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Detectability of distributed consensus-based observer networks:
An elementary analysis and extensions

V. Ugrinovskii

Abstract— This paper continues the study of local detectabil-
ity and observability requirements on components of distributed
observers networks to ensure detectability properties of the
network. First, we present a sketch of an elementary proof of
the known result equating the multiplicity of the zero eigenvalue
of the Laplace matrix of a digraph to the number of its
maximal reachable subgraphs. Unlike the existing algebraic
proof, we use a direct analysis of the graph topology. This
result is then used in the second part of the paper to extend
our previous results which connect the detectability of an
observer network with corresponding local detectability and
observability properties of its node observers. The proposed
extension allows for nonidentical matrices to be used in the
interconnections.

I. I NTRODUCTION

The principle of distributed estimation can be traced back
to the original work on decentralized estimation completed
in the 90s [2], [5], while the more modern ideas are focused
around the observer network design to allow node estimators
to exchange information with the objective of improving
their knowledge of the system state (or a part thereof)
through reaching an agreement about the estimated quantity.
A most recent development in this area is concerned with
H∞ distributed estimation in the presence of modelling
uncertainties and perturbations [9], [10], [14], [12], [13].

Some efforts have recently been made to obtain a more
detailed insight into the role played by the communication
topology in distributed estimation problems. For example,
in [6] an algebraic design of the communication topology
for networked observers was considered using the structured
systems theory. The objective in [7] was to maintain the col-
lective detectability of the network while achieving a desired
observer sparsity. Here, the termcollective detectability, or
distributed detectability, refers to the detectability property
achieved by the entire network, in contrast to thelocal
detectabilitywhich refers to the detectability of the plant
from the measurements taken by individual nodes of the
network. In [11] the property of distributed detectabilityof
the observer network was related to the local detectabilityof
the plant through measurements, observability of the node
filters through interconnections, and the largest spanning
trees of the underlying communication graph. In particular,
it was shown that for the associated interconnected system
of filtering error dynamics to be stabilizable via output injec-
tion, each network component spanned by a non-extendable
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tree must be collectively detectable. A similar requirement on
the nodes with unobservable local error dynamics to have an
incoming path connecting them with collectively observable
subnetworks was discussed in [8].

In this paper, we revisit the distributed detectability prob-
lem for a network of interconnected state estimators ob-
serving a linear plant considered in [11]. The detectability
conditions obtained in that reference are based on a relation-
ship between the multiplicity of the zero eigenvalue of the
graph Laplacian matrix and the number of maximal reachable
clusters within the graph [1], [4]. In these references, the
mentioned relationship was obtained as a special case of
a more general theory, using the tools from the matrix
algebra. Here we give an elementary self-contained proof
of this relationship using a direct analysis of the graph
topology. Furthermore, we use this result to present some
extensions of the results in [11] which show that in the
distributed estimation scenario, algebraic properties ofthe
graph Laplacian must be complemented by the detectability
and observability properties of the node filters through mea-
surements and interconnections, respectively. The proposed
extensions relax one of the limitations of these results in that
we do not require all observers to use the same matrix for
interconnections.

The paper is organized as follows. In Section II we provide
the alternative proof of the above mentioned result about the
relationship between the multiplicity of the zero eigenvalue
of the Laplace matrix of a directed graph and the number of
its maximal reachable components. In Section III this result
is applied to establish the connection between collective
detectability of the plant and its detectability by individual
sensor nodes combined into certain clusters spanned by
trees. This provides a natural way to analyse the collective
detectability properties of the entire filter network from the
corresponding properties of the nodes and interconnections
within clusters, using the results in [11].

Notation: Throughout the paper,Rn denotes the real
Euclideann-dimensional vector space, with the norm‖x‖ ,

(x′x)1/2; here the symbol′ denotes the transpose of a matrix
or a vector.KerA denotes the null-space of a matrixA.
0k , [0 . . . 0]′ ∈ R

k, 1k , [1 . . . 1]′ ∈ R
k, andIk is the

identity matrix; we will omit the subscriptk when this causes
no ambiguity. The symbol⊗ denotes the Kronecker product
of matrices, or the tensor product of two vector spaces.
Also we use the notation

∏N
l=1

Pl to denote the Cartesian
product ofN vector spacesP1, . . . ,PN . dimX denotes
the dimension of a finite dimensional vector spaceX . The
symboldiag[P1, . . . , PN ] denotes the block-diagonal matrix,
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whose diagonal blocks areP1, . . . , PN .

