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Abstract to testify irrefutably that the source of the latent print
and the defendant are one and the same person. For

Following Daubert in 1993, forensic evidence based decades, the testimony of forensic fingerprint experts was
on fingerprints was first challenged in the 1999 case of almost never excluded from these cases, and on cross-
USA vs. Byron Mitchell, and subsequently, in 20 other examination, the foundations and basis of this testimony
cases involving fingerprint evidence. The main concernwere rarely questioned. Central to establishing an iden-
with the admissibility of fingerprint evidence is the prahle  tity based on fingerprint evidence is the assumption of
of individualization, namely, that the fundamental presmis discernible uniqueness; salient features of fingerprifits o
for asserting the uniqueness of fingerprints has not beendifferent individuals are observably different, and there
objectively tested and matching error rates are unknown. fore, when two prints share many common features, the
In order to assess the error rates, we require to quantify experts conclude that the sources of the two different
the variability of fingerprint features, namely, minutiae i  prints are one and the same person. The assumption of
the target population. A family of finite mixture models discernible uniqueness, although lacking sound theaietic
has been developed in this paper to represent the distribu-and empirical foundations [20], allows forensic experts
tion of minutiae in fingerprint images, including minutiae to offer an unquestionable proof towards the defendant’s
clustering tendencies and dependencies in differentnagio guilt. To make matters worse, forensic experts are never
of the fingerprint image domain. A mathematical model questioned on the uncertainty associated with their tes-
that computes the probability of a random correspondencetimonials (that is, how frequently would an observable
(PRC) is derived based on the mixture models. A PRC ofmatch between a pair of prints lead to errors in the
2.25 x 10~ corresponding to 12 matches was computed identification of individuals). Thus, discernible uniqess
for the NIST4 Special Database, when the numbers ofprecludes the opportunity to establish error rates which
guery and template minutiae both equal 46. This is also the should be estimated from collecting population samples,
estimate of the PRC for a target population with similar analyzing the inherent feature variability, and reporting

composition as that of NIST4. corresponding probability of two different persons sharin
a set of common features (known as the probability of
EDICS: BIO-FING, BIO-THEO, FOR-VALI random correspondence).

A significant event that questioned this trend occurred
in 1993 in the case of Daubert vs. Merrell Dow Phar-
maceuticals [7] where the U.S. Supreme Court ruled that
) ] . ) _in order for an expert forensic testimony to be allowed in
E XPERT testimony based on fingerprint evidence is coyrts, it had to be subject to five main criteria of scientific

delivered in a courtroom by comparing salient fea- yalidation, that is, whether (i) the particular technigue o
tures of a latent print lifted from a crime scene with methodology has been subject to statistical hypothesis tes
those taken from the defen_dant. A reasonably high degreqng’ (ii) its error rates has been established, (jii) stadsia
of match between the salient features leads the expertgontrolling the technique’s operation exist and have been

_ maintained, (iv) it has been peer reviewed, and (v) it has
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and its potential matching error rates were unknown. After
USA vs. Byron Mitchell, fingerprint based identification
has been challenged in more than 20 court cases in the
United States, see for example, United States vs. Llera
Plaza [25], [26] in 2002 and United States vs. Crisp [24]
in 2003; also see [5] for additional court cases.

The main issue with the admissibility of fingerprint
evidence stems from the realization that the individu-
alization of fingerprints has not been subjected to the Query
principles of scientific validation. The uncertainty invetl
in assessing fingerprint individuality can be formulated as
follows: Given a query fingerprint, what is the probability
of finding a fingerprint in a target population having
features similar to that of the query?” As mentioned earlier
a satisfactory answer to this question requires (i) catect
fingerprint samples from a target population, (i) analgzin Fig. 1. Intraclass variability in a fingerprint
the variability of the features from the different fingerpgs database. Rows correspond to different fin-
collected, and (iii) defining a notion of similarity between gers whereas columns correspond to mul-
fingerprints and reporting the corresponding probability  tiple impressions of the same finger. White
of two different individuals sharing a set of common boxes correspond to location of fingerprint
fingerprint features. We address issues (ii) and (iii) irs thi minutiae.
paper assuming that a sample of prints is available from a
target population and a notion of similarity is given; see
also Figure 1. We do not address the issues and challengethat the minutiae location is distributed independently of
involved in sampling from a target population. Instead, the minutiae direction. But, minutiae in different regions
we assume that a database of prints is available andof the fingerprint are observed to be associated with
demonstrate how the methodology described in this paperdifferent region-specific minutiae directions. Moreover,
can be used to obtain estimates of fingerprint individuality minutiae points that are spatially close tend to have simila
If the available database is representative of the targetdirections with each other. These observations on the
population, then the estimates of fingerprint individyalit distribution of fingerprint minutiae need to be accounted
obtained based on the methodology presented here wouldor in eliciting reliable statistical models.
generalize to the target population. An analysis of vari-  The problem of establishing individuality estimates
ability of fingerprint features requires the development of hased on fingerprints is in contrast to DNA typing where
appropriate statistical models on the space of fingerprintthe probability of a random correspondence has been
features that are able to represent all aspects of vatiabili studied extensively and quantified (see, for example, [10])
observed in these features. Based on these models, thghe DNA typing problem (inherently 1-D) is in some sense
probability of a random correspondence (PRC) (alterna- simpler to analyze compared to the fingerprint individual-
tiVG'y, the probablllty that the observed match between |ty prob|em (inherent|y 2-D); also, the act of acquiring
features in a pair of prints is purely due to “chance”) will fingerprint impressions as well as the condition of the
be determined. physical finger itself (i.e., cuts and bruises, and distos)

