 2 The digraph G2 contains a spanning tree and the root node ir obtains information
from the leader node, i.e., gir > 0.

Lemma 1 ([15]) Under Assumption 2, L2 + G is nonsingular. Define [ϑ1, · · · , ϑN ]′ = (L2 +
G)−11N , Θ = diag{ϑ−1i } and H = Θ(L2 +G) + (L2 +G)′Θ, then Θ > 0 and H > 0.

Let σ′ be the maximum eigenvalue of H and σ = 1
2σ
′. Also let M = (L2 + G)′(L2 + G).

According to Lemma 1, M is a positive definite and symmetric matrix. Let T ∈ ℜN×N be an
orthogonal matrix such that

T −1MT = J = diag [λ1, · · · , λN ] , (10)

and denote λ̄ = max
i

(λi). For node i of the graph G2, introduce matrices Ĉi = [C′ij1 . . . C
′

ijdi
]′,

C̄i = [C′r1i . . . C
′

rqi i
]′, where j1, . . . , jdi

are the elements of the neighbourhood set Si, and r1, . . . , rqi
are the nodes with the property (rs, i) ∈ E1; di and qi are the in-degree and the out-degree of node
i, respectively, in the graph G1. Also, introduce the matrix R̂ = (λ̄/σ)R.



Theorem 1 Let a matrix Y = Y ′ > 0, Y ∈ ℜn×n, and constants νij > 0, µij > 0, j ∈ Si,
i = 1, . . . , N , exist such that the following LMIs are satisfied simultaneously













Zi Y Q1/2 Y Ĉ′i Y C̄′i

Q1/2Y − 1
ϑi
I 0 0

ĈiY 0 −Φi 0

C̄iY 0 0 −Ωi













< 0, (11)

where

Zi =AY + Y A′ − σϑiB1R̂
−1B′1

+ ϑi

∑

j∈Si

(
1

νij
+

1

µij
)B2B

′

2,

Φi =diag[
ϑi

νij
, j ∈ Si],

Ωi =diag[
ϑi

µji
, j : i ∈ Sj ].

Then the control protocol (5) with K = −(σ/λ̄)R−1B′1Y
−1 solves Problem 1. Furthermore, this

protocol guarantees the following performance bound

sup
Ξ0

J (u) ≤
N
∑

i=1

ϑ−1i e′i(0)Y
−1ei(0). (12)

Proof: Using the Schur complement, the LMIs (11) can be transformed into the following
Riccati inequality

AY + Y A′ − σϑiB1R̂
−1B′1 + ϑi

∑

j∈Si

(
1

νij
+

1

µij
)B2B

′

2

+ Y (ϑiQ+ ϑ−1i (
∑

j∈Si

νijC
′

ijCij

+
∑

j:i∈Sj

µjiC
′

jiCji))Y < 0. (13)

After pre- and post-multiplying (13) by Y −1 and multiplying (13) by ϑ−1i , then substituting
K = −(σ/λ̄)R−1B′1Y

−1 into the Riccati inequality (13), we obtain

Y −1(ϑ−1i A+ σB1K) + (ϑ−1i A+ σB1K)′Y −1

+ σK ′R̂K +
∑

j∈Si

(
1

νij
+

1

µij
)Y −1B2B

′

2Y
−1 +Q

+ ϑ−2i (
∑

j∈Si

νijC
′

ijCij +
∑

j:i∈Sj

µjiC
′

jiCji) < 0. (14)

Define e = [e′1, · · · , e′N ]′ and consider the following Lyapunov function candidate for the sub-
systems (7):

V (e) =

N
∑

i=1

ϑ−1i e′iY
−1ei. (15)



Then

dV (e)

dt
=

N
∑

i=1

2e′iY
−1

(

ϑ−1i Aei

+ ϑ−1i B1K(
∑

j∈Ti

(ei − ej) + giei)
)

− 2

N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ei(.)|t0)

+ 2

N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ej(.)|t0). (16)

Note the following inequality:

N
∑

i=1

2e′iϑ
−1
i Y −1B1K(

∑

j∈Ti

(ei − ej) + giei)

= 2e′(Θ(L2 +G)⊗ (Y −1B1K))e

= e′
(

(Θ(L2 +G) + (L2 +G)′Θ)⊗ (Y −1B1R̂
−1B′1Y

−1)
)

e

= y′
(

(Θ(L2 +G) + (L2 +G)′Θ)⊗ Ip
)

y

≤ 2σy′
(

IN ⊗ Ip
)

y = 2σe′
(

IN ⊗ Y −1B1R̂
−1B′1Y

−1
)

e

= 2

N
∑

i=1

σe′iY
−1B1R̂

−1B′1Y
−1ei, (17)

where y = (IN ⊗ R̂−1/2B′1Y
−1)e.

