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Passivity-Based Adaptive Control for Visually

Servoed Robotic Systems

Hanlei Wang

Abstract

This paper investigates the visual servoing problem for robotic systems with uncertain kinematic,

dynamic, and camera parameters. We first present the passivity properties associated with the overall

kinematics of the system, and then propose two passivity-based adaptive control schemes to resolve

the visual tracking problem. One scheme employs the adaptive inverse-Jacobian-like feedback, and the

other employs the adaptive transpose Jacobian feedback. With the Lyapunov analysis approach, it is

shown that under either of the proposed control schemes, theimage-space tracking errors converge to

zero without relying on the assumption of the invertibilityof the estimated depth. Numerical simulations

are performed to show the tracking performance of the proposed adaptive controllers.

Index Terms

Visual servoing, passivity, uncertain depth, adaptive control, robotic systems.

I. INTRODUCTION

The interests in visual servoing for robots have lasted for many years (see, e.g., [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10]). The visual servoing schemes can roughly be classified into

two categories (see, e.g., [2]): position-based scheme andimage-based scheme. The familiar

advantage of the image-based servoing scheme may be that thepossible errors in camera

modeling and calibration are avoided, and that the reduction of the error in the image space

implies that of the error in the physical task space (or Cartesian space). However, the direct

use of image features in feedback control complicates the kinematics of the robotic system, and

furthermore parametric uncertainty often arises (see, e.g., [7]).
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For handling the nonlinearity and parametric uncertainty of the models of the visually servoed

robotic systems, many model-based adaptive control schemes are proposed, e.g., [11], [12], [7],

[13], [14], [15], [10], [16], [17], [18], [19], [20]. The work in [21], [11], [12], [18], [20] studies

the visual tracking problem under the assumption that the depth is constant, in which case,

the overall Jacobian matrix that describes the relation between the joint-space velocity and the

image-space velocity is linearly parameterized (see, e.g., [11], [4]). The results that explicitly

take into consideration the time-varying depth information of the camera appear in [7], [14],

[15], [10], [16], [17], [19], and as is demonstrated in, e.g., [7], [14], [10], the overall Jacobian

matrix in this case cannot be expressed as the linearity-in-parameters form since the uncertain

depth acts as the denominator in the overall Jacobian matrix. The adaptive schemes in [7],

[10], by adaptation to the system uncertainty, ensure that the image-space position is regulated

to the desired one asymptotically. The adaptive schemes in [14], [15], [16], [17], [19] realize

image-space trajectory tracking regardless of the system uncertainty (it is noted that the work

in [16] confines to the case of the target object with the specific spherical geometry so as to

exploit certain invariant quantities, limiting its applications). The tracking control schemes in the

existing work (e.g., [14], [15], [17], [19]), however, relyon the assumption of invertibility of the

estimated depth (or the use of parameter projection to guarantee this) to ensure the tracking error

convergence, due in part to the inadequate exploitation of the (potentially beneficial) structural

property of the overall kinematics.

In this paper, we start from formulating a new form of passivity associated with the overall

kinematics of the visually servoed robotic system, based onwhich, we present two adaptive con-

trollers for 3-dimensional visual tracking that neither relies on the assumption of the invertibility

of the estimated depth nor the use of parameter projection algorithm to ensure its invertibility, in

contrast to [14], [15], [17]. The avoidance of this assumption or parameter projection is important

in that no a priori knowledge of the depth information (used for calculating the parameter region)

is required and in addition, we do not need to concern where the estimated depth parameter finally

stays. Among the two controllers, one employs the adaptive inverse-Jacobian-like feedback and

the other employs the adaptive transpose Jacobian feedback. Our work extends the case of the

constant depth considered in [20] (adaptive inverse Jacobian control) and [11] (adaptive transpose