There have been a few previous studies that addressedhtroduces many sources of noise. This paper proposes to
the problem of fingerprint individuality using statistical determine reliable estimates of the probability of a random
models on fingerprint features. All these studies utilized correspondence between two fingerprints via appropriate
minutiae features in fingerprints (both location and di- statistical models in a spirit similar to that of DNA typing.
rection information) to assess individuality. Howevere th To address the issue of individuality, candidate models
assumptions made in these studies do not satisfactorilyhave to meet two important requirements: (i) flexibility,
represent the observed variations of the features in ac-that is, the model can represent the observed distributions
tual fingerprint databases. For example, it is known that of the minutiae features in fingerprint images over differ-
fingerprint minutiae tend to form clusters [21], [22] but ent databases, and (ii) associated measures of fingerprint
Pankanti et al. [18] assumed a uniform distribution on individuality can be easily obtained from these models. In
minutiae locations and directions which was then correctedpractice, a forensic expert uses many fingerprint features
to match empirical results from the databases used in(minutiae location and direction, fingerprint class, inter
their study. Another assumption made by Pankanti et al. isridge distance, etc.) to make the match, but here we
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only use a subset of these features, namely, the minutiae
locations and directions, to keep the problem tractable. We i
introduce a family of finite mixture models to represent the .
observed distribution of minutiae locations and direction ’
in fingerprint images. The reliability of the models is s=(x)
assessed using a criteria based on the degree to which
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the models are able to capture the observed variability in 9
the minutiae locations and directions. We then derive a ]
mathematical model for computing the PRCs based on the
elicited mixture models. s=(y)
The rest of this paper is organized as follows: Section (@) (b) (©)

Il describes the finite mixture models proposed for the

minutiae features (both location and direction). We also  Fig. 2. Minutiae features consisting of the
develop tests to demonstrate the appropriateness of the location, s, and direction, 6, for a typical
mixtures as distributional models for fingerprint minutiae  fingerprint image (b): The top (respectively,
compared to the uniform distribution. Section Il devel- bottom) panel in (a) shows s and 6 for a ridge
ops a new mathematical model for computing the PRC, bifurcation (respectively, ending). The top
whereas Section IV describes the experimental results (respectively bottom) panel in (c) shows two
based on the NIST Special Database 4 [17], and FVC2002 subregions in which orientations of minutiae
[13] databases. points that are spatially close tend to be very

similar.

Il. Statistical Models On Minutiae Location

and Direction (x,y) = s coordinate points ir. The minutiae direction,

D, takes values ir0, 27). Denoting the total number of

A minutiae is the Iocat|0r_1 of a ridge anomaly in a f|n—_ minutiae in a fingerprint image by, we will develop a
gerprint image [14]. Forensic experts and most automatic;qiny gistribution model for the: pairs of minutiae features

fingerprint matching systems use minutiae for identifica- (X,D): {(X;.D;), j =1,2,...k}, that accounts for (i)

. . ) . VR VAl It b A '

tion since these features have been shown to be stabley,stering tendencies (non-uniformity) of minutiae, aii (
and can be reliably extracted from prints. There are manydependence between minutiae location and directiop (
types of ridge anomalies that occur in fingerprint images and D,) in different regions ofS

- examples of these include ridge endings, bifurcations, Thé proposed joint distribution model is based on a
islands, dots, enclosures, bridges, double bifurcatitois, mixture consisting ofG components or clusters. Le
furcations, and others. However, in this paper, we only o he cluster label of the-th minutiae location and
consider the two dominant types of minutiae, namely, yiaction (X;,D,), ¢; € {1,2 G), j =1,2 k
endings and bifurcations. The main reasons for this are thatr,. IabeISCj] are i’ndépende’nt’ly distributed ar;cc;rdir;g o a

the occurrence of the other ridge anomalies is relatively ginyie myltinomial withG? classes and class probabilities
rare, and it is easy to consistently detect minutiae endings

and bifurcations compared to other minutiae types Each, 272 ¢" such that; > 0 and 3., 7 = 1. Given
minutiae is characterized in terms of two components: (i) fcbceolrgfng_tog{h;hgerr:?sli?;tlae location; is distributed
its location, i.e., the spatial coordinates of its position

and (ii) its direction, i.e., the angle subtended by the FX(s g, Bg) = ¢2(s| g, Eg), (1)
minutiae measured from the horizontal axis. We also do
not distinguish between minutiae bifurcation and ending
since it is often not easy to distinguish between them
by automatic systems. Subsequently, the term “minutiae
features” will be used to refer to the location and direction
of a minutiae in a fingerprint impression. See Figure
2 for an example of minutiae features for a fingerprint
impression from the FVC2002 DB1 [13] database.

where ¢, is the bivariate Gaussian density with meap
and covariance matrix:,. Equation (1) states that the
minutiae locations arising from theg-th cluster follow a
two-dimensional Gaussian with mean and covariance
matrix 3.