From (16) and (17), one has

dV (e)

dt
≤

N
∑

i=1

2e′iY
−1

(

ϑ−1i A+ σB1K
)

ei

− 2
N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ei(.)|t0)

+ 2

N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ej(.)|t0). (18)

Substituting the Riccati inequality (14) into (18), we have

dV (e)

dt
≤ −

N
∑

i=1

e′i

(

σK ′R̂K +Q

+
∑

j∈Si

(
1

νij
+

1

µij
)Y −1B2B

′

2Y
−1

+ ϑ−2i (
∑

j∈Si

νijC
′

ijCij +
∑

j:i∈Sj

µjiC
′

jiCji)
)

ei

− 2

N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ei(.)|t0)

+ 2

N
∑

i=1

ϑ−1i

∑

j∈Si

e′iY
−1B2ϕij(t, ej(.)|t0). (19)



Using the following identity,

N
∑

i=1

∑

j∈Si

µije
′

jC
′

ijCijej =
N
∑

i=1

∑

j:i∈Sj

µjie
′

iC
′

jiCjiei,

one has

dV (e)

dt
≤ −

N
∑

i=1

e′i

(

σK ′R̂K +Q
)

ei

−
N
∑

i=1

∑

j∈Si

‖ 1
√
νij

B′2Y
−1ei +

√
νijϑ

−1
i ϕij(t, ei(.)|t0)‖2

+

N
∑

i=1

∑

j∈Si

ϑ−2i νij(‖ϕij(t, ei(.)|t0)‖2 − ‖Cijei‖2)

−
N
∑

i=1

∑

j∈Si

‖ 1
√
µij

B′2Y
−1ei −

√
µijϑ

−1
i ϕij(t, ej(.)|t0)‖2

+

N
∑

i=1

∑

j∈Si

ϑ−2i µij(‖ϕij(t, ej(.)|t0)‖2 − ‖Cijej‖2). (20)

According to the IQC condition (2), we have

∫ tl

0

dV (e)

dt
dt ≤ −

N
∑

i=1

∫ tl

0

e′i

(

σK ′R̂K +Q
)

eidt. (21)

Since V (e(tl)) ≥ 0, then (21) implies

N
∑

i=1

∫ tl

0

e′i

(

σK ′R̂K +Q
)

eidt ≤ V (e(0)). (22)

The expression on the right hand side of the above inequality is independent of tl. Letting
tl → ∞ leads to

N
∑

i=1

∫

∞

0

e′i

(

σK ′R̂K +Q
)

eidt ≤ V (e(0)). (23)

Using (6) and (5), we have

J (u) =
N
∑

i=1

∫

∞

0

(

e′iQei + u′iRui

)

dt

=

∫

∞

0

(

e′(IN ⊗Q)e

+ e′[(L2 +G)′(L2 +G)⊗K ′RK]e
)

dt

≤
∫

∞

0

(

e′(IN ⊗Q)e+ e′[IN ⊗ λ̄K ′RK]e
)

dt

=

N
∑

i=1

∫

∞

0

e′i

(

λ̄K ′RK +Q
)

eidt. (24)



Since R̂ = λ̄
σR, then we obtain

J (u) ≤
N
∑

i=1

∫

∞

0

e′i

(

σK ′R̂K +Q
)

eidt

≤
N
∑

i=1

ϑ−1i e′i(0)Y
−1ei(0). (25)

It implies that the control protocol (5) with K = −(σ/λ̄)R−1B′1Y
−1 solves Problem 1, and also

guarantees the performance bound (12). �

4 The Computational Algorithm

In this section, we provide an algorithm to calculate a suboptimal control gain K. According
to Theorem 1, the upper bound on tracking performance is given by the right hand side of (12).
Hence, one can achieve a suboptimal guaranteed performance by optimizing this upper bound over
the feasibility set of the LMIs (11):

J ∗(11) = inf

N
∑

i=1

ϑ−1i e′i(0)Y
−1ei(0), (26)

where the infimum is taken over the feasibility set of the LMIs (11), {Y, νij , µij , i = 1 . . . , N, j ∈
Si : (11) holds}.