Jacobian control) to that of the time-varying depth, by exploiting the depth-related passivity of

the overall kinematics and incorporating adaptation to theuncertain depth. We also show that one
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reduced version of the adaptive inverse-Jacobian-like controller (referred to here as a separation

approach due to its separation property, which is in contrast to the dynamic scheme in [16]

that relies on a target object with the specific spherical geometry, persistent excitation condition,

and an additional Cartesian-space sensor) is a qualified adaptive kinematic scheme that fits well

for robots having an unmodifiable joint servoing controlleryet admitting the the design of the

joint velocity command (e.g., most industrial robots)—seeRemark 2, which is in contrast to

the existing kinematic schemes (e.g., [1], [2]) that lack adequation consideration of the robot

dynamics. While the adaptive transpose Jacobian controller can be considered as a special case

of [19], the depth-related passivity and the adaptive inverse-Jacobian-like controller with the

separation property constitute the contribution of our result with respect to [19].

In summary, the major contribution of this work is that the passivity properties associated with

the overall kinematics are explicitly presented, and that two adaptive controllers are proposed and

shown to be convergent without the need of the assumption that the estimated depth is invertible;

in addition, the separation property of the adaptive inverse-Jacobian-like controller yields an

adaptive kinematic controller applicable to most industrial robots. It may be worth remarking

that for most image-space tracking tasks (i.e., the desiredimage-space velocity is not identically

zero at the final state), the invertibility of the estimated depth (at the final state) is required and

can be ensured by the proposed controllers, but most existing results cannot ensure this and

the common practice is to rely on assumption or use a relatively complex projection algorithm

(requiring certain a priori information of the depth and thedetermination of an appropriate

parameter region). A preliminary version of the paper was presented in [22] where the passivity

of the overall kinematics and adaptive transpose Jacobian control were presented, and here we

expand this version to additionally cover the adaptive inverse-Jacobian-like control.

II. K INEMATICS AND DYNAMICS

In this paper, we consider a visually servoed robotic systemthat consists of ann-DOF

(degree-of-freedom) manipulator and a standard fixed pinhole camera (see, e.g., [23]), where

the manipulator end-effector motion is mapped to the image space by the camera. For the

convenience of the theoretical formulation, the number of the feature points that are under
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consideration is determined as one1.

A. Kinematics

Let x ∈ R2 andr ∈ R3, respectively, denote the position of the projection of thefeature point

on the image plane and the position of the feature point with respect to the base frame of the

manipulator. The mapping fromr to x can be written as [23], [7]



x

1



 =
1

z(q)
H




r

1



 (1)

whereH = [D, b] ∈ R3×4 (with D ∈ R3×3 and b ∈ R3) is the perspective projection matrix,

q ∈ Rn denotes the joint position of the manipulator, andz(q) = dT3 r + b3 ∈ R with b3 being

the third element ofb and dT3 being the third row ofD denotes the depth of the feature point

with respect to the camera frame. The relationship between the image-space velocitẏx and the

feature-point velocityṙ can be written as [7]

ẋ =
1

z(q)

(
D̄ − xdT3

)
ṙ (2)

whereD̄ ∈ R2×3 is composed of the first two rows ofD, andN(x) = D̄ − xdT3 ∈ R2×3 is the

depth-independent interaction matrix defined by [7]. Obviously, the time derivative of the depth

can be written aṡz(q) = dT3 ṙ [7]. Furthermore, it is assumed that the depthz(q) is uniformly

positive during the motion of the manipulator.