The Von-Mises distribution [15] is a typical distribution
used to model angular random variables, such as minutiae

Let X denot neric random minutiae location and directions in our case. So, we assume the distribution of
D d:note ites (c)oerrZSg?)n?ji: dire(étion L;tc eRzO((:jencz)tea J-th minutiae direction,1;, belonging to they-th cluster
P 9 L follows the density

the subset of the plane representing the fingerprint domain.
Then the set of all possible configurations f&r is the ng(G |vg, kg, Dg) = Pgv(0) - I{0 < 6 < 7}
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Fig. 3. Probability distribution plots of the
Von-Mises distribution with center vy, = /4,
and with two different precisions, x4, and «j,
with k, < k. The values of v(f) at 7/2 and
—m /2 are equal to each other due to the cycli-
cal nature of the cosine function.

+(1 = pg)v(0 — ) - I{m < 0 < 27}, )
where I{A} is the indicator function of the sed (that
is, I{A} = 1 if A is true, and0, otherwise),p, is a
real number betweefh and 1, andv(#) is the Von-Mises

distribution given by

v(l) =v(0 vy, Kkg) = I()(Qlﬁg) exp{r, cos2(6 — v,)},
3)
with Iy(k,) defined as
2m
Io(ky) = / explr, cos(0 —v,)} . (4)
0

In (3), vy and x, represent the mean angle and the preci-

sion (inverse of the variance) of the Von-Mises distribatio

(e) )

Fig. 4. Assessing the fit of the mixture models
to minutiae location and direction: Observed
minutiae locations (white boxes) and direc-
tions (white lines) are shown in panels (a)
and (b) for two different fingerprints from the
NIST Special Database 4. Panels (c) and (d),
respectively, show the cluster labels for each
minutiae feature in (a) and (b). The clusters in
3-D space are shown in panels (e) and (f) with
x,y, z as the row, column, and the orientation
of the minutiae.

respectively. Figure 3 plots two density functions associ- is distributed according to the mixture density

ated with Von-Mises distributions with common means
but with two different preC|S|on3@q < k. This figure
shows thaty, represents the “center” (or modal value)

while x4 controls the degree of spread around the center

(thus, the density with precisiom has higher concentra-
tion aroundy,). The densityff in (2) can be interpreted
in the following way: The ridge flow orientatiorn?, is
assumed to follow the Von-Mises distribution (3) with
meany, and precisiors,. Subsequently, minutiae arising
from the g-th component have directions that are eittier
or O + m with probabilitiesp, and1 — p,, respectively.
Combining the distributions of the minutiae location
(X) and the direction ), it follows that each(X, D)
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where fX(-) and fP(.) are defined as in (1) and (2),
respectively. In (5)©s denotes all the unknown parame-
ters in the mixture model which includes the total num-
ber of mixture components’, the mixture probabilities

|Ng» Eg) )

T4, 9 =1,2,..., G, the component means and covariance
matrices of f;*’s given by g = {p1, p2, ..., pc}, and
Yo = {¥1,%9,...,X¢}; the component mean angles

and precisions ofng’s given byvg = {v1,v2,...,v6}
and kg = {k1, ke, ..., kg }, and the mixing probabilities



pe = {p1,p2,--.,pc}. The model in (5) allows for (i)
different clustering tendencies in the minutiae locations
and directions vi& different clusters, and (ii) incorporates
dependence between the minutiae location and direction
since if X; is known to come from thg-th component,
then it follows that the directioD; also comes from the -
same mixture component. =

The mixture density given in (5) is defined on the entire
planeR?, and is not restricted to the fingerprint domain
S. We correct this by defining the mixture model on the
fingerprint aread C S as

5,010

fa(5,8100) = ——12010e) g
fsEA fe:o f(s,0|0¢g)dbds

If most of the fingerprint aread encompass the entire 2

rectangular sensing are§, i.e., A =~ S, =

fa(s,0]0¢) = f(s,0]0¢) )
since then the denominator in (6)
27
/ / F(5,000) dods ~ 1. ®)
seA J6=0

To estimate the unknown parameters in the model, we
develop an algorithm based on hierarchical agglomeration 2
and the EM algorithm [8], [16] for unrestricted multivarat =
mixture models. The optimal number of componeldts,
is selected using the Bayes Information Criteria (BIC). (e) ®
The BIC has been widely used in various model selection
problems and has the property that it selects a model that is
most parsimonious (one having the least number of model
parameters). Details of the EM algorithm and the BIC used
here are given in Appendix A of the technical report [28].