As in [12], the optimization problem (26) can be shown to be equivalent to the minimization
of γ subject to the constraints

γ >

N
∑

i=1

ϑ−1i e′i(0)Y
−1ei(0), i = 1, · · · , N. (27)

By the Schur complement, (27) is equivalent to the LMI

[

γ e′(0)

e(0) Υ

]

> 0, i = 1, · · · , N, (28)

where

e(0) =[e1(0)
′ e2(0)

′ . . . eN (0)′]′,

Υ =diag[ϑiY, i = 1, 2, · · · , N ].

This leads us to introduce the following optimization problem in the variables γ, Y, 1
νij

and 1
µij

:

Find
J ∗(11),(28) , inf γ, (29)

where the infimum is with respect to γ, Y, 1
νij

and 1
µij

subject to (11) and (28).

We conclude this discussion by stating equivalence between the optimization problems (26)
and (29).

Theorem 2 J ∗
(11)

= J ∗
(11),(28)

.

Proof: The proof of this theorem is similar to the proof of Theorem 15 in [12]. �

Based on the foregoing discussion, we propose an algorithm for the design of the suboptimal
protocol (5) based on Theorems 1 and 2:



• Solve the optimization problem (29), to a desired accuracy, obtaining a feasible collection
Y , 1

νij
, 1

µij
and γ. The collection (Y, 1

νij
, 1
µij

) then belongs to the feasibility set of the LMIs

(11).

• Using the found matrix Y , construct the gain matrix K to be used in (5), by letting K =
−(σ/λ̄)R−1B′1Y

−1. Also, the guaranteed consensus performance bound for this protocol can
be computed, using the expression on the right-hand side of equation (12).

It must be noted that the above algorithms require the knowledge of initial conditions of the
leader and agents. In practice, however, the initial state of the leader may not be known. It is
possible to avoid using ei(0) in these algorithms using the approaches outlined in [12].

5 Example

To illustrate the proposed method, consider a system consisting of three identical pendulums
coupled by two spring-damper systems. Each pendulum is subject to an input as shown in Fig. 1.
The dynamics of the coupled system are governed by the following equations

ml2α̈1 =− k11a
2(t)(α1 − α2)− k12a

2(t)(α̇1 − α̇2)

−mglα1 − u1,

ml2α̈2 =− k21b
2(t)(α2 − α3)− k11a

2(t)(α2 − α1)

− k22b
2(t)(α̇2 − α̇3)− k12a

2(t)(α̇2 − α̇1) (30)

−mglα2 − u2,

ml2α̈3 =− k21b
2(t)(α3 − α2)− k22b

2(t)(α̇3 − α̇2)

−mglα3 − u3,

where l is the length of the pendulum, a(t) and b(t) are the positions of the spring-damper, g
is the gravitational acceleration constant, m is the mass of each pendulum, k11 and k12 are the
spring constant and damping coefficient for the leftmost spring-damper pair, while k21 and k22 are
the spring constant and damping coefficient for the rightmost spring-damper pair. The position
of the spring-damper can change along the full length of the pendulums and is considered to be
uncertain, that is 0 < a(t) ≤ l, 0 < b(t) ≤ l.

In addition to the three pendulums, consider the leader pendulum which is identical to those
given. Its dynamics are described by the equation

ml2α̈0 = −mglα0. (31)

Choosing the state vectors as x0 = (α0, α̇0), x1 = (α1, α̇1), x2 = (α2, α̇2) and x3 = (α3, α̇3),

equations (30) and (31) can be written in the form of (1), (3) , where A =

[

0 1

− g
l 0

]

, B1 =

[

0

− 1
ml2

]

, B2 =

[

0
1
m

]

and ϕ12(t, x2−x1) =
a2(t)
l2 [k11 k12](x2−x1), ϕ21(t, x1−x2) =

a2(t)
l2 [k11 k12](x1−

x2), ϕ23(t, x3 − x2) =
b2(t)
l2 [k21 k22](x3 − x2), ϕ32(t, x2 − x3) =

b2(t)
l2 [k21 k12](x2 − x3),

The agents in this example are coupled according to the undirected graph shown in Fig. 2,
which is treated here as a special case of directed graph with symmetric adjacency matrix. On the
other hand, the control communication topology of the system is assumed to be a linear directed
graph shown in Fig. 3. According to this graph, only agent 1 observes the leader. The Laplacian
matrix of the graph G2 consisting of nodes 1, 2 and 3 and the pinning matrix G are

L2 =









0 0 0

−1 1 0

0 −1 1









, G =









1 0 0

0 0 0

0 0 0









.



lα0 aα1 bα2 α3

Leader ← u1 u2 → u3 →

Figure 1: Interconnected pendulums.