Let r0 ∈ R3 denote the position of a reference point on the end-effectorwith respect to the

manipulator base frame,̇r0 its translational velocity, andω0 ∈ R3 the angular velocity of the

end-effector expressed in the manipulator base frame. The velocitiesṙ0 andω0 relate to the joint

velocity q̇ by [24], [25] 


ṙ0

ω0



 = Jr(q)q̇ (3)

1The consideration of one feature point here is for the sake ofconvenience of theoretical formulation, and the extensionto

the case of multiple feature points with different depths can be directly performed in a way similar to [19]. For instance, in

the case of three feature points, we can stack the image-space positions of the three feature pointsx1 ∈ R2, x2 ∈ R2, and

x3 ∈ R2 as a single vectorx =

[

xT
1 , x

T
2 , x

T
3

]T
and the image Jacobian matrices associated with these feature points as a single

matrix. The ensuing procedure would then be straightforward. It may be worth noting that in this case, the depths are indirectly

controlled by controlling sufficient number of feature points.
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whereJr(q) ∈ R6×n denotes the manipulator Jacobian matrix.

The relationship between the feature-point velocityṙ and the joint velocityq̇ can be written

as [14] (see also [2], [24], [25])

ṙ =
[

I3 −S(c)
]

︸ ︷︷ ︸

Jf

Jr(q)q̇ (4)

whereI3 is the3×3 identity matrix,c = [c1, c2, c3]
T
∈ R3 denotes the position of the feature point

with respect to the reference point on the manipulator end-effector expressed in the manipulator

base frame, and the skew-symmetric formS(c) is defined as

S(c) =








0 −c3 c2

c3 0 −c1

−c2 c1 0







.

Combining (2) and (4) yields the following overall kinematic equation [7], [10]

ẋ =
1

z(q)
N(x)JfJr(q)
︸ ︷︷ ︸

J(q,x)

q̇ (5)

whereJ(q, x) is a Jacobian matrix. The structural property of (2) allows us to decomposeJ(q, x)

as

J(q, x) = D̄JfJr(q)
︸ ︷︷ ︸

J⊥
z (q)

−x dT3 JfJr(q)
︸ ︷︷ ︸

Jz(q)

(6)

whereJ⊥

z (q) is a Jacobian matrix that maps the joint velocityq̇ to a plane which is parallel to

the image plane (i.e., perpendicular to the depth direction), andJz(q) is a Jacobian matrix that

describes the relation between the changing rate of the depth z(q) and q̇ (see, e.g., [7]), i.e.,

ż(q) = Jz(q)q̇. (7)

We note that whether the depthz(q) is time-varying or not, the Jacobian matrixJ⊥

z (q) is contained

in J(q, x). For this, as in [19], we refer toJ⊥

z (q) as thedepth-rate-independent Jacobian matrix.

The overall kinematics (5) has the following property.

Property 1: For an arbitrary vectorφ ∈ R2, the two quantitiesz(q)φ andż(q)φ depend linearly

on a constant depth parameter vectoraz ∈ Rm1 [7], [10], i.e.,

z(q)φ =Yz(q, φ)az (8)

ż(q)φ =Ȳz(q, q̇, φ)az (9)

June 10, 2021 DRAFT
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which also directly yields

φJz(q)q̇ = ż(q)φ = Ȳz(q, q̇, φ)az (10)

whereYz(q, φ) ∈ R2×m1 and Ȳz(q, q̇, φ) ∈ R2×m1 are regressor matrices. In addition,J(q, x)q̇

can be linearly parameterized [10], which thus leads to

J⊥

z (q)ξ = Y ⊥

z (q, ξ)a⊥z (11)

wherea⊥z ∈ Rm2 is the unknown depth-rate-independent parameter vector,ξ ∈ Rn is a vector,

andY ⊥

z (q, ξ) ∈ R2×m2 is the depth-rate-independent kinematic regressor matrix.

B. Dynamics

The dynamics of then-DOF manipulator can be written as [26], [25]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (12)

whereM(q) ∈ Rn×n is the inertia matrix,C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal matrix,

g(q) ∈ Rn is the gravitational torque, andτ ∈ Rn is the joint control torque. In this paper,

we assume that the number of the DOFs of the manipulator is notless than two, i.e.,n ≥ 2.

Three familiar properties associated with the dynamic model (12) that shall be useful for the

subsequent controller design and stability analysis are listed as follows (see, e.g., [26], [25]).