Figure 4 illustrates the fit of the mixture model to two
fingerprint images from the NIST 4 database. Observed
minutiae locations (white boxes) and directions (white
lines) are shown in panels (a) and (b). Panels (c) and (d),
respectively, give the cluster assignment for each miautia
feature in (a) and (b). The cluster label @X;, D;) is
estimated according to equation (46) in Appendix A of
[28] after the EM algorithm has converged. Panels (e) and
(f) plot the minutiae features in the 3-DX, D) space .
for easy visualization of the clusters (in both location and !!1. Probability of Random Correspondence
direction). The BIC criteria yield$?* to be 3 and 2 for (PRC)
panels (a) and (b), respectively. In panels (c-f), minutiae
from the same cluster are labeled with the same color, The probability of a random correspondence (PRC) is
shape and number. the chance that an arbitrary impostor fingerprint from a

Another way to show the effectiveness of the fit of the target population will share a sufficiently large number
models to the observed data is to simulate a realizationof minutiae with the query. Small (respectively, large)
from the fitted models. Figures 5 (a) and (b) show two values of the PRC imply that it is unlikely (respectively,
fingerprints whose minutiae features were fitted with the likely) that minutiae in a fingerprint of an individual other
mixture distribution in (6). Figures 5 (e-f) show a simuthte than the query source will match those of the query. Let
realization when eacl andD is assumed to be uniformly @ (respectively,T) denote the query (respectively, file)
distributed independently of each other. Note that there isfingerprint image from the individual, (respectively,

Fig. 5. All (X, D) realizations from the pro-
posed model ((c) and (d)), and from the uni-
form distribution ((e) and (f)) for two different
images ((a) and (b)). The true minutiae loca-
tions and directions are marked in (a) and (b).

a good agreement, in the distributional sense, between the
observed (Figures 5 (a) and (b)) and simulated minutiae

locations and directions from the proposed models (Figures
5 (c) and (d)) but no such agreement exists for the uniform

model.



Sensing
Plane, S

we impose the condition that the minutiae sets@bhn?ﬂ

T cannot be too close to each other; this is a reasonable
assumption to make since minutiae can occur only on
ridges and therefore, should be at least one inter-ridge
distance away from one another (see also Pankanti et al.
[18] for a similar condition). In Appendix B of [28], we
show that the probability of obtaining exactly matches
given there aren andn minutiae inQQ andT’, respectively,

is given by the expression

e—)\(Q,T) )\(Q, T)w

w!

Fingerprint
Image
Area, A

Minutiae —

p*(w; Q,T) =

for largem andn; equation (14) corresponds to the Poisson
probability mass function with meah(Q,T') given by

)‘(Q>T) = mnp(QvT)’ (15)

(14)

Fig. 6. Identifying the matching region for a
query minutiae.

Ir # 1g). To compute the PRC, we first define a minutiae
match betweeid) andT'. A pair of minutiae features i
andT, (X2, D?) and (X7, DT) respectively, is said to  p(Q,T) = P(|X? — X7|, <r¢and|D? — DT|, < dy)
match if for fixed positive numbers, anddy, (16)
denotes the probability of a match wh¢X @, D?) and
(X9 =XT],<ro and |[D? =D, <do, (9) (XT,DT) are random minutiae from (fZ) and 213), re-
where spectively. The mean parametgi), 7') can be interpreted
as the expected number of matches from the total number
X9 - XT|, = \/(CCQ —2T)2+(y? —y")  (10)  of mn possible pairings between minutiae inQ andn
is the (spatial) Euclidean distance between the minutiaeMinutiae points inl’ with the probability of each match
locations X® = (22,y?) and X7 = (27, y7), and be_lngp(Q,T). The I_Do!sson d|str|but|on_|n (1_4) |s_ob§a|n_ed
using arguments similar to when a binomial distribution
|D? — DT |, = min(|D? — D"|,2r — |D?® — D) (11)  with a large number of trials and small probability of
“success” can be approximated by a Poisson distribution,

is the angular distance between the minutiae directiofis ) . "
and DT: see Figure 6. The definition of a match in (9) is provided the expected number of “successes” is moderate.
j or this reason, the Poisson approximation is also called

same as that used by Pankanti et al. [18], and depends oﬁ,I | f s | i define * N
two parameters, anddy. Large (respectively, small) val- ¢ eb aw ol ra;_e events.h nthour ‘?afﬁ | web € |nfet _;l;cess
ues of the pairy, dp) will lead to spurious (respectively, 0 be a minutiae match, then (i) the number of triaisy,

missed) minutiae matches. Thus, it is necessary to selec{S Igrgg,tﬂi) the p:)roba]?_ility ofta succ;egﬂ,@t;{), IS smdaﬁ,
(ro,dp) judiciously so that both kinds of matching errors an (iii) the number o 'MPOSIOr matches be wepan
are minimized. A discussion on how to seleeg, o) is is moderate (not exceeding 10 in the databases we worked

presented in Section IlI-C and postponed for now. with), thus, justi_fying t_he yalidity of the Poisson law.
Suppose the following quantities are available: . The qbove discussion is ge"?era' .and. holds true.for any
(i) m: number of minutiae in query fingerprir® with distribution _for.the. guery and fllg minutiae. In par.t|cular,
minutiae denoted bYXQ’DQ)7 i= 1.2, .m. V\{hen_the distributions on the mlnutlae (both location gnd
(i) n: number of minutiae in_ file fingerprint” with direction) are chosen to be uniform, we get the following

minutiae denoted byX! DT), i =1,2,... n. expression fon\(Q, T):
(i) w: number of matching minutiae betweéhand7'. M (Q,T) =mnprpp, (17)

We assume that the query and file minutiae are distributed
independently according to the mixture densities

where

where p;, (respectively,pp) is the probability thatX®
and X7 (respectively, D? and DT) will match. The

fo(X%?, D) = f(X9,D?|02), (12)  probability of a location and direction match appears as
and the produchy, pp since the minutiae location and direction
fr(XT,DT) = f(XT, DT |OF), (13) are distributed independently of each other.

