Randomized Pseudo-Random Function Tree Walking Algorithm
for Secure Radio-Frequency Identification™

Leonid Bolotnyy
University of Virginia
Department of Computer Science
Charlottesville, VA 22904
1b9xk @cs.virginia.edu

Abstract

Privacy and security are two main concerns in Radio
Frequency Identification (RFID) systems. We first extend
the analysis of the Randomized Tree Walking Algorithm
for RFID tag collision avoidance, which is secure against
passive adversaries. Then, we devise a new Randomized
Pseudo-Random Function (PRF) Tree Walking Algorithm,
which is secure against active eavesdroppers and allows for
the efficient interrogation of many tags. Our algorithm ac-
commodates the addition and removal of tags from the sys-
tem, and dynamically adapts to security and privacy policy
changes.

1. Introduction

In Radio Frequency Identification (RFID) Systems, a
reader interrogates tags located within the reader’s interro-
gation range [4]. In security-conscious systems, we would
like to secure the communication between a reader and the
tags, preventing an eavesdropper from learning secret in-
formation (e.g., the tags’ ID numbers). The difficulty here
stems not only from the need to provide efficient and se-
cure communication, but also from avoiding collisions (i.e.,
simultaneous interfering transmissions) between the tags.

We extend the analysis of the Randomized Tree Walk-
ing Algorithm introduced in [3] and elaborated upon in
[12]. This algorithm is secure against a passive eavesdrop-
per. Next, we use the Randomized Tree Walking Algorithm
and an idea from [9] to create an efficient algorithm called
Randomized Pseudo-Random Function (PRF) Tree Walk-
ing Algorithm that is also secure against an active adver-

* This research was supported by a Packard Foundation Fel-
lowship, by NSF Young Investigator Award MIP-9457412, and
by NSF grant CCF-0429737. For additional related papers see
http://www.cs.virginia.edu/robins

Gabriel Robins
University of Virginia
Department of Computer Science
Charlottesville, VA 22904
robins @cs.virginia.edu

sary. Our algorithm builds upon several security papers and
adds an important technique that enables dynamic tradeoffs
between security, privacy, and singulation time.

There are two types of eavesdroppers: passive and ac-
tive. A passive eavesdropper can only hear the signal sent
from a reader to a tag. The communication channel from
the reader to the tag is called the forward channel. An ac-
tive eavesdropper can hear signals sent from the reader to
the tags, and also from the tags to the reader. The communi-
cation channel from the tag to the reader is called the back-
ward channel [11].

1.1. Brief Background on RFID Security

We briefly summarize some of the RFID-related security
work. Juels proposes a “minimalist” approach to authenti-
cation using a one-time-pad scheme [7]. Molnar and Wag-
ner use a tree structure with pseudo-random function to per-
form authentication [9], and our algorithm builds heavily on
their scheme. Weis proposes an authentication algorithm us-
ing an enhanced version of Hopper and Blum’s human au-
thentication protocol [13]. Juels focuses on authentication
problem for Euro banknotes [8].

Weis at. al. propose several access control schemes to en-
hance security and privacy using hash functions [11] [10]
[12]. Garfinkel suggests an RFID Bill of Rights to provide
privacy [5]. Bolotnyy and Robins propose a low-overhead
approach to RFID data confidentiality by attaching more
than one tag to an object and having tags transmit chaff to
confuse eavesdroppers [2].

The rest of the paper is organized as follows. Section
2 describes the Randomized Tree Walking Algorithm, and
Section 3 develops its analysis. Section 4 introduces and an-
alyzes the Randomized PRF Tree Walking Algorithm. Sec-
tion 5 concludes with future research directions.



2. The Randomized Tree Walking Algorithm

In tree-walking algorithms for RFID tag singulation, tags
are placed at the leaves of a tree, and a reader performs a
tree-walk beginning at the root in order to identify these
tags [6]. The randomized tree walking technique was pro-
posed in [3]. Weis developed this concept further, gave an
algorithm, and provided some analysis. In this paper we ad-
dress three questions that are raised and left open in [12].
Before looking at these issues, we first describe the details
of the algorithm of [12].

The algorithm consists of the following steps [12]. Each
tag generates a random number, which serves as its tem-
porary ID for the duration of the interrogation algorithm.
Then, the reader performs a tree-walk, singulating these
random numbers. Once a reader reaches a tree leaf, it
queries the tag that generated that random number, and this
tag sends its real-ID back to the reader. Since the tag’s re-
sponse is transmitted over the backward channel, a passive
eavesdropper does not hear the response, making transmis-
sion of the real-ID secure. The pseudo-code for this algo-
rithm is presented in Figure 1 [12].