Property 2: The inertia matrixM(q) is symmetric and uniformly positive definite.

Property 3: The Coriolis and centrifugal matrixC(q, q̇) can be appropriately chosen such that

Ṁ(q)− 2C(q, q̇) is skew-symmetric.

Property 4: The dynamic model (12) depends linearly on a constant dynamic parameter vector

ad ∈ Rp, thus yielding

M(q)ζ̇ + C(q, q̇)ζ + g(q) = Yd(q, q̇, ζ, ζ̇)ad (13)

whereYd(q, q̇, ζ, ζ̇) ∈ Rn×p is the regressor matrix,ζ ∈ Rn is a differentiable vector, anḋζ is

the time derivative ofζ .
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III. A DAPTIVE CONTROL

In this section, we aim to design adaptive controllers for the visually servoed robotic system

by formulating and exploiting the passivity of the overall kinematics. The control objective is

to ensure the converge of the image-space tracking errors, i.e.,x− xd → 0 and ẋ− ẋd → 0 as

t → ∞, wherexd ∈ R2 denotes the desired image-space position and it is assumed thatxd, ẋd,

and ẍd are all bounded.

A. Passivity Associated With the Overall Kinematics

Combining (5) and (6), we can rewrite the overall kinematics(5) as

z(q)ẋ+
1

2
ż(q)x =

[

J⊥

z (q)−
1

2
xJz(q)

]

q̇

︸ ︷︷ ︸

u

(14)

whereu is a virtual or intermediate control input.

Proposition 1: The system (14) is passive with respect to the input-output pair (u, x).

Proof: Consider the following function (which is actually one partof the Lyapunov function

in [7])

Vs =
z(q)

2
xTx. (15)

DifferentiatingVs with respect to time along the trajectories of (14) yields

V̇s = xTu (16)

which can be rewritten as
∫ t

0

xT (r)u(r)dr = Vs(t)− Vs(0) ≥ −Vs(0). (17)

This implies that the system (14) is passive with respect to the input-output pair(u, x) in the

sense of [27]. �

According to the standard passivity-based design methodology [27], a simple output feedback

for u can result in the convergence of the outputx to the origin (the case of nonzero equilibrium

shall be similar). The regulation algorithm of [7] can be considered as a combined application of

the passivity of the overall kinematics here and the standard passivity of the manipulator dynamics

(see, e.g., [25]). The passivity concerning the overall kinematics has also been examined in [5],

yet the storage function in [5] is independent of the depth while the storage function considered

June 10, 2021 DRAFT
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here is explicitly related to the depth. The main benefit of introducing this depth-related passivity,

as is shown later, is the avoidance of the restrictive assumption of the invertibility of the estimated

depth without relying on parameter projection.

The control above, however, is not enough for realizing the objective of image-space tracking,

in which case, it is expected to drive the tracking error∆x = x− xd to the origin. To this end,

we would like to apply the feedback passivation strategy [28], i.e., let the controlu be given by

u = ū+ z(q)ẋd +
1

2
ż(q)xd

︸ ︷︷ ︸

feedback passivation

(18)

whereū becomes the new virtual control input. Substituting (18) into (14) gives

z(q)∆ẋ +
1

2
ż(q)∆x = ū. (19)

Proposition 2: The system (19) is passive with respect to the input-output pair (ū,∆x).

The proof of Proposition 2 shall be similar to that of Proposition 1.

Using (7), we can rewrite (18) as

ū = −z(q)ẋd +
[

J⊥

z (q)−
x+ xd

2
Jz(q)

︸ ︷︷ ︸

J∗

]

q̇. (20)

Obviously, if the Jacobian matrixJ∗ has full row rank, the virtual control̄u can be realized by

the joint velocityq̇.

B. Adaptive Inverse-Jacobian-like Control

Let us now start the adaptive controller design based on the passivity enjoyed by the overall

kinematic equation.

