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Passivity-Based Adaptive Control for Visually
Servoed Robotic Systems

Hanlei Wang

Abstract

This paper investigates the visual servoing problem footicbsystems with uncertain kinematic,
dynamic, and camera parameters. We first present the pgggsieiperties associated with the overall
kinematics of the system, and then propose two passivisgdbadaptive control schemes to resolve
the visual tracking problem. One scheme employs the adaptixerse-Jacobian-like feedback, and the
other employs the adaptive transpose Jacobian feedback.tké Lyapunov analysis approach, it is
shown that under either of the proposed control schemednthge-space tracking errors converge to
zero without relying on the assumption of the invertibilitithe estimated depth. Numerical simulations

are performed to show the tracking performance of the pregph@slaptive controllers.

Index Terms
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. INTRODUCTION

The interests in visual servoing for robots have lasted fanynyears (see, e.gl,|[1].![2].![3],
[4], [B], [6l, [7], [8], [2], [LQ]). The visual servoing schees can roughly be classified into
two categories (see, e.gl,| [2]): position-based schemeiraade-based scheme. The familiar
advantage of the image-based servoing scheme may be thgio#stble errors in camera
modeling and calibration are avoided, and that the redaatibthe error in the image space
implies that of the error in the physical task space (or Gate space). However, the direct
use of image features in feedback control complicates thenkatics of the robotic system, and

furthermore parametric uncertainty often arises (see, ED.
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For handling the nonlinearity and parametric uncertairitthe models of the visually servoed
robotic systems, many model-based adaptive control schaneeproposed, e.gl, [11], [12],[7],
[13], [14], [15], [10], [16], [17], [18], [19], [20]. The wak in [21], [11], [12], [18], [20] studies
the visual tracking problem under the assumption that thethdes constant, in which case,
the overall Jacobian matrix that describes the relatiowéen the joint-space velocity and the
image-space velocity is linearly parameterized (see, §ld], [4]). The results that explicitly
take into consideration the time-varying depth informataf the camera appear inl[7],_[14],
[15], [10], [186], [17], [19], and as is demonstrated in, e[@], [14], [10], the overall Jacobian
matrix in this case cannot be expressed as the lineariparameters form since the uncertain
depth acts as the denominator in the overall Jacobian mdkthr adaptive schemes inl[7],
[10], by adaptation to the system uncertainty, ensure thatrhage-space position is regulated
to the desired one asymptotically. The adaptive scheme&4h [15], [1€], [17], [19] realize
image-space trajectory tracking regardless of the systecertainty (it is noted that the work
in [16] confines to the case of the target object with the dwespherical geometry so as to
exploit certain invariant quantities, limiting its ap@ittons). The tracking control schemes in the
existing work (e.g.,[[14],[15],.[17],119]), however, rebn the assumption of invertibility of the
estimated depth (or the use of parameter projection to gteeahis) to ensure the tracking error
convergence, due in part to the inadequate exploitatiomef(potentially beneficial) structural
property of the overall kinematics.

In this paper, we start from formulating a new form of paggiéssociated with the overall
kinematics of the visually servoed robotic system, basedloich, we present two adaptive con-
trollers for 3-dimensional visual tracking that neithelieg on the assumption of the invertibility
of the estimated depth nor the use of parameter projectgorithm to ensure its invertibility, in
contrast to[[14],[[15],[[17]. The avoidance of this assumptr parameter projection is important
in that no a priori knowledge of the depth information (useddalculating the parameter region)
is required and in addition, we do not need to concern wherestimated depth parameter finally
stays. Among the two controllers, one employs the adaptiverse-Jacobian-like feedback and
the other employs the adaptive transpose Jacobian feedBackwork extends the case of the
constant depth considered in [20] (adaptive inverse Jaoatontrol) and[11] (adaptive transpose
Jacobian control) to that of the time-varying depth, by ekpig the depth-related passivity of
the overall kinematics and incorporating adaptation toutheertain depth. We also show that one
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reduced version of the adaptive inverse-Jacobian-likeérother (referred to here as a separation
approach due to its separation property, which is in contiaghe dynamic scheme in_[16]
that relies on a target object with the specific sphericahggoy, persistent excitation condition,
and an additional Cartesian-space sensor) is a qualifiqatige&inematic scheme that fits well
for robots having an unmodifiable joint servoing controfet admitting the the design of the
joint velocity command (e.g., most industrial robots)—s$&mark 2, which is in contrast to
the existing kinematic schemes (e.d., [1], [2]) that laclequhtion consideration of the robot
dynamics. While the adaptive transpose Jacobian contrcdle be considered as a special case
of [19], the depth-related passivity and the adaptive iseelacobian-like controller with the
separation property constitute the contribution of ouultewith respect to[[19].