Note that the algorithm’s pseudo-code omits certain de-
tails, e.g., it does not include a termination condition when a
tree traversal reaches a leaf. It also omits the final phase that
reads the real tag IDs. Also, note that if no collisions have
occurred for a given threshold number of bits, the algorithm
assumes that there is a single tag on that branch, and then
selects it. The purpose of this threshold is to enable the se-
lection of a tag before all the bits of its temporary ID are tra-
versed, thus saving time as well as bandwidth. If temporary
IDs generated by the tags have high entropy, such a thresh-
old is quite beneficial.

There were three questions left unanswered in [12]:

1. How to handle collisions of the tags’ real-IDs?

2. What is the optimal length for random numbers?

3. How to select the threshold?

In the next section we address these questions.

3. Analysis of Randomized Tree Walking

We will start by addressing the first question regarding
real tag ID collision handling. There are two possible types
of collisions on a real ID. The first type is the collision that
occurs after there were no collisions for the threshold num-
ber of bits. In this case, the algorithm should resume tree-
walking from where it left off. The second type of collision
is due to different tags coincidentally generating the same
random number ID. In this case, the tags that have collided
should be temporarily suspended, and the remaining tags
singulated. The suspended tags enter a special state, and the
Randomized Tree Walking algorithm is repeated only for
the tags that had collisions in the previous round.

Traverse(i, count)

bi := Read random bit i.

if collision on b: detected:
Suspend all tags with bi ==
Each suspended tag stores i.
Traverse(i+1, 0).
Wake up tags suspended on bit i.
Traverse(i+1, 0).

else if no collision on b: detected:
if(count > threshold)

Tree-Walk remaining tags.
else Traverse(i+1, count+1).
Figure 1. Randomized Tree Walking [12].

60

40
time
500
20 1000
n
1500
0 2000
10 15 20 >5 38500
m

Figure 2. Optimal random number length

Next, we will analyze how to choose the optimal length
of a random number/ID. Let n be the number of tags in
the reader’s interrogation zone, and let m be the number of
bits in a random number. Weis observed that the number
of tags per random number will follow a Poisson distribu-

tion with average A = 5. Then, the probability that k tags

will collide equals e~ - /I\C—],c Therefore, the expected num-
ber of random numbers with & collisions is f(n,m, k) =
2m .o ;‘C—T The expected total number of colliding tags is
g(n,m) = ZZZQ f(n,m, k) - k. The algorithm’s expected
tree-walking time (including potential restarts) is therefore
h(t,m) = t - m - costy;; where costp;; is the cost to tra-
verse a single bit, and ¢ is the number of times the traversal
algorithm runs.



This formula is a simplification of the real cost, as it
does not take into account the threshold effect. The cost
to read real IDs without collisions was intentionally left
out since it is a constant independent of how many traver-
sals are required. Mathematically, ¢ is the smallest expo-
nent for which g = g(¢*~'(m,n),m) <= 1, where
g*(m,n) = g(g(m,n), m). To determine the optimal num-
ber of bits for a random number for each traversal, we can
calculate the average number of tags in the reader’s interro-
gation zone over many runs, and use it as n in these calcula-
tions. The bit cost costp;; can simply be normalized to one.
Figure 2 shows a 3-D graph that depicts pictorially how m
may be chosen. From the graph, we see that for n = 2000,
the optimal m is approximately 20 bits.

Finally, we address the issue of threshold size. First, note
that with random numbers as IDs, on average, the tags are
expected to be uniformly spread out in the tree. We there-
fore expect about t; = J; tags on each branch of a binary
tree after ¢ bits of traversal. Therefore, the probability that
t; tags match within the threshold number of bits equals
serresmiar =1 - From this equation it appears that a small
threshold will suffice; however, the random number gener-
ator on-board a tag will not be perfect, resulting in non-
uniform distribution of random tag IDs. This suggests that
some adaptive threshold scheme may be necessary.

We note that the threshold is important in the Random
Tree-Walking algorithm. For example, for n = 2000 and
m = 20, as computed above after about 11 bits, we would
expect at most two tags per branch, with many branches
containing only a single tag. Forcing the traversal algorithm
to proceed for another 9 bits on each branch will incur a
relatively high runtime cost while garnering almost no ad-
ditional benefit. We therefore propose the following adap-
tive scheme. We start the threshold at 2, and increment it
each time we encounter a post-threshold collision for a real-
ID. Conversely, we decrement the threshold each time an
entire traversal produces no threshold-related real-ID col-
lisions. This adaptive threshold mechanism can accommo-
date skewed or non-uniform random tag IDs resulting from
possible flaws in the random number generator.