For a fingerprint database consisting 6f different
respectively. Then, the PRC is the probability of obtaining fingers with a single impression per finger, we wish to
exactly w matches betwee® and7 whenlIg # Ir. In find the most representative value for the probability of
order to compute the probability of obtaining matches, = a random correspondence, PRC, for this database. There



are a total of F/(F — 1)/2 pairs of impostor fingerprint
images(Q, T') from the entire database. The average PRC
corresponding tav minutiae matches is given by

- 2 .
PRC= v =) > p(w; Q,T), (18)

(Q,T) impostorpairs

where p*(w; Q,T) is as defined in (14); note that
p*(w; Q,T) is symmetric inQ and T, and thus it is
sufficient to consider only th&'(F —1)/2 distinct impostor
pairs instead of the total'(F' — 1). Each of the probabil-
ities, p*(w; Q,T), is a very small number such a§—*

or 10~7. Thus, the average PRC in (18) is highly affected
by the largest of these probabilities, and is, thereforé, no
reliable as an estimate of typical PRCs arising from the
impostor pairs. A better measure would be to consider an
average of the trimmed probabilities. Letdenote the per-
centage op*(w; Q,T) to be trimmed, and let*(w; a/2) . _ _ _
and p*(w; 1 — a/2), respectively, denote the lower and Fig. 7. Master fingerprint construction; (a) 4

upper100a/2-th percentiles of these probabilities. The different impressions of a finger, (b) refer-
trimmed mean is given by ence impression, and (c) master.
— 2
PRG, = po(w; Q,T),
FF-1)(1-a) (Q’T);m,ow B. Identifying Clusters of Fitted Mixture Models
(19)
where ifp*(w; /2) < p*(w; @, T) < p*(w;1 - a/2), In order to compute the probability of random cor-
p*(w; Q,T) respondence based on the mixture models, our method-
pa(w; Q,T) = { o otherwise. (29 ology involves fitting a separate mixture model to each

fingerprint impression/master from a target population. An
important difference between the proposed methodology
and previous work is that we fit mixture models to each fin-
ger/master, whereas previous studies assumed a common
To utilize multiple impressions of a finger (such as distribution for all fingers/impressions. Assuming a com-
from databases in the Fingerprint Verification Compet#ion mon minutiae distribution for all fingerprint impressions
(FVCs) [12], [13]), we combine minutiae from different has a serious drawback, namely, that the true distribution
impressions into a single “master” on which the mixture of minutiae may not be modeled well. For example, it is
model is fit. The minutiae consolidation procedure we fol- well-known that the five major fingerprint classes in the
low is described in detail in [28] and [27]. An illustration Henry system of classification (i.e., right-loop, left-po
of the consolidation procedure is shown in Figure 7 where whorl, arch and tented arch) have different class-specific
multiple impressions of the same finger (a) are aligned to minutiae distributions. Thus, using one common minutiae
the reference image (b) to obtain the master fingerprint (c). distribution may smooth out important clusters in the dif-
The process of minutiae consolidation has two advantagesferent fingerprint classes. Moreover, PRCs depend heavily
(i) A more reliable fit of the mixture model is obtained, on the composition of each target population. Consider
and (ii) the assumption of large: and n required for the following example: The proportion of right-loop, left-
computing the individuality estimates is satisfied. PR@s fo loop, whorl, arch and tented arch classes of fingerprints
w matches are then obtained using (14) for Bg —1)/2 is 31.7%, 33.8%, 27.9%, 3.7% and 2.9%, respectively, in
impostor master pairs. The consolidation process involvesa population of British people as reported in [6]. Thus,
averaging the location and direction of the same minutiae PRCs computed for fingerprints from this population will
obtained from the multiple impressions. This helps smooth be largely influenced by the mixture models fitted to the
out any non-linear distortion effects that can affect the right-loop, left-loop and whorl classes compared to arch
estimate of fingerprint individuality. In this paper, we do and tented arch. More important is the fact that the PRCs
not model the variability in the partial prints correspamgli ~ will change if the class proportions change (for example,
to each finger as was done in [27]. if the target population has an equal number of fingerprints

A. Incorporating Multiple Impressions per Finger



in each class, or with class proportions different from the

To obtain the 100(1 — «)% trimmed mean, we de-

ones given above). By fitting separate mixture models to note the lower and upped00«a/2-th percentiles of

each finger, we ensure that the composition of a target{ p*(w; C;,C};), 1

population is correctly represented.
To formally obtain the composition of a target popu-

< 4,j < N*} by pg(wia/2)
and pi(w;1 — «/2). Also, define the set of all
trimmed p*(w; C;, C;) probabilities as7 = { (i, )

lation, we adopt an agglomerative hierarchical clustering p¢.(w; a/2) < p*(w; C;,C;) < p&(w;1 — a/2)}. Then,

procedure [9] on the space of all fitted mixture models.

