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Abstract—In this work we probe the impact of channel the bicycle codes and explored the conjecture that the best
estimation on the performance of quantum LDPC codes. Our quantum error-correcting codes will be closely relatedhe t
channel estimation is based on an optimal estimate of the revant best classical codes. and [8] Pouti al. proposed serial

decoherence parameter via its quantum Fisher information. turb des f t fi A detailed hi
Using state-of-the art quantum LDPC codes designed for the urbo codes for quantum error correction. A more detai !

quantum depolarization channel, and utilizing various quaitum  tory on the development of QECC can be found elsewkege
probes with different entanglement properties, we show how [9], [10]. More recently, many works attempting to improve

the performance of such codes can deteriorate by an order quantum LDPC code performance have been published, and
of magnitude when optimal channel identification is fed intoa in this regard the recent codes 6f [11],[12], and][13] based

belief propagation decoding algorithm. Our work highlights the . lic struct b idered santat
importance in quantum communications of a viable channel ieén- on quasi-Cyclic structure can be considered as representa

tification campaign prior to decoding, and highlights the trade- Of state-of-the-art quantum LDPC codes.

off between entanglement consumption and quantum LDPC code  Hitherto, in investigations of the performance of quantum
performance. LDPC codes it has been assumed that perfect knowledge of the
guantum channel exists. Of course in practice this is not the
case. In this work we probe the impact of imperfect channel

A quantum error correction code (QECC) is intended to prénowledge on the performance of quantum LDPC codes. We
tect fragile quantum states from unwanted evolution armhall will utilize optimal estimates of the channel derived from
for robust implementations of quantum processing devicegiantum Fisher information about the channel parameters.
Compared to classical communication systems, error corr@tore specifically, we will investigate the performance of
tion in quantum communication channels is challenging;esinquantum codes over the depolarization channel when optimal
a quantum bit, namely gubit has continuous states ratheestimates of the depolarizing parameter are available.
than two discrete states. Implementation of practical dac®  In section Il we first briefly review quantum communica-
and decoders in quantum codes is further complicated by tiwns and thestabilizer formalism for describing QECCs, and
fact that a quantum state is usually affected by measuremetiscuss their relationship to classical codes. In sectibwé
and that an unknown quantum state cannot be duplicated. review quantum channels and quantum channel identification

For classical error correction, it is well known that praati In section IV we present our simulation results using exggti
decodable codes exist. When an optimal decoder is appligdantum stabilizer codes frorm ]11] over the commonly used
classical codes can achieve information rates close to tpeantumDepolarizing Channelshowing how the imperfect
Shannon limit. Low-density parity-check (LDPC) codes [2] [ channel identification impacts the codes performance ly,ast
are an example of such codes. The sparseness of the patitg-draw some conclusions and discuss future works.
check matrices makes the codes easy to encode and decode,
even when communicating very close to the Shannon limit. It Il. QUANTUM CoDES
is established that the sum-product message passingtalgori The analog of classical ‘bit’ is a ‘qubit’, which can be
is an optimal decoding algorithm for LDPC codes providetépresented as a quantum stat® in a two-dimensional
that the factor graph of LDPC codes is a tree structueeno complex vector space. This can be written asuperposition
cycles exist. .

Following the discovery of CSS (Calderbank, Shor and [¥) = a0 0) + e 1) @)
Steane) codes [3][4] and stabilizer codes [5], it has beerere oy and a; are complex numbers satisfyingy|? +
known how quantum error-correction codes can be develoged|? = 1. The quantum state ol qubits has the form
in a similar manner to classical codes. Quantum LDPC codg3a; |s), wheres runs over all binary strings of lengtN.
based on finite geometry were first proposed_in [6]. Howevérhe 2N independent complex coefficients then satisfy the
a key constraint on the matrix representing the stabilizemrmalization constrainivg|” + || + ... + |aon_1]* = 1.
(arising from commutativity requirements) makes the desiy Each of the2”" states|000...0),/000...1) ...|111...1) is
quantum LDPC codes difficult. In][7], Mackast al. proposed shorthand for theN-fold tensor produci0) ® [0)... ® |0),

I. INTRODUCTION
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[0)®]0)...®[1),...]1)®|1)...®|1). Suppose a quantum statedn the X-containing operator d represents theX operator

|t)) of size N is sent through a quantum noisy channel. Thigikewise for theZ operator), and for I. The resulting binary

outcome of the transmission can be writtenfag)), where formalism of the stabilizer is a matrid = (A;|A43) of 2N

the error operatoF takes the form off = e; ®es®...®en, columns andM = N — K rows, whered; and A represent

which can be considered as hrfold tensor product of errors X -containing andZ-containing operators, respectively

operators;, wherej =1...N. Example 1:For example, the set of stabilizers [d (2) appears
A typical quantum channel is theauli Channelin which as the binary matrixd

the error operators can be modeled by the three differert Pau

operators

0 01 01 1 1.0 0 0

0 1 1 0 0 —i 100 10 01 100

X‘<10>’Z_<0—1>’Y_<¢ o)’ A=A =1 6 1 g0 100110
and the2 x 2 identity matrix /. These matrices form a Pauli 10100 00011 ©)

group Py that act onN qubits. The elements aPy either
commute or anti-commute, and for all error operatbrsF' €
Py, the commutativity between them is defined as