4. Randomized PRF Tree Walking Algorithm

The Randomized PRF Tree Walking Algorithm is de-
signed to efficiently solve the reader-tag authentication
problem in the presence of many tags. The algorithm con-
sists of the following three steps:

1. Each tag generates a random number, and the reader
performs a tree-walk on these random numbers;

2. Once a tag is selected, the reader and the tag engage
in a tree-walking private authentication protocol;

3. The reader moves the tag to a different position in a
tree.

The purpose of the first step is to allow the reader to com-
municate one-on-one with each tag while avoiding colli-
sions. It is a modification of the Randomized Tree Walk-
ing algorithm described in the previous sections. Once a tag
is selected, instead of sending its real-ID to the reader, the
reader and a tag engage in a private authentication proto-
col. This is done in order to prevent an active eavesdropper
from learning the ID of a tag.

In the second step, the reader and the tag authenticate
each other. Previously suggested private authentication al-
gorithms require time linear in the number of tags to de-
termine the tag’s identity. We use the idea presented in [9],
which positions the tags at the leaves of a tree and asso-
ciates a secret with each edge of the tree. Then, the reader
performs a tree-walk on this tree, executing an authentica-
tion algorithm with each secret along the path from the root
to the leaf where a tag is located. Such positioning improves
the authentication time from O(n) to an expected O(logn),
where n is the total number of tags in the system.

The algorithm of [9] performs such authentication on
both the left and the right sub-trees of a node, which is inef-
ficient in practice since the authentication algorithm is per-
formed twice as many times as necessary. To eliminate this
inefficiency, the tag informs the reader whether it is located
in the left or in the right sub-tree. To avoid tracking and re-
vealing a tag’s location in a tree, which is equivalent to its
pseudo-ID, the tag is moved to a different position in the
tree in step 3 of this algorithm.

If secrets are hard to steal, an authentication algorithm
can be run for a few rounds (less than the depth of a tree
where a tag is located), and then a tag can reveal its posi-
tion in a tree to an authenticated reader. The reader will then
move the tag to a new position in a tree after the identifica-
tion is complete.

If tags are read often, we can relax the algorithm even
further and allow the reader to occasionally skip the third
step. This can be done either openly or in secrecy (e.g., by
sending a special value for one of the secrets to be updated).
If tags are active or semi-active, this modification may also
have the added advantage of saving power.

Having only a single tree is not adaptable to changes in
the number of tags in the system. Creating one large tree
with many free leaves is impractical since it increases the
number of secrets stored on a tag and the time required for
the singulation process to reach a leaf. A single tree also
prevents secrets update and fixes the system (i.e., if some se-
crets are stolen, there is no remedy, and it is also difficult to
accommodate new tags). We therefore propose maintaining
a forest instead of a single tree, while allowing non-uniform
tree depths. With a forest, a new tree can be created as re-
quired, and tags can migrate among trees, as well as within
a single tree. The number of trees and their depths enables
a tradeoff between privacy and the authentication time and



space required on-board each tag to store the secrets. In-
creasing the depth of a tree will thus strengthen privacy at
the expense of efficiency, in a controllable tradeoff.

The steps of the algorithm are shown in Figure 3. Any
private authentication scheme would work in step 2 of the
algorithm, but the use of pseudo-random functions seems
reasonable, even though it is an open problem whether it is
possible to implement pseudo-random function ensembles
with less hardware than is required for private key encryp-
tion [11]. Note that the choice of a scheme in step 2 affects
the implementation of the update in step 3 of this algorithm.

4.1. The Algorithm’s Notation

In step 1 of the algorithm in Figure 3, a tree of random
numbers is generated by the tags and a reader tree-walks the
tree. Notice the line “proceed to step 2 with r = by, ..., b;”
in the algorithm of Figure 3, which does not appear in the
algorithm of Figure 1.

In step 2, a reader starts an authentication process with a
tag selected in step 1. Here, ¢ is the identifier of a tree where
a tag is located. The notation € p denotes uniform selection
at random from a specified set. In 7 and 3, 7 is not a power
of r1 and r,. Rather, it is an index referring to the round in
which r; and ry are generated.