In summary, the major contribution of this work is that theggity properties associated with
the overall kinematics are explicitly presented, and tatadaptive controllers are proposed and
shown to be convergent without the need of the assumptidrittbastimated depth is invertible;
in addition, the separation property of the adaptive irelacobian-like controller yields an
adaptive kinematic controller applicable to most ind@astrobots. It may be worth remarking
that for most image-space tracking tasks (i.e., the desmede-space velocity is not identically
zero at the final state), the invertibility of the estimatexpth (at the final state) is required and
can be ensured by the proposed controllers, but most exiséisults cannot ensure this and
the common practice is to rely on assumption or use a relgta@mnplex projection algorithm
(requiring certain a priori information of the depth and tthetermination of an appropriate
parameter region). A preliminary version of the paper wasented in[[22] where the passivity
of the overall kinematics and adaptive transpose Jacolmatrat were presented, and here we

expand this version to additionally cover the adaptive lisgelacobian-like control.

1. KINEMATICS AND DYNAMICS

In this paper, we consider a visually servoed robotic systkat consists of am-DOF
(degree-of-freedom) manipulator and a standard fixed penbamera (see, e.gl, [23]), where
the manipulator end-effector motion is mapped to the imggece by the camera. For the

convenience of the theoretical formulation, the number h# teature points that are under
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consideration is determined as Bne

A. Kinematics

Let z € R? andr € R?, respectively, denote the position of the projection offessture point
on the image plane and the position of the feature point wadpect to the base frame of the

manipulator. The mapping fromto x can be written ad [23][[7]

_ .y 1
it @)

whereH = [D,b] € R¥>* (with D € R*>*® andb € R?) is the perspective projection matrix,
q € R™ denotes the joint position of the manipulator, ang) = dlr + b; € R with b3 being
the third element ob and d2 being the third row ofD denotes the depth of the feature point
with respect to the camera frame. The relationship betwieennage-space velocity and the
feature-point velocity- can be written ad [7]

1

:b:%([)—xdg)f 2)

where D € R?3 is composed of the first two rows d?, and N(z) = D — xd} € R?*3 is the
depth-independent interaction matrix defined [by [7]. Obslg, the time derivative of the depth
can be written as(q) = dl7 [7]. Furthermore, it is assumed that the depth) is uniformly
positive during the motion of the manipulator.

Let r, € R? denote the position of a reference point on the end-effesttr respect to the
manipulator base frame its translational velocity, and, € R* the angular velocity of the

end-effector expressed in the manipulator base frame. €leitiesr, andw, relate to the joint

velocity ¢ by [24], [25]

The consideration of one feature point here is for the sakeonfenience of theoretical formulation, and the extension
the case of multiple feature points with different deptha be directly performed in a way similar tb [19]. For instanoe
the case of three feature points, we can stack the image-gmgitions of the three feature points € R?, 2 € R?, and
z3 € R as a single vectar = [z7, 23, xST}T and the image Jacobian matrices associated with thesedgaiints as a single
matrix. The ensuing procedure would then be straightfaiwlrmay be worth noting that in this case, the depths areéotly

controlled by controlling sufficient number of feature psin

June 10, 2021 DRAFT



where J,.(q) € R%*™ denotes the manipulator Jacobian matrix.

The relationship between the feature-point velocitgnd the joint velocityj can be written

as [14] (see alsa [2][ [24][125])

i=[h -S| @i (4)
————
Jy
wherel; is the3 x 3 identity matrix,c = [c1, ca, 03]T € R? denotes the position of the feature point
with respect to the reference point on the manipulator dfetter expressed in the manipulator

base frame, and the skew-symmetric fofffr) is defined as

Combining [2) and[{4) yields the following overall kinenwagquation([7], [[10]

. 1 )
=20 N(x;jf{r(Q) q (5)

whereJ(q, x) is a Jacobian matrix. The structural property[df (2) allowsaidecomposé(q, z)
as
J(an) :pJer(QZ_xggijr(QZ (6)
J;?q) sz(q)

where J}(q) is a Jacobian matrix that maps the joint velogjtyo a plane which is parallel to

the image plane (i.e., perpendicular to the depth diretiand J,(¢) is a Jacobian matrix that
describes the relation between the changing rate of théendépt andq (see, e.g.,[7]), i.e.,

