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Detectability of distributed consensus-based observevarks:
An elementary analysis and extensions

V. Ugrinovskii

Abstract— This paper continues the study of local detectabil- tree must be collectively detectable. A similar requiretman
ity and observability requirements on components of distrbuted  the nodes with unobservable local error dynamics to have an

observers networks to ensure detectability properties of lte incoming path connecting them with collectively obsereabl
network. First, we present a sketch of an elementary proof of . .
subnetworks was discussed in [8].

the known result equating the multiplicity of the zero eigemvalue ! T L=l .
of the Laplace matrix of a digraph to the number of its In this paper, we revisit the distributed detectability fpro
maximal reachable subgraphs. Unlike the existing algebrai lem for a network of interconnected state estimators ob-
proof, we use a direct analysis of the graph topology. This serving a linear plant considered in [11]. The detectapbilit
result is then used in the second part of the paper to extend .o qitions obtained in that reference are based on a refatio

our previous results which connect the detectability of an . L .
observer network with corresponding local detectability and ship between the multiplicity of the zero eigenvalue of the

observability properties of its node observers. The propasd 9graph Laplacian matrix and the number of maximal reachable

extension allows for nonidentical matrices to be used in the clusters within the graph [1], [4]. In these references, the

interconnections. mentioned relationship was obtained as a special case of
|. INTRODUCTION a more general theory, using the tools from the matrix

The principle of distributed estimation can be traced bac?(lgeb_ra. He'fe we give an elementary self_-contamed proof
f this relationship using a direct analysis of the graph

to the original work on decentralized estimation complete s
. . : pology. Furthermore, we use this result to present some
in the 90s [2], [5], while the more modern ideas are focuse - : . .
: : extensions of the results in [11] which show that in the
around the observer network design to allow node estimators , . o . ) .
; : ) o ; . distributed estimation scenario, algebraic propertieshef
to exchange information with the objective of improving

their knowledge of the system state (or a part thereograph Laplacian must be complemented by the detectability

through reaching an agreement about the estimated quant nd observability properties of the node filters through-mea

. . . "Brements and interconnections, respectively. The peapos
A most recent development in this area is concerned wih . 1ons, resp Y PE

L AT . extensions relax one of the limitations of these resulthiat t
H. distributed estimation in the presence of modellin

- : not require all rver h me matrix for
uncertainties and perturbations [9], [10], [14], [12], [13 . e do not equire a observers to use the same matrix fo
interconnections.

Some efforts have recently been made to obtain a MO The paper is organized as follows. In Secfidn Il we provide

detailed insight into the role played by the commumcatlorthe alternative proof of the above mentioned result abaeit th

topology in distributed estimation problems. For ex"ﬂmlmel’elationship between the multiplicity of the zero eigemeal
in [6] an algebraic design of the communication topology

. . of the Laplace matrix of a directed graph and the number of
for networked observers was considered using the struttur: . )
S . maximal reachable components. In Secfioh I this rtesul
systems theory. The objective in [7] was to maintain the col-

. . : C . "Is applied to establish the connection between collective
lective detectability of the network while achieving a dedi . . - L
: . o detectability of the plant and its detectability by individ
observer sparsity. Here, the temnllective detectabilityor

distributed detectabilityrefers to the detectability property sensor npdes gomblned into_ certain clusters spanned. by

. . ) trees. This provides a natural way to analyse the collective
achieved by the entire network, in contrast to toeal detectability properties of the entire filter network frohet
detectabilitywhich refers to the detectability of the plant Y prop

from the measurements taken by individual nodes of thceorrespondlng properties of the nodes and interconnestion

network. In [11] the property of distributed detectability within clusters, using the results in [11].

e iy
the observer network was related to the local detectaluifity uclggf&?g%ﬂ;@;:;ﬂ?%g& gazigwsﬁ ?ﬁéeﬁoﬂllm?” réeal
the plant through measurements, observability of the no %/$)1/2' here the mbdldenoteg the,trans oo m_atrix
filters through interconnections, and the largest spanni ’ y P

. - . a vector.Ker A denotes the null-space of a matrik
trees of the underlying communication graph. In particular, 2

/ k A l k i
it was shown that for the associated interconnected systernfi ... 0 €RY 15 = [1 ... 1) € RY, andly is the

L ) . . -~~~ identity matrix; we will omit the subscrigt when this causes
of filtering error dynamics to be stabilizable via outputity no ambiguity. The symbab denotes the Kronecker product

tion, each network component spanned by a non-extendab .
P P y 018 matrices, or the tensor product of two vector spaces.
This research was supported under Australian Researchcsubis- ~ Also we use the notatioﬂ{il 2, to denote the Cartesian
covery Projects funding scheme (Project number DP1201%)215 product of N vector spaces@l e, Py, dim 2 denotes
School of Engineering and IT, University of New South WalemBerra . . . . T
the dimension of a finite dimensional vector spate The

at the Australian Defence Force Academy, Canberra, Austrémail: ) ]
v.ugrinovskii@gmail.com symboldiag[P;, . .., Py] denotes the block-diagonal matrix,
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whose diagonal blocks ar&,, ..., Py.