The sequence b = by, bo, ..., by, is the position of a tag in
a tree, where b; = 0 refers to a left sub-tree and b; = 1
refers to a right sub-tree. The reader and a tag share k
secrets, denoted as 51y, , 52,6, ---; Sk,b,,» lOcated on a path
from a root to a tag in a tree. Note that b;, 1 <=7 <= k in
step 2 are different from b;,1 <= j <= i in step 1, since
they refer to a tag’s position in two different trees.

In step 3, t’ is a new tree identifier; b’ is a new tag posi-
tionint'; ¢}, is the depthof t';and s5;, 1 <= i <=1},
are new secrets of a tag corresponding to a path from a root
to a leaf, where a tag will be located in ¢’. Secret sy, is the
last secret used during an authentication in step 2.

4.2. Properties of the Algorithm

Our algorithm (i) allows tags to be arbitrarily added to
and removed from the system; (ii) provides security against
active eavesdroppers; (iii) offers security against foreign
readers; and (iv) enables dynamic tradeoff between secu-
rity, privacy, and singulation time.

Tags can be added and removed from the system since
the depth and the number of trees is not fixed. The algo-
rithm is secure against active eavesdroppers since a tag ID
is never sent in the clear. A tag’s pseudo-ID is gradually re-
vealed during the authentication step to authenticated read-
ers only, and it is immediately changed afterwards. Unau-
thorized readers will not be able to pass through even the
first level of a tree where a tag is located. Notice, that even

if some tags are compromised and their secrets are stolen,
this creates only a temporary privacy weakness for the other
tags, since their secrets will be modified on the next read it-
eration.

The smaller the depth of a tree where a tag is located, the
fewer authentication rounds a reader and a tag need to per-
form, reducing singulation time but enabling the eavesdrop-
per to learn more about the tag. Learning all the secrets of
a tag will allow a foreign reader to “steal a tag” by chang-
ing its secrets. We do not consider such an attack to be a se-
rious threat, since secrets are not transmitted in the clear,
and if an attacker can gain physical access to a tag, then he
can simply destroy it physically. If ’stealing a tag” is plausi-
ble, an enhanced physical protection of the secret ID s, at a
tree leaf, is required (see the next section for details). An at-
tack consisting of learning a tag’s identity and then tracking
it (i.e., “hotlisting””) would not be possible, since unautho-
rized readers cannot learn the tag’s identity in the first place.
Thus, the system is secure.

To implement the algorithm, a tag needs to support
pseudo-random functions, have a random number genera-
tor on-board, allow reads, writes, and rewrites, and have
enough memory to accommodate the three steps of the al-
gorithm.

4.3. Space and Time Complexity

The run time to authenticate a single tag, as well as
the space requirements on a tag to store the secrets, de-
pend on the depth of a tree where a tag is located, and
are both bounded by O(logn), where n is the total num-
ber of tags in the system. Since our algorithm uses a forest,
which is likely to contain more than a single tree, the time
and space required to authenticate an object are bounded by
O(depthy,ee ). Besides storing secrets, a tag needs to main-
tain its state and store its suspension information in step
1. It also needs to have enough memory to accommodate
pseudo-random function computations and state updates.

By varying the number of trees and their depths, we
trade-off run time against storage space and privacy. The
smaller the depth of a tree, the fewer rounds authentication
will require, and the more information an eavesdropper can
learn about the tag. If the tags are read often, it is advanta-
geous to make the tree depth a small constant and increase
the number of trees, thus keeping the authentication time
and space requirements modest without sacrificing privacy.

5. Random Number Generation Hardware

The algorithm presented in this paper, as well as many
other proposed algorithms (e.g., the Randomized Hash
Function -based access control scheme of [11]), use ran-
dom number generators on-board an RFID tag, yet they



Step 1

Traverse (i, count)
b; := Read random bit ¢
if collision on b; detected:
Suspend all tags with b; ==1
Each suspended tag stores i.
Traverse (i + 1,0).
Wake up tags suspended on bit 4.
Traverse (¢ + 1),0.
else if no collision on b; detected:
if (count > threshold)
Proceed to step 2 with r = by, ..., b;
Tree-Walk remaining tags.
else Traverse (i + 1, count + 1).