The dissimilarity measure between the estimated mixture

densitiesf andg is taken to be the Hellinger distance [11]

H(f,g)= Les /96[0,277) (\/f(x,Q) — \/g(ac,e))2 dx df.

(21)
The Hellinger distancef, is a number bounded between
0 and 2, withH = 0 (respectively,H = 2) if and only if
f = g (respectively,f and g have disjoint support). For a
database wittF’ fingers, we obtain a total of (F —1)/2
Hellinger distances corresponding to tH&(F — 1)/2

the 100(1 — )% trimmed mean PRC is
Z(i,j)ET |Ci| |Cy|p*(ws C4, Cj)

Y lailic]

(i.5)eT

PRG, (26)

C. Estimation of (rq,do)

Parametergr, dy) determine the matching region for
a query minutiae. In the ideal situation, a genuine pair
of matching minutiae in the query and file will correspond
exactly leading to the choice 6f, dy) as(0, 0). However,

mixture pairs. The resulting dendrogram can be cut 10 factors such as skin elasticity and non-uniform fingertip

form N clusters of mixture densitie§};, Cs, ..., Cy, say,
based on a threshol@. Note thatV = 1 when7 = 2,
and asT decreases t0, N increases td'(F'—1)/2. When
the number of clusters i/, we define the within cluster
dissimilarity as

N
Wi =2 g

D(C;) (22)
where
D(C;)= Y H(f.9) (23)
f,9€C;

is the sum of all distance#l(f,g) for f and g in C;,
and |C;| is the number of mixture densities ifi;. Note
that asV increasesJW decreases t0. To choose the
optimal number of clusters, we use the “elbow criteria”:
Let Gy = |Wx — Wx_1| denote the absolute difference
between the within cluster dissimilaritié®x_; and Wy
We selectV* as the number of clusters if the values of
Gy for N > N* are insignificant (close to 0) compared to
the value ofG . The criteria is named after the “elbow”
that is created alv = N* in the plot of Wy versusN.

Once the number of clusters™* has been determined,
we find the mean mixture density for each clustéras

fa)= 1 ¥ f.0)
Y rec;

The mean parametey(Q, T') in (15) depends o andT
via the mean mixture densities of the clusters from which
@ and T are taken. IfQ) and T, respectively, belong to
clustersC; and C;, we haveA(Q,T) = X(C;, C;) with
the mean mixture densities 6f; andC; used in place of
the original mixture densities in (16). Let (w; C;,C;)
denote the Poisson probability

(24)

p(w; €, 05) = e N NG (g
w.

pressure can cause the minutiae pair that is supposed
to perfectly match, to slightly deviate from one another.
To avoid rejecting such pairs as non-matches, non-zero
values ofry and dy need to be specified for matching
pairs of genuine minutiae. We adopt the procedure taken
by Pankanti et al. [18] for selecting a reasonable value
for the pair (rg,dp) such that only a small pre-specified
proportion of genuine matches will be rejected. The value
of ro is determined based on the distribution of Euclidean
distances between every pair of matched minutiae in the
genuine case. We align pairs of genuine fingerprints and
find the corresponding pairs of minutiae. The valuepfs
selected based on the distribution of the Euclidean distanc
between the locations of the minutiae pairs. The value of
ro is selected so that only the uppgb% of the genuine
matching distances (corresponding to large valueg afe
rejected.

In a similar fashion, we can compute the distribution of
the angular distance between the directions for minutiae
pairs. The value ofly is determined to be the7.5%-th
percentile of this distribution (again, the uppes% of the
genuine matching angular distances will be rejected).

Pankanti et al. [18] used a database of 450 mated
fingerprint pairs where the true minutiae locations and
the correspondences between minutiae in each genuine
fingerprint pair were determined by a fingerprint expert.
Using this ground truth correspondence, they estimaged
anddy to be 15 and 22.5, respectively. These values will
be used in our experiments to estimate the probability of
random correspondence.

V. Experimental Results

Our methodology for assessing the individuality of fin-
gerprints are validated on three target populations, ngmel



mixture model (6) as a distribution on fingerprint minlj’tiae
were carried out. The first type of test was to select
between two models, either the mixture or the uniform,
i for the minutiae for each finger based on the likelihood
ratio (the mixture and uniform models were fitted to the

master whenever the consolidation procedure of Section
| I lI-A was adopted for a database). This model selection
NN I procedure can decide only between the mixture and the
(@) (b) uniform model. However, it may be the case that the true

distribution on fingerprint minutiae is neither one of these

Thus, the second type of statistical test carried out was

to assess the goodness of fit of the mixture model to

the observed distribution of minutiae for each finger. The

quality of fit of the mixture distribution was determined

via a p-value where large p-values (p-values ¢, 0.01) led to
(1

the conclusion that the mixture distribution is an adequate
model; otherwise, when the p-value is smaller than .01,
"""" the mixture distribution is inadequate. In a similar fashio
(©) we also tested the goodness of fit of the uniform model
to the distribution of minutiae for each finger. Based on
these statistical tests, we found strong evidence for the
appropriateness of the mixture models as a distribution on
fingerprint minutiae for all the three databases. We refer
the reader to the technical report [28] for more details on
the tests that were carried out as well as the experimental
results.