1 2 3

Figure 2: The graph of uncertain interconnections between pendulums.

To illustrate the design based on Theorems 1 and 2, the LMI problem in Theorem 2 was solved
numerically, and then the trajectories of the coupled pendulum system with the obtained protocol
were simulated. To this end, the parameters of the coupled pendulum system were chosen to be
m = 0.25kg, l = 1m, g = 10m/s2, k11 = 2N/m, k12 = 1N/(m/s), k21 = 4N/m, k22 = 2N/(m/s),
a = 0.5 sin(0.2t), b = 0.8 cos(0.1t). In the cost function, we let Q = I and R = 0.1. Using
the computational algorithm based on Theorem 2, the problem (26) was found to be feasible
and yielded the gain matrix K = [4.5206, 4.2657]. The performance bound was minimized by
γ = 2.3532, with parameters ν12 = 0.3268, ν21 = 0.6009, ν23 = 0.3007, ν32 = 0.1433, µ12 = 0.1451,
µ21 = 1.4300, µ23 = 0.1066, µ32 = 0.4016. The simulation results for this protocol are shown in
Fig. 4. Also, using the controller obtained by means of the computational algorithm proposed in
Theorem 2, we directly computed the performance cost (6) for the system to be J (u) = 2.3374,
while the theoretically predicted bound is J ∗

(11),(28)
= 2.3532.

6 Conclusions

The consensus control for leader-tracking problem with guaranteed tracking performance for
nonidentical uncertain coupled linear systems connected over a directed graph has been discussed
in this paper. A sufficient condition was proposed by using the direct overbounding of the perfor-
mance cost. According to the simulation results, the proposed computational algorithm based on
Theorems 1, 2, which solve N coupled LMIs, guarantees a suboptimal performance.

References

[1] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching
topology and time-delays, IEEE Trans. Autom. Contr., vol. 49 (9), pp. 1520-1533, Sep. 2004.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-
agent systems, Proc. IEEE, vol. 95 (1), pp. 215-233, Jan. 2007.

0 1 2 3

Figure 3: Directed communication graph for control.



0 1 2 3 4 5
−1

−0.5

0

0.5

 

 

0 1 2 3 4 5
−1

0

1

2

 

 

Agent 1
Agent 2
Agent 3

Agent 1
Agent 2
Agent 3

Figure 4: Relative angles (the top figure) and relative velocities of the pendulums with respect to
the leader, obtained using the algorithm based on Theorems 1 and 2.



[3] W. Ren, R. W. Beard, and E. M. Atkins, Information consensus in multivehicle cooperative
control: Collective group behavior through local interaction, IEEE Control Syst. Mag., vol. 27
(2), pp. 71-82, Apr. 2007.

[4] A. Arenas, A. Diaz-Guilera, J. Kurths, Y.Moreno, and C. Zhou, Synchronization in complex
networks, Phys. Rep., vol. 468 (3), pp. 93-153, 2008.

[5] W. Ni and D. Cheng, Leader-following consensus of multi-agent systems under fixed and switch-
ing inteconnection topologies, Syst. & Contr. Letters, 59 (3-4):209-217, 2010.

[6] Y. Hong, G. Chen, and L.Bushnell, Distributed observers design for leader-following control
of multi-agent networks, Automatica, 44 (3):846-850, 2008.

[7] V. Ugrinovskii. Distributed robust filtering with H∞ consensus of estimates. Automatica, 47
(1):1-13, 2011.

[8] V. Ugrinovskii, Gain-scheduled synchronization of uncertain parameter varying systems via
relative H∞ consensus. Proc. Joint 50th IEEE CDC-ECC’11, Orlando, FL, 2011, pp. 4251-
4256..
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