Due to the passivity of the input-output pair(ū,∆x), the standard passivity-based design [27]

suggests that the virtual controlū = −K̄∆x with K̄ being a symmetric positive definite matrix

would be qualified for realizing the image-space tracking, yet, not necessarily give guaranteed

performance due to the variation of the depthz(q). To accommodate the varying and uncertain

depth, we propose the following virtual control

ū = −αẑ(q)∆x (21)

whereα > 0 is a design constant and̂z(q) is the estimate ofz(q) which is obtained by replacing

az in z(q) with its estimatêaz. The use of the virtual control (21) is inspired by the performance

June 10, 2021 DRAFT
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guaranteed adaptive control for robot manipulators in [29,Sec. 3.2]. However, it should be

emphasized that the virtual control (21) is not the actual control since it does not take into

account the dynamic effect of the manipulator.

Keeping (21) in mind and based on (20), we define a joint reference velocity using the

estimated Jacobian matrix as

q̇r = Ĵ∗+ẑ(q)ẋr (22)

where Ĵ∗ is the estimate ofJ∗ which is obtained by replacinga⊥z and az in J∗ with their

estimateŝa⊥z and âz, respectively,Ĵ∗+ = Ĵ∗T
(
Ĵ∗Ĵ∗T

)−1
is the standard generalized inverse of

Ĵ∗ (see, e.g., [30]), anḋxr = ẋd−α∆x. Differentiating (22) with respect to time yields the joint

reference acceleration

q̈r =Ĵ∗+
[

ẑ(q)ẍr + ˙̂z(q)ẋr −
˙̂
J∗q̇r

]

+ (In − Ĵ∗+Ĵ∗)
˙̂
J∗T Ĵ∗+T q̇r (23)

where the standard result concerning the time derivative ofĴ∗+ is used andIn is the n × n

identity matrix.

Let us now define a sliding vector as

s = q̇ − q̇r (24)

whose derivative with respect to time can be written as

ṡ = q̈ − q̈r. (25)

Premultiplying both sides of (24) byJ∗ and using (5), (7), (22), and Property 1 yields

J∗s =z(q)ẋ+
1

2
ż(q)∆x− Ĵ∗q̇r

+ Y ⊥

z (q, q̇r)∆a⊥z −
1

2
Ȳz(q, q̇r, x+ xd)∆az

=z(q) (∆ẋ+ α∆x) +
1

2
ż(q)∆x+ Y ⊥

z (q, q̇r)∆a⊥z

−
[
Yz(q, ẋr) +

1

2
Ȳz(q, q̇r, x+ xd)

︸ ︷︷ ︸

Y ∗
z (q,q̇r,x+xd,ẋr)

]
∆az (26)

June 10, 2021 DRAFT
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where∆a⊥z = â⊥z − a⊥z and∆az = âz − az. Equation (26) can be rewritten as

z(q)∆ẋ+
1

2
ż(q)∆x =− αz(q)∆x− Y ⊥

z (q, q̇r)∆a⊥z

+ Y ∗

z (q, q̇r, x+ xd, ẋr)∆az + J∗s. (27)

Now we propose the following control law

τ = −Ks+ Yd(q, q̇, q̇r, q̈r)âd (28)

where âd is the estimate ofad andK is a symmetric positive definite matrix. The adaptation

laws for updatinĝad, âz, and â⊥z are given as

˙̂ad =− ΓdY
T
d (q, q̇, q̇r, q̈r)s (29)

˙̂az =− ΓzY
∗T
z (q, q̇r, x+ xd, ẋr)∆x (30)

˙̂a⊥z =Γ⊥

z Y
⊥T
z (q, q̇r)∆x (31)

whereΓd, Γz, andΓ⊥

z are symmetric positive definite matrices.