II. T HE MULTIPLICITY OF THE ZERO EIGENVALUE OF

THE DIGRAPH LAPLACIAN IS EQUAL TO THE NUMBER OF

MAXIMAL SUBGRAPHS SPANNED BY TREES

Consider a filter network withN nodes and a directed
graph topologyG = (V,E); V = {1, 2, . . . , N} andE ⊆
V×V are the set of vertices and the set of directed edges,
respectively. The ordered pair(j, i) will denote the directed
edge of the graph originating at nodej and ending at nodei.
In accordance with the common convention, the graphG is
assumed to have no self-loops, i.e.,(i, i) 6∈ E. The notation
G(i1, . . . , iM ) will denote a subgraph ofG with the node
set {i1, . . . , iM} ⊆ V and an edge set{(is, il) : is, il ∈
{i1, . . . , iM}} ⊆ E.

For eachi ∈ V, let Vi = {j : (j, i) ∈ E} be the
neighbourhood ofi. The cardinality ofVi, known as the
in-degree of nodei, is denotedpi; i.e., pi is equal to the
number of incoming edges for nodei.

Node i of a digraph is said to be reachable from nodej

if there exists a directed path originating atj and ending at
i. The graph is connected if any two nodes are connected
by an undirected path; the graph is strongly connected if its
every node is reachable from any other node. A subgraph of
G is a spanning tree if it has the same vertex setV, has
no cycles, hasN − 1 edges and contains a node from which
every other node ofG can be reached by traversing along
the directed edges ofG (the root node).

Throughout the paper,A , D and L will denote the
adjacency matrix, the in-degree matrix and the Laplacian
matrix of the graphG, respectively,

A = [aij ]ij=1,...,N , aij =

{

1 if (j, i) ∈ E,

0 otherwise,

D = diag [p1 . . . pN ],

L = D − A .

The eigenvalues ofL will be denotedλi, i = 1, . . . , N . It
is easy to check that zero is one of the eigenvalues ofL ,
and1N is the corresponding right eigenvector.

Definition 1: A subgraph ofG is a cluster, if it satisfies
the following requirements:

(i) It contains a spanning tree; and
(ii) It is a maximal subgraph in the sense that none of its

spanning trees can be extended by adding nodes from
the setV.

An example illustrating this definition is shown in Fig-
ure 1(a). It follows from Definition 1 that clusters have no
outgoing connections to outside nodes. It also follows from
Definition 1, that the nodes within a cluster which are roots of
its spanning trees are not reachable from outside the cluster.
These facts are now formally stated.

Proposition 1: Consider a clusterG(i1, . . . , is) ⊂ G. If
j 6∈ {i1, . . . , is}, then it is not reachable from{i1, . . . , is}.

Proposition 2: Let i1 be the root node of a tree graph
spanning a clusterG(i1, . . . , is) ⊂ G. If j 6∈ {i1, . . . , is},
then (j, i1) 6∈ E.
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Fig. 1. An example of a directed graph consisting of two clusters (shown
in Figure (a)), with inner subgraphs shown in Figure (b) (inside the shaded
boxes).

It follows from Proposition 1 that clusters are the largest
subgraphs reachable from within themselves, i.e., they are
reaches in the terminology of [4]. Here we call these sub-
graphs clusters, to acknowledge that our formal definition is
different; unlike [4] it involves spanning trees. Also, it will be
shown in the next section that these subgraphs form smallest
collectively detectable clusters within collectively detectable
networks, hence the name to reflect this.

We note the difference between clusters and strongly
connected components of a digraph; cf. [8]. For example,
the graph in Figure 1(a) consists of two clusters comprised
of the vertex sets{1, 2, 6, 7} and{3, 4, 5, 6, 7} which have a
nonempty intersection. On the other hand, strongly connected
components of a digraph, being the largest components
connected by directed paths, cannot overlap. As another
important point of difference, by definition clusters cannot
have outgoing edges connecting them to the outside nodes
(but can have incoming edges) whereas strongly connected
components of a digraph can have such outgoing edges. From
the perspective of distributed estimation, this means thatthe
observers that belong to a cluster do not share information
with observers located outside this cluster, but can receive
information from other clusters. However, there exist ob-
server nodes within each cluster which do not receive such



information. Such vertices formisolated subgraphs within
the digraph [8]. In [8] isolated subgraphs were associated
with irreducible (i.e., strongly connected) components of
the underlying graph. In this paper, we adopt a somewhat
different definition which does not require these subgraphsto
be strongly connected; instead it emphasizes spanning trees
within clusters. This allows to establish a natural relationship
between the clusters and their inner isolated subgraphs; see
Lemma 1 below.

Definition 2: A subgraphG(i1, . . . , ir) is inner, if

(i) it contains a spanning tree; and
(ii) it is a maximal subgraph with the property that its

vertices i1, . . . , ir are not reachable from any node
j ∈ V\{i1, . . . , ir}.

By definition, a single-vertex subgraph, which does not have
incoming edges is inner.

Lemma 1:There is exactly one inner subgraph within any
cluster of a connected graph.