Step 2 S1by s 52,by5ees Sk € {0,117
Reader Hello, 7 , Tag
) i
. Eor i=1tok
ri €r{0,1}" )
T%7 bi’ fSi,bi (07 TL T%) =0j Té €r {0’ 1}n

check that < oo (L7, "

' iopd) — sip, \ 1 T1,T2) = 0
fsa,b,i (07 T, 7'2) 4 b L > check that )

fs’l:,b,i(l'/,ri’,ré) =0

Step 3

Reader 1 Tag
70 =ID & fs,(0,0,71)

T = fsk (Oa 1;7‘1) &b tlvT2 = fsk(oazarl) ® b,a

T = fSk (0,1:,7'1) P si_2,3<=1<= t:iepth +2 R

check that
To D fs,(0,0,71) =ID

compute
t=7 & fsk (0’ 1,7‘1)

b=7® fsk (Oa 2) Tl)
S, =T; D fsk_ (O,i,Tl)

Figure 3. Randomized PRF Tree Walking Algorithm



+18V

15K

TTL-lawel

01 uF T4ALE04 01 uF

Random Bits

T4ALE04 T4ALE04

Buth mransigstors are 2N3904 5 or equivalent

Figure 4. A simple hardware random Bit Generator [14].

do not specify how it may be implemented cheaply. The
schematic in Figure 4 depicts a simple circuit for gener-
ating random bits [14]. Thus random bit generation does
not necessarily require much hardware, only a few capac-
itors and transistors. The voltage signal is amplified, dis-
turbed, stretched, and sampled, resulting in a stream of ran-
dom bits. The circuit can be scaled down in size so it does
not require a lot of power. An alternate circuit for ran-
dom number generation and an analysis of its operation can
be found in [1].

6. Conclusion

We presented an extended analysis of the Randomized
Tree Walking Algorithm in RFID systems, which provides
a low-cost, private identification algorithm that is secure
against passive eavesdroppers. We then proposed and ana-
lyzed a Randomized Pseudo-Random Function (PRF) Tree
Walking Algorithm, which efficiently identifies many tags
in the presence of active eavesdroppers, and is adaptable to
privacy and security requirements. Possible future work in-
cludes improving the hardware complexity of the suggested
algorithm to further reduce the manufacturing cost of the
tags, and to mathematically analyze the security and pri-
vacy of such algorithms that change the underlying system
configuration with every tree traversal. RFID access con-
trol issues can also be considered in different contexts.

References

[1] Anonymous, Electrical Characteristics and Measurements,
http://www.protego.se/pdf/Electrical_
Characteristics_and_Measurements.pdf

[2] L. Bolotnyy and G. Robins, Multi-Tag Radio Frequency
Identification Systems, Proceedings of the Fourth IEEE
Workshop on Automatic Identification Advanced Technolo-
gies (AutolD), 2005.

[3] Auto-ID Center, Draft protocol specification for a 900 MHz
Class 0 Radio Frequency Identification Tag, 2003.

[4] K. Finkenzeller, RFID Handbook, John Wiley and Sons,
2003.

[5] S. Garfinkel, An RFID Bill of Rights, Technology Review, p.
35, October 2002.

[6] A.Juels, R. L. Rivest, and M. Szedlo, The Blocker Tag: Se-
lective Blocking of RFID Tags for Consumer Privacy, Pro-
ceedings of the 10th ACM Conference on Computer and
Communications Security, pp. 103-111, 2003.

[7]1 A.lJuels, Minimalist Cryptography for Low-Cost RFID Tags,
The Fourth International Conference on Security of Commu-
nication Networks (SCN), 2004.

[8] A. Juels, R. Pappu, Squealing Euros: Privacy Protection in
RFID-Enabled Banknotes, Financial Cryptography, Lecture
Notes in Computer Science, vol. 2742, pp. 103-121, 2003

[9] D. Molnar and D. Wagner, Privacy and Security in Library
RFID Issues, Practices, and Architecture, Proceedings of the
11th ACM Conference on Computer and Communications
Security, pp. 210-219, 2004.

[10] S. E. Sarma, S. A. Weis, and D. W. Engels, RFID systems
security and privacy implications, Technical Report MIT-
AUTOID-WH-014, AutoID Center, MIT, 2002.

[11] S. A. Weis et al, Security and Privacy Aspects of Low-Cost
Radio Frequency Identification Systems, Security in Perva-
sive Computing, Lecture Notes in Computer Science, vol-
ume 2802, pp. 201-212, 2004.

[12] S. A. Weis, Security and Privacy in Radio-Frequency Identi-
fication Devices, Masters Thesis, MIT, May 2003.

[13] S. A. Weis, Security Parallels Between People and Pervasive
Devices, Workshop on Pervasive Computing and Communi-
cations Security - PerSec, 2005.

[14] W. Ware, Hardware Random Bit Generator, http://
willware.net:8080/hw-rng.html