(1 if EF=FE A AT + A, AT =0 (6)
EOF_{—l if EF=—FE - ’ '

In what follows we will also refer to the Pauli matricés.X,
Y, andZ, asog, o1, 02 andos, respectively.

Due to the requirement that stabilizers must commute, a
constraint on a general matrix can be written a.qg.[[7].

Note that the quantum syndrome can be conceptually consid-

ered as an equivalent to the classical syndrotngwhere A

is a binary parity-check matrix andis a binary error vector.

A. Preliminary on Quantum Stabilizer Codes To summarize, the property of stabilizer codes can be
A stabilizer generato$ that encodess qubits in NV qubits diréctly inferred from classical codes. Any binary pariyeck

consists of a set of Pauli operators on tNequbits closed matrix of S|zeM>_<_2N that sat|s_f|es the constraint [d (6) defines

under multiplication, with the property that any two operat & guantum stabilizer code with rafe = & that encodest

in the setcommute so that every stabilizer can be measuredUPits into NV qubits.

simultaneously. An example of a stapll|zer generaolis C. CSS Codes

shown below fork = 1, N = 5 representing a ratg quantum

stabilizer code, As mentioned earlier, an important class of codes are the
A
7 7 x I X CSS Codef3][4]. These have the form
|\ X z z X I H | 0
=1 x z z x @) A—< O‘G) @)
X I X Z Z

. . where H and G are My x N and Mg x N matrices,
Consider now a set of error operatdi&,, } taking a state oqhectively, {1, does not necessary equaltf). Requiring
|4) to the corruptgd stat®, [1). A given error o_peratorenher HGT = 0 ensures that constrairlfl (6) is satisfied(if= H,
commutes or anti-commutes with each stabilifgr(row of ¢ resulting CSS code structure is calledl#al-containing

the generatot) wherei = 1...N — K. If the error operator e \ost classical (good) LDPC codes do not satisfy the
commutes withS; then constraint[(B)

SiBo ) = EaS; |¢) = Ea |¢) ®3)

and therefore?, |¢) is a+1 eigenstate of5;. Similarly, if it

anti-commutes wittd;, the eigenstate is 1. The measurement . o
outcome ofE, |¢) is known as thesyndrome Given some initial system stat@,), a decoherence model

] ) can be built by studying the time evolution of the systemesat

B. Conversion between Quantum and Classical Codes  jnteraction with some external environment with initiahtst

To connect quantum stabilizer codes with classical LDP@.). Without loss of generality we can assufide) and|V,)
codes it is useful to describe any given Pauli operator @me initially not entangled with each other.
N qubits as a product of aX-containing operator, &- In terms of the density operators = |¥) (U] andp, =
containing operator and a phase facterl, —1,i, —i). For |¥.) (U], the initial state of the combined total system can
example, the first row of matriX]2) can be expressed as be written asp, ® p.. The closed evolution 0, ® p. can
be described by a unitaryy via U(p, ® p.)U'. To obtain
the output system statp2“!, after some closed evolutioif,
we usep?t = e (ps) = Tre [U(ps ® pe)UT]| where Tg is the
Thus, we can directly express té-containing operator and partial trace over the environment’s qubits. The chapfiél =
Z-containing operator as separate binary strings of lefgth  (ps) is a completely positive, trace preserving, map which

I1. QUANTUM CHANNEL MODELS AND ESTIMATION

A. Quantum Channel Models

ZZXIX = (IIXIX) x (ZZIII). (4)



provides the required evolution of. It is possible to describe we will take a different tact. Here we will simply assume an
such maps directly using an operator-sum representation, experimental set-up is realized that obtains the inforomati
N N theoreticaloptimal performance.

e (ps) = iKapsKl, where ZKlKa =1, (8) _Optimal channel identification via the .use_of the quantum
Fisher information has been well studied in recent years,

a=1 a=1
articularly in regard to the determination of the paramgte
and whereK,—; . n, represent the so-called Kraus operatorg L
with N, being the number of Kraus operatorsi[14]. of the depolarizing channeé(g. [13], [16], [17], [I&], [19)).