#(q) = J.(q)q (7

We note that whether the deptly) is time-varying or not, the Jacobian mattx (¢) is contained
in J(q, ). For this, as in[[19], we refer td-(¢) as thedepth-rate-independent Jacobian matrix.
The overall kinematicd{5) has the following property.
Property 1: For an arbitrary vectop € R?, the two quantities(q)¢ andz(q)¢ depend linearly
on a constant depth parameter vecatore R™ [7], [10], i.e.,

2(q)¢ =Y(q, 9)a- (8)
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which also directly yields
¢ J(0)q = 2(9)¢ = Yz(q, 4, p)a. (10)

whereY,(q, ¢) € R¥*™ andY.(q,q,¢) € R*>™ are regressor matrices. In additiofq, x)q

can be linearly parameterized [10], which thus leads to

T =Y (q.&)a; (11)

wherea: € R™ is the unknown depth-rate-independent parameter vegterk" is a vector,

andY(q, &) € R**™ is the depth-rate-independent kinematic regressor matrix

B. Dynamics
The dynamics of the.-DOF manipulator can be written ds [26], [25]

M(q)§+C(g,¢)q+9(q) =T (12)

whereM (q) € R™*" is the inertia matrix('(q, ¢) € R™*"™ is the Coriolis and centrifugal matrix,
g(q) € R™ is the gravitational torque, and € R™ is the joint control torque. In this paper,
we assume that the number of the DOFs of the manipulator idesstthan two, i.e.n > 2.
Three familiar properties associated with the dynamic rh@@2) that shall be useful for the
subsequent controller design and stability analysis atedias follows (see, e.g., [26], |25]).

Property 2: The inertia matrix} (¢q) is symmetric and uniformly positive definite.

Property 3: The Coriolis and centrifugal matri&'(q, ¢) can be appropriately chosen such that
M(q) — 2C(q,q) is skew-symmetric.

Property 4: The dynamic mode[(12) depends linearly on a constant dynparameter vector
aqg € RP, thus yielding

whereY;(q, ¢, ¢, é) € R™ is the regressor matrix; € R" is a differentiable vector, and is

the time derivative of.
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Ill. ADAPTIVE CONTROL

In this section, we aim to design adaptive controllers f@ ¥isually servoed robotic system
by formulating and exploiting the passivity of the overailhd&matics. The control objective is
to ensure the converge of the image-space tracking errersyi— v, — 0 andt — &, — 0 as
t — oo, Wherex,; € R? denotes the desired image-space position and it is assumaed;t i,

and i, are all bounded.

A. Passivity Associated With the Overall Kinematics

Combining [5) and[{6), we can rewrite the overall kinemafg§sas

()i + ye = | 120 - o) (14)

7

g
u

whereuw is a virtual or intermediate control input.
Proposition 1: The system[(14) is passive with respect to the input-outpirt (@, x).
Proof: Consider the following function (which is actually one paftthe Lyapunov function
in [[7])
Ve, = @xTx. (15)

Differentiating V, with respect to time along the trajectories bf1(14) yields
V,=2"u (16)
which can be rewritten as
[0ty = i) - vi0) = Va0, 7)

This implies that the system (l14) is passive with respech&itput-output paifu, x) in the
sense of([2]7]. [
According to the standard passivity-based design metloggdP7], a simple output feedback
for v can result in the convergence of the outpub the origin (the case of nonzero equilibrium
shall be similar). The regulation algorithm of [7] can be siolered as a combined application of
the passivity of the overall kinematics here and the stahpassivity of the manipulator dynamics
(see, e.g.[I25]). The passivity concerning the overalkkiatics has also been examined_in [5],

yet the storage function inl[5] is independent of the deptilemine storage function considered
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here is explicitly related to the depth. The main benefit tfoiducing this depth-related passivity,
as is shown later, is the avoidance of the restrictive assompf the invertibility of the estimated
depth without relying on parameter projection.

The control above, however, is not enough for realizing thieaive of image-space tracking,
in which case, it is expected to drive the tracking ertar = = — 4 to the origin. To this end,
we would like to apply the feedback passivation stratégy, [28., let the controk: be given by

u=1u+z(q)Tq + %z’(q)xd (18)

feedback passivation

whereu becomes the new virtual control input. Substitutingl (18 id4) gives

-~

2(q) Az + %z’(q)Am = 1. (19)

Proposition 2: The system[(119) is passive with respect to the input-outpirt (@, Ax).
The proof of Proposition 2 shall be similar to that of Proiosi 1.
Using (1), we can rewritd_(18) as

T+ x4
2

J*
Obviously, if the Jacobian matrix* has full row rank, the virtual contrai can be realized by

J:a) | (20)

J/

i =—z(q)iq + | J:(q)

the joint velocityg.