The distributions ofm andn for the three fingerprint
databases are shown in Figures 8 (a), (b) and (c), respec-
tively (the distribution ofm and the distribution of. are
the NIST Special Database 4 [17], FVC2002 DB1 and identical, and hence only one histogram is obtained). The
FVC2002 DB2 [13] fingerprint databases. The NIST fin- meanm (andn) values for the NIST, FVC2002 DB1 and
gerprint database [17] is publicly available and contains FVC2002 DB2 databases are approximatigly 63 and77
2,000 8-bit gray scale fingerprint image pairs of size 512- respectively (For the FVC databasesandn are reported
by-512 pixels. Because of the relative large size of the as the mean number of minutiae centers in each master).

images in the NIST database, we used the first image pq; the three databases. NIST 4. FVC2002 DB1 and

of each pai'r for statistical modeling..Minutiae could not Evc2002 DB2, the agglomerative clustering procedure
be automatically extracted from two images of the NIST ;, gection 111-B was carried out for the fitted mixture

database due to poor quality. Thus, the total number of ., J4els to findN*. The resulting number of clusters is
NIST fingerprints used in our experimentsAs= 1, 998. given in Table I. Table | also gives the means of the
For the FVC2002 database, also available in the public following quantities for each database:andn, the whole
domain, we used two of its subsets DB1 and DB2. The fingerprint area, and for the mixture models representing
DB1 impressions (images size 388 x 374) are acquired  the theoretical mean number of impostor matches. The
using the optical sensor “TouchView II” by Identix, while last column gives the mean PRm, Corresponding
the DB2 impressions (image size296 x 560) are acquired  tg the “12-point match” criteria (see [1], [18]) based on
using the optical sensor “FX2000” by Biometrika. Each the mixture models (i.e., obtaining 12 or more matches
database consists af = 100 different fingers with 8  or w = 12). We choosex = 0.05 to correspond to the
impressions I = 8) per finger. Because of the small size 5% trimmed mean of the probabilities. Note that the mean
of the DB1 and DB2 databases, the minutiae consolidationyalues ofm andn for the NIST and DB1 databases are
procedure was adopted to obtain a master. The mixturesimilar but mean\ of DBL1 is larger than that of NIST,
models were subsequently fitted to each master. resulting in a much larger mean PRC for DB1 compared
The best fitting mixture model (see (5) and (6)) was to NIST. Considering DB1 and DB2 now, the mean
found for each finger for these three databases. Two typegemains the same but the mean number of minutiae in
of statistical tests for checking the appropriateness ef th DB2 is much larger compared to DB1. A larger number

Fig. 8. Empirical distributions of the number
of minutiae in the (a) NIST database, (b) mas-
ter prints constructed from the FVC2002 DB1
database, and (c) master prints constructed
from the FVC2002 DB2 database. Average
number of minutiae in the three distributions
are 62, 63 and 77, respectively.
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of minutiae implies a greater chance of obtaining a randombe discussed subsequently. Second, we consider now the
match and hence a larger mean PRC value. area of overlap between the query and file instead of the

A comparison ofPRG, (« = 0.05) was carried out for ~ Whole fingerprint area. In [18], the uniform distribution
two different choices of\ for the Poisson model: (i) was assumed for obtaining the probabilities corresponding
derived from the cluster of mixture models (see equationsto & location match between a query and file minutiae pair.
(14), (25) and (26)) and (ii\ derived from the uniform It follows from this assumption that the number of loca-
model (see equations (17) and (26)). The valuesrof  tion matches is distributed according to a hypergeometric
andn are taken to be the mean in each database. Tableistribution (see [18] for details). Further, Pankanti bt a
Il gives the results of this comparison for the NIST and [18] assume that the probability of a match between a pair
FVC2002 databases based on the whole fingerprint area®f minutiae directions,

N(_)te that the fingerprint individuality estim.ates using the P{|D; — Djla < do} = lo, 27)
mixture models are orders of magnitude higher compared ‘

to the uniform model. A reason for this is that when is independent of andj, and independent of the minutiae
minutiae from the query and file have similar clustering location matches. If we assume a uniform distribution on
tendencies, a larger number of random matches will arisethe minutiae directions and considéy = 22.5°, the value
compared to the uniform model. Table Il also gives the Of lo now is0.125. This choice ofly, also noted in [18], is
empirical number of matches for every pair of impostor not able to represent the observed clustering charaatsrist
fingerprints in each database based on the matcher reportegf the minutiae locations and directions. Subsequenty, th

in [27]. This matcher optimally aligns the. query minu-  value of/, = 0.267 was suggested in [18] based on em-
tiae (XiQ7DiQ)' i =1,2,...,m with the n file minutiae pirical observations. With the hypergeometric distribati
(XJT,D]T), j =1,2,...,n to obtain the best number of for the number of matches in the minutiae locations, and