[l. THE MULTIPLICITY OF THE ZERO EIGENVALUE OF r-——- - - - -

THE DIGRAPH LAPLACIAN IS EQUAL TO THE NUMBER OF |
MAXIMAL SUBGRAPHS SPANNED BY TREES |

Consider a filter network withV nodes and a directed I
graph topologyG = (V,E); V = {1,2,...,N} andE C
V x V are the set of vertices and the set of directed edge's,
respectively. The ordered pdiy,¢) will denote the directed |
edge of the graph originating at nogend ending at node
In accordance with the common convention, the grépls  —
assumed to have no self-loops, i.€.,i) ¢ E. The notation
G(i1,...,in) Will denote a subgraph o with the node
set {i1,...,ips} € V and an edge sef(is, i) : is,4 €
{il, N ,Z]u}} g E.

For eachi € V, let V;, = {j : (j,i) € E} be the
neighbourhood ofi. The cardinality ofV;, known as the ;
in-degree of node, is denotedp;; i.e., p; is equal to the i
number of incoming edges for node I

Node: of a digraph is said to be reachable from ngde | :
if there exists a directed path originating aand ending at :
i. The graph is connected if any two nodes are connected i
by an undirected path; the graph is strongly connected if ifs i
every node is reachable from any other node. A subgraph bf { N~ _, i |
G is a spanning tree if it has the same vertex ¥¢thas ~— — — — — — — —
no cycles, hasv — 1 edges and contains a node from which ~ Cluster 1 e
every other node oz can be reached by traversing along Cluster 2
the directed edges d& (the root node). (b)

Throughout the papergZ, 2 and . will denote the

adjacency matrix, the in-degree matrix and the Laplaciarig. 1. A(n)‘)examr?lfa Ofaditf)ecte% griph consisting O(fbt)wg HPL:B(SEO(\;vnd
. . Figure (a)), with inner subgraphs shown in Figure idashe shade
matrix of the graphG, respectively, "

boxes).
1 if (j,7) € E,
A = [aij]ij:1 ,,,,, N &ij = {

0 otherwise It follows from Propositior 1L that clusters are the largest
2 =diag[p1 ... pn], subgraphs reachable from within themselves, i.e., they are
P — G o, reaches in the terminology of [4]. Here we call these sub-
graphs clusters, to acknowledge that our formal definiteon i
The eigenvalues ofZ” will be denoted);, i = 1,...,N. It different; unlike [4] it involves spanning trees. Also, itivibe
is easy to check that zero is one of the eigenvalueof shown in the next section that these subgraphs form smallest
and1y is the corresponding right eigenvector. collectively detectable clusters within collectively detable
Definition 1: A subgraph ofG is acluster, if it satisfies networks, hence the name to reflect this.
the following requirements: We note the difference between clusters and strongly
(i) It contains a spanning tree; and connected components of a digraph; cf. [8]. For example,

(i) It is a maximal subgraph in the sense that none of itthe graph in Figurg 1(p) consists of two clusters comprised
spanning trees can be extended by adding nodes frashthe vertex set§1, 2,6, 7} and{3,4, 5,6, 7} which have a
the setV. nonempty intersection. On the other hand, strongly comuect
An example illustrating this definition is shown in Fig- components of a digraph, being the largest components
ure[I(a@). It follows from Definitiorf11 that clusters have noconnected by directed paths, cannot overlap. As another
outgoing connections to outside nodes. It also follows fronmportant point of difference, by definition clusters cahno
Definition[1, that the nodes within a cluster which are rodts chave outgoing edges connecting them to the outside nodes
its spanning trees are not reachable from outside the clustépbut can have incoming edges) whereas strongly connected