B. Adaptive Inverse-Jacobian-like Control

Let us now start the adaptive controller design based on d@issiyity enjoyed by the overall
kinematic equation.

Due to the passivity of the input-output pair, Az), the standard passivity-based design [27]
suggests that the virtual control= — K Az with K being a symmetric positive definite matrix
would be qualified for realizing the image-space trackingf, ynot necessarily give guaranteed
performance due to the variation of the deptlh). To accommodate the varying and uncertain

depth, we propose the following virtual control
u=—az(q)Azx (21)

wherea > 0 is a design constant aridq) is the estimate of(q) which is obtained by replacing

a, in z(q) with its estimatei,. The use of the virtual contrd[ (21) is inspired by the perfance
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guaranteed adaptive control for robot manipulators[in [88¢. 3.2]. However, it should be
emphasized that the virtual contrg {21) is not the actualtrmb since it does not take into
account the dynamic effect of the manipulator.
Keeping [Z21) in mind and based oh_[20), we define a joint refarevelocity using the
estimated Jacobian matrix as
G, = J2(q), (22)

where J* is the estimate of/* which is obtained by replacingl and a. in J* with their
estimatesi! and a., respectively,J*t = Jj*T(J*J*7) ™" is the standard generalized inverse of
J* (see, e.g.[130]), and, = &, — aAx. Differentiating [22) with respect to time yields the joint

reference acceleration
G =J" [2@)i + Ha)ie — TG
+ (In - j*—i—j*)j*Tj*-i—Tq'r (23)

where the standard result concerning the time derivativg*of is used andl, is then x n
identity matrix.

Let us now define a sliding vector as
s=4q—q (24)
whose derivative with respect to time can be written as
$=q4— G (25)
Premultiplying both sides of (24) by* and using[(b),[{(7),[(22), and Property 1 yields

1 o
J*s =z(q)& + 52(q)Az — J% G,

+ Y (g, 4-)Aar — =Y.(q, 4o, v + 1) A,

2

1
=2(g) (At + alw) + 52(q) Ax + Y- (q,4,) Aar
1.

—[n@@n+2n@@nm+mﬂA% (26)

(. J/
-~

YZ* (q,(jr,fﬂ—‘r.fbd,fbr)
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whereAal = a- — af and Aa, = a. — a.. Equation[(2B) can be rewritten as

z

1
Ag)Ai + Si(q)Ar = — az(q) Az = VMg, ¢,) Aoz
+ Y (q,d4r, v + 2a, ) A, + J7s. (27)
Now we propose the following control law

T = —KS‘F}/;l(unj?q'TaéjT)dd (28)

wherea, is the estimate ofi; and K is a symmetric positive definite matrix. The adaptation

laws for updatingis, a., anda’ are given as

ag = — LY} (q,d, G, dr)s (29)
&z = - FZYVZ*T(CL q'T7 T+ x4, IIZ'T)AIIZ' (30)
a; =TV (q, ) Ax (31)

wherel'y, T',, andI'L are symmetric positive definite matrices.

Remark 1: The feedback term-K's in (28) can be interpreted as inverse-Jacobian-like cbntro
based on[(27), and it appears that both the image-spacengaekrors and parameter esti-
mation errorsAa, and Aa’l are included. The parameter adaptation laws (30) (3g) re
on the two regressor matrices that use the joint referent&citye ¢, and thus are actually
adaptive in the sense that they are updated in accordanbeth@tupdating of the parameter
estimates. The avoidance of the assumption of inverijhilitthe estimated depth is reflected in
(27). Asymptotically, the final closed kinematic loop bebsnlike the one with a feedforward
z(q)z4 and a feedback-az(q)Ax since the term related to the parameter estimation errors
¢ = -Y1(q,q¢)Aat +Y(q, G, v+ 34, 2,)Aa, cOnverges to zero asymptotically (which can be
shown by the consequence of Theorem 1 below). From the ré#stlt — 0 ast — oo, we

have that

= (= JE) Fra@)ia+ [20) - 2())ia
L i) - 2(g)] I 2(a)ia — 0 (32)

ast — oco. Then, it can be shown by contradiction tht)i, # 0 so long asz(q)iq # 0 or

tq # 0 ast — oo. This can be interpreted as “if; does not converge to zero, then the estimated

depthz(q) would converge to an invertible quantity”.
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Substituting the control law (28) intd_(112) gives
M(q)s + Clq,q)s = —Ks + Ya(q. 4, 4, §,)Aaq (33)

where Aay = a4 — ag4 IS the dynamic parameter estimation error.