Remark 1: It is easy to give an example of a graph
containing a strongly connected component which has in-
coming edges and therefore does not contain isolated (inner)
subgraphs. On the other hand, since each strongly connected
component of a digraph contains a spanning tree, it is
a subgraph of one of the digraph’s clusters. This leads
to the conclusion that the number of strongly connected
components in a digraph is greater than or equal to the
number of clusters.

We now present the main results of this section.
Theorem 1:The multiplicity of the zero eigenvalue ofL

is equal to the number of clusters in the graphG .
The proof of Theorem 1 relies on Lemma 1. According

to this lemma, it suffices to show that the multiplicity of
the zero eigenvalue ofL is equal to the number of inner
subgraphs in the graphG . The latter proof proceeds in a
manner similar to proving a similar claim in Theorem 2 of [8]
involving strongly connected components of the graph and its
isolated subgraphs. The key observation underlying the proof
is that by definition, for any inner subgraphG(i1, . . . , is),
we haveLij = 0, if i ∈ {i1, . . . , is} and j 6∈ {i1, . . . , is}.
This shows that by permuting rows and columns ofL , the
Laplacian matrix can be represented in the following block-
matrix form

L =











L11 . . . 0 0

0
. . . 0 0

0 . . . Lll 0
F1 . . . Fl R











, (1)

where the firstl rows of blocks correspond to inner subgraphs
of G, and the remaining rows correspond to nodes that do
not belong to any of the inner subgraphs. Furthermore, since
by definition inner subgraphs do not have incoming edges,
each of the diagonal blocksLii is a Laplacian matrix of
the corresponding subgraph. Also, it can be shown thatR is
nonsingular.

Theorem 1 allows to determine the basis of the null-space
of L . This result will be instrumental in the analysis of

the the unobservable subspace of system interconnections
given in the next section. Without loss of generality, in
the following corollary we assume that the vertices of the
underlying digraph are ordered so that the Laplace matrix
L is of the form (1).

Corollary 1: KerL = Span(b1, . . . , bl) where l is the
multiplicity of the zero eigenvalue ofL , and

b1 =





1dimL11

0dimL22+...+dimLll

−R−1Fi1dimL11



 ,

bi =









0dimL11+...+dimLi−1,i−1

1dimLii

0dimLi+1,i+1+...+dimLll

−R−1Fi1dimLii









, i = 2, . . . , l.

III. T HE DISTRIBUTED DETECTABILITY PROBLEM

The property of collective detectability refers to the ability
of a network of consensus-based observers

˙̂xi = Ax̂i + Li(yi(t)− Cix̂i) +Ki

∑

j∈Vi

Hi(x̂j − x̂i), (2)

x̂i(0) = 0,

to provide an asymptotically accurate estimate of the state
of a plant

ẋ = Ax+Bξ(t), x(0) = x0, (3)

from their local measurements of the form

yi(t) = Cix(t) +Diξ(t) + D̄iξ
i(t). (4)

Here x ∈ R
n is the state of the plant,̂xi is its estimate

calculated at nodei, ξ ∈ Rm, ξ ∈ Rm, ξi ∈ Rmi represent
the plant uncertainty and the measurement uncertainty at the
local sensing nodei, A, B, Ci, Di, D̄i are given constant
matrices of corresponding dimensions, andHi are given
matrices which describe the information shared by nodes
j ∈ Vi with i.

The matricesLi, Ki are parameters of the filters. In
a distributed state estimation problem, they are to be de-
termined to ensure that the size of the estimation error,
‖x̂i(t) − x(t)‖ reduces to 0 asymptotically, in anL2 sense
or remains bounded in some sense, depending on the nature
of the disturbance signalsξ, ξi. For such matrices to exist
the following detectability property is naturally expected to
hold.

Define the matrices

Ā = IN ⊗A, H̄ =
[

H̄ij

]

i,j=1,...,N

whereH̄ij =

{

piHi if j = i,

−aijHi if j 6= i,

C̄ = diag [C1, . . . , CN ] .

Definition 3: The system consisting of the plant (3), the
measurements (4) and the observers (2) is said to be
collectively detectable, if the matrix pair ([C̄′, H̄ ′]′, Ā) is
detectable.



Remark 2:Detectability of the pair([C̄′, H̄ ′]′, Ā) is nec-
essary but is not sufficient for the existence of the set of
observer gainsKi, Li which ensure that the matrix̄A −
diag[L1 . . . LN ]C̄ − diag[K1 . . .KN ]H̄ is Hurwitz. There-
fore, the collective detectability property is a necessary
condition for the consensus-based filters (2) each to provide
an estimate of the plant (3).

The pair ([C̄′, H̄ ′]′, Ā) can be detectable even if the
individual pairs(Ci, A) are not detectable. As was shown
in [11] in the case whereHi = H , i = 1, . . . , N , for this
to be true, each network node must be able to complement
its local measurements with feedback it receives from its
neighbours trough the interconnections. In this section, the
conditionHi = H is relaxed.