These facts are now formally stated. components of a digraph can have such outgoing edges. From
Proposition 1: Consider a clusteG(iq,...,is) C G. If  the perspective of distributed estimation, this means ttiat

j &{i1,...,is}, then it is not reachable frofi,...,i;}.  observers that belong to a cluster do not share information
Proposition 2: Let i; be the root node of a tree graphwith observers located outside this cluster, but can receiv

spanning a clusteG(iy,...,is) C G. If j & {i1,...,is}, information from other clusters. However, there exist ob-

then(j,i1) ¢ E. server nodes within each cluster which do not receive such



information. Such vertices fornsolated subgraphs within the the unobservable subspace of system interconnections
the digraph [8]. In [8] isolated subgraphs were associatagliven in the next section. Without loss of generality, in
with irreducible (i.e., strongly connected) components otfhe following corollary we assume that the vertices of the
the underlying graph. In this paper, we adopt a somewhanderlying digraph are ordered so that the Laplace matrix
different definition which does not require these subgraphs . is of the form [(1).
be strongly connected; instead it emphasizes spanning tree Corollary 1: Ker.¥ = Span(by,...,b;) wherel is the
within clusters. This allows to establish a natural relagioip  multiplicity of the zero eigenvalue o, and
between the clusters and their inner isolated subgrapks; se -
Lemmall below.

Definition 2: A subgraphG(iy,...,4,) is inner, if

(i) it contains a spanning tree; and

(ii) it is a maximal subgraph with the property that its

]-dim L1

b1 = | Odim Zoot...+dim .2 | >
-1
*R F‘i]-dimfn

0dim$11+...+dim$i,1’i,1

. . . 1g; .
verticesiy,...,4i, are not reachable from any node b; = 0 dim Zis i=2,...,1
. . . dim %41 i+1+...+dim %
J € V\{Zlv 717“} —Rtllﬁilldimgw !

By definition, a single-vertex subgraph, which does not have
incoming edges is inner. [1l. THE DISTRIBUTED DETECTABILITY PROBLEM

Lemma 1:There is exactly one inner subgraph within any
cluster of a connected graph.

Remark 1:1t is easy to give an example of a graph
containing a strongly connected component which has in-z; = A&; + L;(y;(t) — Cyi;) + K; Z Hi(&; — &), (2)
coming edges and therefore does not contain isolated §inner JEV;
subgraphs. On the other hand, since each strongly connected #;(0) =0,
component of a digraph contains a spanning tree, it is ) . )

a subgraph of one of the digraph’s clusters. This lead® provide an asymptotically accurate estimate of the state

to the conclusion that the number of strongly connecte@f @ plant

The property of collective detectability refers to the dpil
of a network of consensus-based observers

components in a digraph is greater than or equal to the & = Az + BE(D),  #(0) = a0, 3)
number of clusters.
We now present the main results of this section. from their local measurements of the form

Theorem 1:The multiplicity of the zero eigenvalue o¥ =
is equal to the number F())f c%sters in the grgeiﬁh yi(t) = Cia(t) + Dig(t) + Dig'(1). )

The proof of Theorerl1 relies on Lemrha 1. AccordingHere z € R™ is the state of the plantj; is its estimate
to this lemma, it suffices to show that the multiplicity ofcalculated at nodé, £ € R™, ¢ € R™, £ € R™: represent
the zero eigenvalue o is equal to the number of inner the plant uncertainty and the measurement uncertaintyeat th
subgraphs in the grapid. The latter proof proceeds in a local sensing node, A, B, C;, D;, D; are given constant
manner similar to proving a similar claim in Theorem 2 of [8]matrices of corresponding dimensions, afd are given
involving strongly connected components of the graph and imatrices which describe the information shared by nodes
isolated subgraphs. The key observation underlying thefpro; ¢ v; with .
is that by definition, for any inner subgraf(is, ..., 1), The matricesL;, K; are parameters of the filters. In
we haveZ;; = 0, if i € {i1,... i} andj ¢ {i1,...,is}. a distributed state estimation problem, they are to be de-
This shows that by permuting rows and columns%f the termined to ensure that the size of the estimation error,
Laplacian matrix can be represented in the following blockfz;(¢) — =(¢)|| reduces to 0 asymptotically, in ab, sense

matrix form or remains bounded in some sense, depending on the nature
L. 00 of the disturbance signal§ ;. For such matrices to exist
) the following detectability property is naturally expedt®
=10 0 0], (1) hold.
0 ... 0 Define the matrices
F, ... F R _ _ _
. . A=Ive A H=[Hgl; \
where the first rows of blocks correspond to inner subgraphs _ AT
of G, and the remaining rows correspond to nodes that do = JpiH; if j =1,
) . where H;; = L
not belong to any of the inner subgraphs. Furthermore, since —a;;H, if j#i,
by definition inner subgraphs do not have incoming edges, C = diag [C1,...,Cn].

each of the diagonal blocks;; is a Laplacian matrix of
the corresponding subgraph. Also, it can be shown ihat Definition 3: The system consisting of the plani (3), the
nonsingular. measurements[](4) and the observérs (2) is said to be

Theoreni] allows to determine the basis of the null-spaamllectively detectableif the matrix pair ([C’, H']', A) is
of .Z. This result will be instrumental in the analysis ofdetectable.