The closed-loop behavior of the visually servoed robotisteyn can then be described by
(21), (33), [29), [(3D), and (B1).

We are presently ready to formulate the following theorem.

Theorem 1: For the visually servoed robotic system given by (8), (7)d €B2), the control
law (28) and the parameter adaptation lalvs (Z9)] (30), adll éBsure the convergence of the
image-space tracking errors, i.&Ax — 0 and Az — 0 ast — oo.

Proof: Following [31], [32], we take into account the Lyapunovdikunction candidat®; =
(1/2)sTM(q)s + (1/2)AalT;'Aay, and differentiatingy; with respect to time along the tra-
jectories of [3B) and[{29) and exploiting Property 3, we h&ye= —s” Ks < 0, which then
implies thats € Lo N L, anday € L.

The boundedness of* implies thatJ*s € £,. In addition,z(q) is uniformly positive by as-
sumption. Then, there must exist a positive constarguch thatf;; (1/z(q(r)))s” (r) 7 () J*(r)s(r)dr <
Iy, Vt > 0. Based on the passivity of the system kinematics, considemaegative function

1 1 1
Vy ziz(q)AxTAx + §AaZF;1Aaz + §AajTFj_1Aaj

2a

-

1 ! 1 T T *
+_[zM— / Sy OO st (34)

e
where the termlI* follows the result in[[27, p. 118]. Differentiatiny, with respect to time
along the trajectories of (27), (30), arid31) gives

Vo = —az(q)AzT Az + AT J s — st s, (35)
2az(q)
Combining the following result derived from the standardqgnality
AaT s < CAD Nyt py o L g e (36)
2 2a2(q)
and [35) yields
Vy < —%@AxTAx <0. (37)

This implies thatAz € £,N L, a. € L, andal € L. Then, we get the result thate £,
2(q) € L, andz, € L. From [22), we obtain thaj. € L if J* has full row rank (which
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ensures the existence of the generalized inversg afccording to the standard matrix theory).
Therefore,j = s + ¢, € L. From the overall kinematic§l(5), we have that £., and further
Az € L, which then implies thatAz is uniformly continuous. From the properties of square-
integrable and uniformly continuous functions [33, p. 232 have thatAx — 0 ast — oo.
From [30) and[{31), we obtain that € £, and &j € L., giving rise to the boundedness of
Z(¢) and J* Then, we obtain from[(23) that. € £... Based on[(33) and the fact thaf(q)

is uniformly positive definite (by Property 2), we have that L. This immediately implies
that g € £L... From the differentiation of {5) with respect to time, we bahati € £.,. Hence,
Az € Lo, which means thaiAz is uniformly continuous. From Barbalat’'s Lemmia [26], we
obtain thatAz — 0 ast — oc. [

C. Adaptive Transpose Jacobian Control

The adaptive transpose Jacobian control is given as

T=—JTK\J"s + Ya(q,4, 4, ) ta (38)
ta = —TaY (g, 4, G Gr)s (39)
a, =—1.Y 7 (q, ¢,z + xq, &) Az (40)
ar =LY (q,¢)Ax (41)

where K is a symmetric positive definite matrix. This controllerrisiout to be actually identical
to a reduced version of the one in_[19] (i.e., by assuming tih@timage-space velocity can be
precisely obtained). Detailed analysis can be found in oeliminary work [22]. The difference
between the adaptive transpose Jacobian control schemtharadiaptive inverse-Jacobian-like
control scheme not only lies in the feedback part but in thetide@nd depth-rate-independent
kinematic parameter adaptation laws. In fact, the regreswidrices used i (40) an@_(41) are
not adaptive in contrast with the adaptive ones used in thptae inverse-Jacobian-like control
scheme. The expense that we have to pay due to the use of aptivadegressor matrices is a
relatively strong feedback, i.e., the adaptive transpasehian feedback-J*7 K, .J*s in (38).