Defining ps = I'¢(o), the quantum Fisher information about

There are of course decoherence channels modeled Jpgan be written as

specific qubit-environment interactions (e.g. see [9])tHis
work we will consider only the depolarization channel. Let TP = J(pe) =t 12
us introduce the depolarization paramejgrof a qubit where ) (pr) = trlos] Ly,
0 < f <1, with f = 1 meaning complete depolarizationyhere ., is the symmetric logarithmic derivative defined
and f = 0 meaning no depolarization. In terms of the Pauliypjicitly by
matriceso; (herei = 0, 1,2, 3), the depolarization channel for
a single qubit can be defined agp,) = (1 — f)ps + f%. 20¢ps = Lyps + psLy,
3
Using the relations, = § | ps + Zlojpscrj , we see that and whered; signifies partial differential w.r.tf. With the

.7: - . . .
the Kraus operators for the depolarization channel can Bdantum Fisher information in hand, the quantum Cramer-Rao

: 3f 7 7 bound can then be written as
written Ky = /1 — 2o, Ky = \/;01, Ky = \/;o—y, and

—1
K, = \/%o—z. Note that it is also possible to parameterize the mse M = (NmJ(f))

3
izati —(1—f I o A .
depolarization channel agp,) = (1 f')ps + 3 J; 9iPs%5»  where mse {f] is the mean square error of the unbiased

where f/ = 3 f. This latter form is more convenient for de-estimatorf, and N, is the number of independent quantum
coding purposes, and below we terfhas theflip probability. measurements. In the simulations pursued here we will assum
N the channel is constant over the block length of the codeword
B. Quantum Channel Estimation and unless otherwise stated we assuWg = 1. Further,
The issue of quantum channel identification (quantum pr@re will assume two different cases for the quantum probe.
cess tomography) is of fundamental importance for a range case A we will assume the qubit probe is in a pure
of practical quantum information processing problerasy( unentangled state, and as suchl [15] the quantum Fisher infor
[9]). In the context of LDPC quantum error correction codesnation aboutf relevant to each codeword can be shown to be
it is normally assumed that the quantum channel is known(f) = [f (2 — f)]"'. In caseB we adopt the scenario where
perfectly in order for the code design to proceed. In realigne pair of maximally entangled qubit pairs is consumed per
of course, perfect knowledge of the quantum channel is ng&nsmission of each codeword (one of the qubits travehses t
available - only some estimate of the channel is availablghannel). In this latter case the quantum Fisher informatio
The key focus of this work is an investigation of this issuebout f relevant to each codeword can be shown to be

To make progress we will assume a depolarization channe{ ) — (32— fﬂ_l [15]. Similar expressions for qudit

with some parametef. However, we assume the true valugyrobes are availablé [19].
of f is unknowna priori, and must first be measured via some
channel identification procedure. This estimatefafill then
be used in the decoder in order to measure its performance
relative to a decoder in which the tryeis utilized. From the discussion in Section Il, a stabilizer generatar ca
In general, quantum channel identification proceeds lpe described in the binary formd = (A;]A43). It is also
inputting a known quantum state(the probe) into a quantum worthwhile to note that it can also be described in a quatgrna
channell’, that is dependent on some parametefin our form, whereA; and A, are packed into a single matrix with
casep = f). By taking some quantum measurements on tleementd, X, Y, Z. Since a close link betweef?, X, Y, 7}
output quantum staté&, (o) which leads to some resulk, and{0,1,w,w?} exists, wherew is the primary element in
we then hope to estimate . The input quantum state mayGF@4), a quantum stabilizer code can be thought of as an
be unentangled, entangled with an ancilla qubit (or qudit), analog to a GF) classic code. Thus, a Belief Propagation
entangled with another probe. Multiple probes could be us€@8P) decoding algorithm in GF(4) [20] can be applied to
or the same probe can be recycléd.(sent through the chan-quantum stabilizer codes. For lower computational comiflex
nel again). As can be imagined many experimental schenves applied BP-decoding in GF(2). However, the decoder was
could be developed along these lines, and the performameedified from the pure classical decoder in order to break
of each schemei.€. how well it estimates the true value ofthe degeneracy problem of stabilizer codes. To break the
the parametep) could be analyzed. However, in this studydegeneracy, a heuristic method presentedih [20] was adlopte

IV. SIMULATIONS



QBER/FER VS Total Flip Probability N = 1034

A. lterative BP-Decoding Algorithm 10°

Given our previous discussions, the decoding algorithm
applied in our simulations can be viewed as a variation of the
standard BP message-passing decoding algorithm takicg pla
in the binary field, with the decoder treating the depolagzi
channel as two independent binary symmetric channels. Thit
received values; (herei = 1,...n, wheren = 2N is the
classical block length) are eith@ror 1. These can be mapped
to measurement outcomese {1, —1}M (syndrome) of the
received qubit sequence, and this syndrome is then used
error estimation and recovery. Assuming an initial quantum
state representing a codeword, the initial probabilifiegor
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Qubit and Frame error

the ith qubit of the state undergoing aXi, Y or Z error are - [~ QBER - BP decoder No channel information
| =¥/~ FER - BP decoder No channel information
’ .| == QBER - BP decoder - perfect channel information
f fO’f' X, K or 7 - % -FER - BP decoder - perfect channel information
Pi = ’ 5 (9) 1078 1 1 | | | |
1-— f fOT I 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Total flip probability (f')

I ; A Fig. 1.  Qubit error rate (QBER) and frame error rate (FER)ofeaisting
Wheref is the fllp prObablllty known at the decoder. quantum LDPC code fromi [11] with length = 1034 is illustrated.