Remark 2:Detectability of the paif[C’, H']', A) is nec- The interpretation of claims (i) and (ii) of Theordm 2 is
essary but is not sufficient for the existence of the set afs follows. Claim (i) states that every state of a colletyive
observer gainsk;, L; which ensure that the matrid — detectable plant is necessarily detectable by at least one
diag[L; ... LN]|C — diag|K; ... Kx]H is Hurwitz. There- observer within each cluster of the network. Also, conditio
fore, the collective detectability property is a necessarfii) states that communications between the observer nodes
condition for the consensus-based filtérs (2) each to peoviih a collectively detectable system must be designed so that
an estimate of the plangl(3). each plant state has at least one of the three properties at

The pair ([C’, H')', A) can be detectable even if theevery node of every cluster: (a) it is detectable by the node
individual pairs(C;, A) are not detectable. As was shownfrom its measurements (i.ex,& %;), or (b) it is observable
in [11] in the case wherdl; = H, i = 1,..., N, for this from the information the node receives from its neighbours
to be true, each network node must be able to complemefie., z ¢ O,), or (c) it is observable by at least one of the
its local measurements with feedback it receives from itseighbours with whom the node communicates (i.e, there
neighbours trough the interconnections. In this sectibg, t existsj such thati € V; andx ¢ 0y,). In the case where

condition H; = H is relaxed. H; = H Vi, we recover claim (ii) of [11, Theorem 3]: for
Recall the definitions of undetectable and unobservab#l i € {i1,...,is}, Oy NG = {0}.
subspaces of a matrix pai&, F), F € R"*", G € R™*". Next, a sufficient condition for collective detectability i

Let ar(s) denote the minimal polynomial of, i.e., the presented which extends the corresponding condition in [11
monic polynomial of least degree such that(F) = 0 [15], Theorem 4] to the case where the interconnection protocol
factored asur(s) = an(s)af(s); the zeros ofa,(s) and matricesH; are not required to be identical. The proof of
a’f(s) are in the open left and closed right half-planes ofhis result relies on Corollaryl 1, therefore we again assume
the complex plane, respectively. Note thiera(F) N that the vertices of the underlying digraph are ordered ab th
Kerah(F) = {0}, and Kerap(F) @ Keraj(F) = the Laplace matrix? has the block structur€](1).
R™ [15]. The undetectable subspace (@¢f, F)) is the sub- Theorem 3:Suppose all the paingd;, A) are observable.
space ), Ker(GF'"!)nKer o} (F), and the unobservable If every cluster in the network satisfies condition (i) of
subspace ofG, F) is the subspacf),_, Ker(GF'~1) [3].  Theoreni®, then the paifC’, H'', A) is detectable.

Define the observability matrices associated with the ma- Remark 3:The result of Theorer] 3 remains valid in the

trix pairs (C;, A) and (H;, A): case wherdd; = 0 for some of the nodes. Each such node
C H. represents the root node in the corresponding cluster, and
C;l qu also belongs to the inner subgraph of the cluster. Provided
Oc, & ! . Oy, = ’ ) the remaining nodes have observablg;, A), it is still true
: : that & = Ker £ @ R"™. Hence the statement of the theorem
C; A" 1 H; A1 holds in this case.
Also, consider the undetectable subspacé®f A) and the IV. CONCLUSIONS

unobservable subspace(df;, A), which will be denoted;,

Oy, . Furthermore, ley denote the unobservable subspace !N this paper, we obtained necessary and sufficient con-
of (H, A), ditions for distributed detectability of a linear plant véa

network of state estimators, which were previously obt@ine
04 (\Ker(HA™Y). under condition that all observers utilize the same matrix
for communication. Our results show that in a collectively
detectable system, each state in the plants’ phase spate mus

2

n

N
Il
-

Lemma 2:The pair([C’, H')', A) is detectable if and only \
if be detectable by every observer cluster spanned by a maximal
N tree. Furthermore, at every node of the network, every
Ker ( di . 1) _ 5) Undetectable state afC;, A) must be observable through
o ( 0g[Om,, -, Omy|(£' @ ) M Hcg {0}0) interconnections or must be transmitted to a neighbour who

The following necessary condition for collective de-can observe it. Thus, the results of this paper elucidate the
tectability has been obtained in [11] for the special castelationship between the network topology and detectgbili
where H; = H; see [11, Theorem 3]. Using Lemrha 2, thisproperties of the plant and observers. In particular, the

requirement can be relaxed. paper makes explicit the role of spanning trees in ensuring
Theorem 2:Suppose the paif{C’, H'', A) is detectable. collective detectability.
Then, for every clusteiG(iy,...,is) the following state-
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