Remark 2:

1) In most industrial robotic applications, the availabtsttol command is the joint velocity

(position) rather than the joint torque. It seems intengsthat one reduced version of the
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proposed adaptive inverse-Jacobian-like control doeiiditscenario well, i.e., the adaptive
kinematic control scheme given by [froin{22), (30), ahd [31)

G, = JF(q)d,

a, = —T.YT(q, 4o, @ + xq, &) A (42)

a; =TV (q,4,) A0
where ¢, acts as the joint velocity command. This kinematic contrchesne yields a
closed-loop system given bly (27) and the two adaptation law42). Under the common
assumption that the joint servoing module guarantees Heajaint velocity tends suffi-
ciently fast to the joint velocity command [i.e., the joirdference velocityj,. given in
(42)] in the sense that is square-integrable and bounded, the tefm in (27) is square-
integrable and bounded. Then, taking the same nonnegatiotidn as[(34) and following
similar analysis as in the proof of Theorem 1 would immedyayeeld the conclusion that
the image-space tracking errors converge to zero.

2) The adaptive transpose Jacobian control, unfortunates not enjoy the above properties,

which is mainly due to the transpose Jacobian feedba¢k Jref@8the parameter adaptation

laws [40) and[{(41).

[V. SIMULATION RESULTS

Consider a visually servoed robotic system composed of redatd three-DOF manipulator
and a fixed camera (as shown in Fig. 1). The focal length of #mera is set ag = 0.16 m
and the scaling factor of the camefa= 1200.0. Assume that the three axes of the camera
frame which are denoted h¥., Y- and Z., respectively are aligned with the axgs ~7,, and
X, of the manipulator base frame, respectively, and the iginthe two frames has an offset
along the axisZ¢, i.e.,dc = 6.0 m. The lengths of the three links of the manipulator are set as
I =21m,l,=2.1m, andl; = 1.9 m. The sampling period in the simulation is chosen to be
5 ms.

We first perform the simulation of the closed-loop systemeurtle adaptive inverse-Jacobian-
like control with the controller parameters being chosenkas= 40.0/3, o = 10.0, I'y =
200.0lg, I, = 0.00813, I' = 260.0I,. The initial values of the kinematic and camera pa-

rameter estimates are chosenla®) = I5(0) = 3.2 m, do(0) = 3.2 m, f(0) = 0.09 m, and
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Yo

Camera

Z

Manipulator

Xo

Fig. 1. Three-DOF manipulator with a fixed camera (from] [19])

3(0) = 2000.0. The initial value of the dynamic parameter estimate is ehoasiy(0) =
[06T,30,0]T while the actual value of the dynamic parameterjs= [8.2688,2.9925,1.3538,

0.2578,10.6250, 1.8050, 46.3050, 13.9650]7. The desired trajectory in the image space is given

53 + 21 cos(nt/3) _ _ N _ _
aszy = . The simulation results are plotted in Fig. 2, Fig. 3, and. Big

79 + 21 sin(nt/3)
As can be seen from Fig. 2, the image-space position trackirays indeed converge to zero

asymptotically. Fig. 3 illustrates the responses of thei@cand estimated depths during the
motion of the manipulator. It appears that the estimatedhdbps the tendency of tracking the
actual depth, which is due to the depth parameter adaptdtign 4 gives the response of the
control torques.

We then perform the simulation of the closed-loop systemeurtie adaptive transpose
Jacobian control where the gaili; is chosen ask; = 0.0015/5, and the other controller
parameters, the initial parameter estimates, and theedesitage-space trajectory are chosen to
be the same as above. The simulation results are shown ibFkjg. 6, and Fig. 7.

The comparison between Fig. 2 and Fig. 5 and that betweerBFagd Fig. 6 show that the
inverse-Jacobian-like control tends to yield better/stheodynamic responses of the tracking
errors and the estimated/actual depths than the transposeidn control, yet from an overall

perspective, their performance is comparable.
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Fig. 2. Image-space position tracking errors
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Fig. 3. Actual and estimated depths
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Fig. 4. Control torques
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V. CONCLUSION

In this paper, we have examined the tracking control problemvisually servoed robotic

systems with uncertain kinematic, dynamic, and camera faodlée start by formulating the

passivity of the overall system kinematics, and then prelsem passivity-based adaptive control

schemes. It is shown by the Lyapunov analysis approachhbantage-space trajectory tracking

errors converge to zero. Itis also shown that one reducesioreof the adaptive inverse-Jacobian-

like controller is well suited to robots having an unmodifealjoint servoing controller yet

admitting the design of the joint velocity command. Simaas using a three-DOF manipulator

with a fixed camera are conducted to show the convergent gyopethe proposed adaptive

controllers.
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