The standard BP algorithm operates by sending messages
along the edges of the Tanner graph. kgt .., andu.; s,
denote the messages sent from bit notte check nodg and
messages sent from check HthD bit nodei, respective|y_ Consider now the case where a decoder can only attain
Also denoteN(b;) as the number of neighbors of bit node Partial channel information by probing the quantum channel
and defineN(c;) as the number of neighbors of check ngde Using un-entangled and entangled quantum states (only one

To initialize our algorithm, each qubit node sends out Beasurement eache. N, = 1). To simulate cased and B
message to all its neighbors equal to its initial probapilitdiscussed in sectidn 1B, for each encoded block of qubits
value p obtained according to equatiofl] (9). Upon receptio‘hf length NV transmitted through the depolarizing channel, an
of these messages, each check node sends out a messa§étifpated flip probability is randomly chosen at the reaeive

B. Simulations for imperfect channel knowledge

its neighboring qubit node given by side from a normal distribution (truncated in a range(of
to 1) characterized by meayfi and variance(NJ(f))~*,
quﬁbi - Z H ubi/ —Cj (10) Wherqﬁ - 3f/4'
tr. mel{tlt o ¢;T=s;)} bLEN(c;)\bi Simulation results using imperfect channel knowledge as

discussed above are illustrated in Ejg.2. The quantum LDPC
whereN (c;) \b; denotes all neighbors of check noglexcept code used here is the same code adopted fof]Fig.1. The
qubit nodei, and the summation is over all possible errofecoding process terminateslii0 block errors are collected
sequences;. . Each bit node then sends out a message & the maximum iteration numbéi00) is reached. Contrary

its neighboring checks given by to Fig[d, the results in Figl.2 show the QBER and FER of the
stabilizer code when only partial channel information oa th
Up,—c; = Di H Ue., b, (11) channel is available at the decoder. We can clearly see that
e EN(bi)\es ! using entangled quantum states for estimation yields @ibett

performance. Although not shown, as the mean valug of

whereN (b;) \¢; denotes all neighbors of qubit nodexcept approaches zero, the performance gap between the entangled
check nodej. Equations [(1I0) and[[(11) operate iterativeljand un-entangled estimation methods approaches the expect
until the message is correctly decoded or the maximum pieeoretical performance discussed n 1lI-B.
determined iteration number is reached. In Fig[d, we collect the above results into the one plot

Fig[ illustrates the performancei.e. the qubit error rate for direct comparison purposes. Note that as the number of
(QBER) - our BP decoder achieves for an existing quantuguantum states used to probe the channel goes to infinity, the
stabilizer code, namely the code A (rate=1/2) [of|[11]. Thperformance of the code will approach to the performance of
lower solid line indicates the performance of our decodéne curves marked as “perfect channel information”. As we ca
with perfect channel information. Whereas, the upper solgge from the figure, even optimal channel identification gisin
line shows the performance of the decoder when no chanoek probe measurement leads to roughly an order of magnitude
information has been made available at the decoder. Thiton performance. We anticipate similar performance floits
corresponding frame error rate (FER) is also shown for eaahy state-of-the-art quantum LDPC code. That the increase i
case. Note, the QBER is the fraction of the qubits that paessélse number of probing states leads to a better code perfor-
an error, whereas the FER is the fraction of qubit blocks ofance, demonstrates the trade-off between the number d@f qub
length N that contain at least one qubit error. probes (or entanglement consumption) and code performance



Performance using imperfect channel information
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- V. CONCLUSION AND FUTURE WORK

Utilizing quantum probes which are either in un-entangled
pure quantum states or maximally entangled qubit pairs, we
have explored how channel identification in the quantum
depolarizing channel affects the performance of quantum
LDPC codes. Our results show the importance in quantum
communications of a viable channel identification campaign
prior to the decoding of any quantum codeword. Our work also
highlights the trade-off between entanglement consumptio
and quantum LDPC code performance. Future work will
investigate similar issues for other quantum codes, censid
" more generic quantum channels, and pursue quantum LDPC
' code designs where uncertainty in the quantum channel is
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