Remark 1: The feedback term−Ks in (28) can be interpreted as inverse-Jacobian-like control

based on (27), and it appears that both the image-space tracking errors and parameter esti-

mation errors∆az and ∆a⊥z are included. The parameter adaptation laws (30) and (31) rely

on the two regressor matrices that use the joint reference velocity q̇r and thus are actually

adaptive in the sense that they are updated in accordance with the updating of the parameter

estimates. The avoidance of the assumption of invertibility of the estimated depth is reflected in

(27). Asymptotically, the final closed kinematic loop behaves like the one with a feedforward

z(q)ẋd and a feedback−αz(q)∆x since the term related to the parameter estimation errors

Φ = −Y ⊥

z (q, q̇r)∆a⊥z +Y ∗

z (q, q̇r, x+xd, ẋr)∆az converges to zero asymptotically (which can be

shown by the consequence of Theorem 1 below). From the resultthat Φ → 0 as t → ∞, we

have that

−
(

Ĵ⊥

z − J⊥

z

)

Ĵ∗+ẑ(q)ẋd + [ẑ(q)− z(q)]ẋd

+
x+ xd

2

[

ˆ̇z(q)− ż(q)
]

Ĵ∗+ẑ(q)ẋd → 0 (32)

as t → ∞. Then, it can be shown by contradiction thatẑ(q)ẋd 6= 0 so long asz(q)ẋd 6= 0 or

ẋd 6= 0 ast → ∞. This can be interpreted as “ifẋd does not converge to zero, then the estimated

depthẑ(q) would converge to an invertible quantity”.

June 10, 2021 DRAFT
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Substituting the control law (28) into (12) gives

M(q)ṡ + C(q, q̇)s = −Ks + Yd(q, q̇, q̇r, q̈r)∆ad (33)

where∆ad = âd − ad is the dynamic parameter estimation error.

The closed-loop behavior of the visually servoed robotic system can then be described by

(27), (33), (29), (30), and (31).

We are presently ready to formulate the following theorem.

Theorem 1: For the visually servoed robotic system given by (5), (7), and (12), the control

law (28) and the parameter adaptation laws (29), (30), and (31) ensure the convergence of the

image-space tracking errors, i.e.,∆x → 0 and∆ẋ → 0 as t → ∞.

Proof: Following [31], [32], we take into account the Lyapunov-like function candidateV1 =

(1/2)sTM(q)s + (1/2)∆aTdΓ
−1
d ∆ad, and differentiatingV1 with respect to time along the tra-

jectories of (33) and (29) and exploiting Property 3, we haveV̇1 = −sTKs ≤ 0, which then

implies thats ∈ L2 ∩ L∞ and âd ∈ L∞.

The boundedness ofJ∗ implies thatJ∗s ∈ L2. In addition,z(q) is uniformly positive by as-

sumption. Then, there must exist a positive constantlM such that
∫ t

0
(1/z(q(r)))sT (r)J∗T (r)J∗(r)s(r)dr ≤

lM , ∀t ≥ 0. Based on the passivity of the system kinematics, consider anonnegative function

V2 =
1

2
z(q)∆xT∆x+

1

2
∆aTz Γ

−1
z ∆az +

1

2
∆a⊥T

z Γ⊥−1
z ∆a⊥z

+
1

2α

[

lM −

∫ t

0

1

z(q(r))
sT (r)J∗T (r)J∗(r)s(r)dr

︸ ︷︷ ︸

Π∗

]

(34)

where the termΠ∗ follows the result in [27, p. 118]. DifferentiatingV2 with respect to time

along the trajectories of (27), (30), and (31) gives

V̇2 = −αz(q)∆xT∆x+∆xTJ∗s−
1

2αz(q)
sTJ∗TJ∗s. (35)

Combining the following result derived from the standard inequality

∆xTJ∗s ≤
αz(q)

2
∆xT∆x+

1

2αz(q)
sTJ∗TJ∗s (36)

and (35) yields

V̇2 ≤ −
αz(q)

2
∆xT∆x ≤ 0. (37)

This implies that∆x ∈ L2 ∩L∞, âz ∈ L∞, andâ⊥z ∈ L∞. Then, we get the result thatx ∈ L∞,

ẑ(q) ∈ L∞, and ẋr ∈ L∞. From (22), we obtain thaṫqr ∈ L∞ if Ĵ∗ has full row rank (which

June 10, 2021 DRAFT
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ensures the existence of the generalized inverse ofĴ∗ according to the standard matrix theory).