Recall the definitions of undetectable and unobservable
subspaces of a matrix pair(G,F ), F ∈ R

n×n, G ∈ R
m×n.

Let αF (s) denote the minimal polynomial ofF , i.e., the
monic polynomial of least degree such thatαF (F ) = 0 [15],
factored asαF (s) = α−

F (s)α
+

F (s); the zeros ofα−
F (s) and

α+

F (s) are in the open left and closed right half-planes of
the complex plane, respectively. Note thatKerα−

F (F ) ∩
Kerα+

F (F ) = {0}, and Kerα−
F (F ) ⊕ Kerα+

F (F ) =
R

n [15]. The undetectable subspace of(G,F ) is the sub-
space

⋂n
l=1

Ker(GF l−1)∩Kerα+

F (F ), and the unobservable
subspace of(G,F ) is the subspace

⋂n
l=1

Ker(GF l−1) [3].
Define the observability matrices associated with the ma-

trix pairs (Ci, A) and (Hi, A):

OCi
,











Ci

CiA
...

CiA
n−1











, OHi
=











Hi

HiA
...

HiA
n−1











.

Also, consider the undetectable subspace of(Ci, A) and the
unobservable subspace of(Hi, A), which will be denotedCi,
OHi

. Furthermore, letŌ denote the unobservable subspace
of (H̄, Ā),

Ō ,

nN
⋂

l=1

Ker(H̄Āl−1).

Lemma 2:The pair([C̄′, H̄ ′]′, Ā) is detectable if and only
if

Ker
(

diag[OH1
, . . . , OHN

](L ⊗ In)
)

∩
N
∏

i=1

Ci = {0}.(5)

The following necessary condition for collective de-
tectability has been obtained in [11] for the special case
whereHi = H ; see [11, Theorem 3]. Using Lemma 2, this
requirement can be relaxed.

Theorem 2:Suppose the pair([C̄′, H̄ ′]′, Ā) is detectable.
Then, for every clusterG(i1, . . . , is) the following state-
ments hold:

(i)
⋂

i∈{i1,...,is}
Ci = {0};

(ii) for all i ∈ {i1, . . . , is},




⋂

j:i∈Vj

OHj



 ∩ OHi
∩ Ci = {0}.

The interpretation of claims (i) and (ii) of Theorem 2 is
as follows. Claim (i) states that every state of a collectively
detectable plant is necessarily detectable by at least one
observer within each cluster of the network. Also, condition
(ii) states that communications between the observer nodes
in a collectively detectable system must be designed so that
each plant statex has at least one of the three properties at
every node of every cluster: (a) it is detectable by the node
from its measurements (i.e.,x 6∈ Ci), or (b) it is observable
from the information the node receives from its neighbours
(i.e., x 6∈ OHi

), or (c) it is observable by at least one of the
neighbours with whom the node communicates (i.e, there
existsj such thati ∈ Vj andx 6∈ OHj

). In the case where
Hi = H ∀i, we recover claim (ii) of [11, Theorem 3]: for
all i ∈ {i1, . . . , is}, OH ∩ Ci = {0}.

Next, a sufficient condition for collective detectability is
presented which extends the corresponding condition in [11,
Theorem 4] to the case where the interconnection protocol
matricesHi are not required to be identical. The proof of
this result relies on Corollary 1, therefore we again assume
that the vertices of the underlying digraph are ordered so that
the Laplace matrixL has the block structure (1).

Theorem 3:Suppose all the pairs(Hi, A) are observable.
If every cluster in the network satisfies condition (i) of
Theorem 2, then the pair([C̄′, H̄ ′]′, Ā) is detectable.

Remark 3:The result of Theorem 3 remains valid in the
case whereHi = 0 for some of the nodes. Each such node
represents the root node in the corresponding cluster, and
also belongs to the inner subgraph of the cluster. Provided
the remaining nodes have observable(Hj , A), it is still true
that Ō = KerL ⊗R

n. Hence the statement of the theorem
holds in this case.

IV. CONCLUSIONS

In this paper, we obtained necessary and sufficient con-
ditions for distributed detectability of a linear plant viaa
network of state estimators, which were previously obtained
under condition that all observers utilize the same matrix
for communication. Our results show that in a collectively
detectable system, each state in the plants’ phase space must
be detectable by every observer cluster spanned by a maximal
tree. Furthermore, at every node of the network, every
undetectable state of(Ci, A) must be observable through
interconnections or must be transmitted to a neighbour who
can observe it. Thus, the results of this paper elucidate the
relationship between the network topology and detectability
properties of the plant and observers. In particular, the
paper makes explicit the role of spanning trees in ensuring
collective detectability.
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