Therefore,q̇ = s+ q̇r ∈ L∞. From the overall kinematics (5), we have thatẋ ∈ L∞ and further

∆ẋ ∈ L∞, which then implies that∆x is uniformly continuous. From the properties of square-

integrable and uniformly continuous functions [33, p. 232], we have that∆x → 0 as t → ∞.

From (30) and (31), we obtain that˙̂az ∈ L∞ and ˙̂a⊥z ∈ L∞, giving rise to the boundedness of

˙̂z(q) and ˙̂
J∗. Then, we obtain from (23) thaẗqr ∈ L∞. Based on (33) and the fact thatM(q)

is uniformly positive definite (by Property 2), we have thatṡ ∈ L∞. This immediately implies

that q̈ ∈ L∞. From the differentiation of (5) with respect to time, we have thatẍ ∈ L∞. Hence,

∆ẍ ∈ L∞, which means that∆ẋ is uniformly continuous. From Barbalat’s Lemma [26], we

obtain that∆ẋ → 0 as t → ∞. �

C. Adaptive Transpose Jacobian Control

The adaptive transpose Jacobian control is given as

τ =− Ĵ∗TK1Ĵ
∗s+ Yd(q, q̇, q̇r, q̈r)âd (38)

˙̂ad =− ΓdY
T
d (q, q̇, q̇r, q̈r)s (39)

˙̂az =− ΓzY
∗T
z (q, q̇, x+ xd, ẋr)∆x (40)

˙̂a⊥z =Γ⊥

z Y
⊥T
z (q, q̇)∆x (41)

whereK1 is a symmetric positive definite matrix. This controller turns out to be actually identical

to a reduced version of the one in [19] (i.e., by assuming thatthe image-space velocity can be

precisely obtained). Detailed analysis can be found in our preliminary work [22]. The difference

between the adaptive transpose Jacobian control scheme andthe adaptive inverse-Jacobian-like

control scheme not only lies in the feedback part but in the depth and depth-rate-independent

kinematic parameter adaptation laws. In fact, the regressor matrices used in (40) and (41) are

not adaptive in contrast with the adaptive ones used in the adaptive inverse-Jacobian-like control

scheme. The expense that we have to pay due to the use of non-adaptive regressor matrices is a

relatively strong feedback, i.e., the adaptive transpose Jacobian feedback−Ĵ∗TK1Ĵ
∗s in (38).

Remark 2:

1) In most industrial robotic applications, the available control command is the joint velocity

(position) rather than the joint torque. It seems interesting that one reduced version of the
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proposed adaptive inverse-Jacobian-like control does fit this scenario well, i.e., the adaptive

kinematic control scheme given by [from (22), (30), and (31)]






q̇r = Ĵ∗+ẑ(q)ẋr

˙̂az = −ΓzY
∗T
z (q, q̇r, x+ xd, ẋr)∆x

˙̂a⊥z = Γ⊥

z Y
⊥T
z (q, q̇r)∆x

(42)

where q̇r acts as the joint velocity command. This kinematic control scheme yields a

closed-loop system given by (27) and the two adaptation lawsin (42). Under the common

assumption that the joint servoing module guarantees that the joint velocity tends suffi-

ciently fast to the joint velocity command [i.e., the joint reference velocityq̇r given in

(42)] in the sense thats is square-integrable and bounded, the termJ∗s in (27) is square-

integrable and bounded. Then, taking the same nonnegative function as (34) and following

similar analysis as in the proof of Theorem 1 would immediately yield the conclusion that

the image-space tracking errors converge to zero.

2) The adaptive transpose Jacobian control, unfortunately, does not enjoy the above properties,

which is mainly due to the transpose Jacobian feedback in (38) and the parameter adaptation

laws (40) and (41).

IV. SIMULATION RESULTS

Consider a visually servoed robotic system composed of a standard three-DOF manipulator

and a fixed camera (as shown in Fig. 1). The focal length of the camera is set asf = 0.16 m

and the scaling factor of the cameraβ = 1200.0. Assume that the three axes of the camera

frame which are denoted byXC , YC andZC , respectively are aligned with the axesY0, Z0, and

X0 of the manipulator base frame, respectively, and the origins of the two frames has an offset

along the axisZC , i.e., dC = 6.0 m. The lengths of the three links of the manipulator are set as

l1 = 2.1 m, l2 = 2.1 m, andl3 = 1.9 m. The sampling period in the simulation is chosen to be

5 ms.

We first perform the simulation of the closed-loop system under the adaptive inverse-Jacobian-

like control with the controller parameters being chosen asK = 40.0I3, α = 10.0, Γd =

200.0I8, Γz = 0.008I3, Γ⊥

z = 260.0I2. The initial values of the kinematic and camera pa-

rameter estimates are chosen asl̂2(0) = l̂3(0) = 3.2 m, d̂C(0) = 3.2 m, f̂(0) = 0.09 m, and
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Fig. 1. Three-DOF manipulator with a fixed camera (from [19])

β̂(0) = 2000.0. The initial value of the dynamic parameter estimate is chosen as âd(0) =
[
0T6 , 30, 0

]T
while the actual value of the dynamic parameter isad = [8.2688, 2.9925, 1.3538,

0.2578, 10.6250, 1.8050, 46.3050, 13.9650]T. The desired trajectory in the image space is given

asxd =




53 + 21 cos(πt/3)

79 + 21 sin(πt/3)



. The simulation results are plotted in Fig. 2, Fig. 3, and Fig. 4.

As can be seen from Fig. 2, the image-space position trackingerrors indeed converge to zero

asymptotically. Fig. 3 illustrates the responses of the actual and estimated depths during the

motion of the manipulator. It appears that the estimated depth has the tendency of tracking the

actual depth, which is due to the depth parameter adaptation. Fig. 4 gives the response of the

control torques.

We then perform the simulation of the closed-loop system under the adaptive transpose

Jacobian control where the gainK1 is chosen asK1 = 0.0015I2, and the other controller

parameters, the initial parameter estimates, and the desired image-space trajectory are chosen to

be the same as above. The simulation results are shown in Fig.5, Fig. 6, and Fig. 7.

The comparison between Fig. 2 and Fig. 5 and that between Fig.3 and Fig. 6 show that the

inverse-Jacobian-like control tends to yield better/smoother dynamic responses of the tracking

errors and the estimated/actual depths than the transpose Jacobian control, yet from an overall

perspective, their performance is comparable.
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Fig. 2. Image-space position tracking errors
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Fig. 3. Actual and estimated depths
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Fig. 5. Image-space position tracking errors
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Fig. 6. Actual and estimated depths
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Fig. 7. Control torques
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V. CONCLUSION

In this paper, we have examined the tracking control problemfor visually servoed robotic

systems with uncertain kinematic, dynamic, and camera models. We start by formulating the

passivity of the overall system kinematics, and then present two passivity-based adaptive control

schemes. It is shown by the Lyapunov analysis approach that the image-space trajectory tracking

errors converge to zero. It is also shown that one reduced version of the adaptive inverse-Jacobian-

like controller is well suited to robots having an unmodifiable joint servoing controller yet

admitting the design of the joint velocity command. Simulations using a three-DOF manipulator

with a fixed camera are conducted to show the convergent property of the proposed adaptive

controllers.
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