matches. The mean number of matches as well as the PR@ith the choice of, = 0.267, the theoretical probabilities
for each database is reported in Table Il in the 'Empirical’ Of obtaining exactlyw matches (in both minutiae location
column. The empirical PRC is the proportion of impostor and direction) obtained in [18] is called the “corrected”
pairs with 12 or greater matches among all pairs with uniform model. Pankanti’'s model can be approximated
m and n values within+5 of the mean. Note that the using the Poisson probabilities in (14) with mean as
empirical number of matches and the PRCs are closer toin (17) with the following choices fop,, andpp:

the values derived from the mixture models compared to 1
the uniform, suggesting the appropriateness of the mixture PL =737 and  pp = 0.267, (28)
models in representing the distribution of minutiae. where M is the number of cells in the overlapping area

Since the mathematical model for the PRC was devel- (see [18] for details). Table IV gives the meanandn in
oped for any combination ofz, n and w, we found the  the overlapping area, the mean overlapping area, and the
trimmed mean PRC value correspondingmo= n = 46 value of M for each of the three databases.
andw = 12 is set to12 for the three databases as an A comparison between the fingerprint individuality
example. The PRCs are given in Table IlI for the mixture estimates obtained using the proposed methodology and
and uniform distributions. Note, again, that the PRCs pankanti's approach corresponding to minutiae matches
derived from the mixture model are orders of magnitude jn the overlapping area is given here. The query and
higher compared to the uniform. Note that the PRCs file fingerprints in the NIST and FVC databases are
depend on the choice df,do) used. Ifro (anddo) is  first aligned using the matcher described in [19]. Then,
increased, we increase the chance of obtaining spurioushounding boxes encompassing all minutiae points in the
matches and as a result, the PRCs increase. The reversguery and file fingerprints are determined. The overlap
happens whem, (and do) is decreased. We believe the area between the two bounding boxes is taken to be the
proposed methodology based on the mixture model givesarea of overlap between the query and file fingerprints.
a more realistic estimate of fingerprint individuality stnc  Thus, the fingerprint individuality estimates presented:he
it is a better model for minutiae clustering tendencies and are dependent on the matcher. In order to compute the
intra-class variability observed in fingerprint databases  Poisson probabilities using (14) and (25), we further re-

In the following paragraphs, we will compare our results strict the mixture models onto overlapping area. This is
with those of Pankanti et al. [18]. There are two main similar to (6) with A representing the overlapping area,
differences between the experiments presented in thisinstead of the whole fingerprint area. Also, fingerprint
section with the ones discussed in the previous paragraphéndividuality estimates based on the corrected uniform
(i.e., Tables Il and lll). First, we consider the “corrected model of Pankanti et al. [18] is obtained. Table V gives
uniform model of Pankanti et al. instead of the fully the PRCs corresponding to the mean meann and
uniform model; differences between the two models will mean overlapping area for the NIST and FVC databases.



Database (m,n,w) | N* [ Mean Fingerprint ared Mean\ PRC 11
NIST (62,62,12) | 33 2.5 x 10° 25 | 41x10 %
FVC2002 DB1| (63,63,12) 9 1.2 x 10° 5.09 5.9 x 103
FVC2002 DB2 | (77,77,12) 12 1.8 x 10° 5.14 8.4 x 1073

TABLE I. The number of clusters, N*, as well as mean )\ and PRC, based on the mixture models for
the three databases. The 2.5% genuine non-match criteria is chosen when assessing the PRCs.

Database (m,n,w) Mixture Uniform Empirical
Mean A\ PRC Mean A PRC Mean no. of matcheg PRC
NIST (62,62,12) 2.5 4.1 %1077 1.46 2.9 x 1077 7.1 3.4 x 1073
FVC2002 DB1| (63,63,12) 5.09 5.9 x 1073 2.95 1.0 x 10~4 8.0 1.4 x 1072
FVC2002 DB2 | (77,77,12) 514 | 8.4x 1073 2.96 8.4 x 1075 8.6 1.9 x 102

TABLE Il. A comparison between the PRCs obtained from the mix ture and uniform models based
on mean m, n and the “12-point match” criteria with empirical values. Th e 2.5% genuine non-match
criteria is chosen when assessing the PRCs.

Database (m,n,w) N* | Mean\ for Mixture Mixture Uniform
NIST (46,46,12) | 33 1.87 2.25 x 1079 | 5.0 x 10~10
FVC2002 DB1 | (46,46,12) 9 2.72 5.6 x 1072 2.8 x 1077
FVC2002 DB2 | (46,46,12) | 12 1.84 41x107% | 32x107°

TABLE lll. A comparison between PRC,, obtained from the mixture and uniform models for
46 and w = 12. The 2.5% genuine non-match criteria is chosen when assessi ng the PRCs.

m=n=

The empirical mean number of matches is obtained asPoisson distribution with the mean parameter derived from
before. The empirical PRC is computed as the proportion the fitted mixture distributions. The PRCs depend on the
of impostor pairs with 12 or greater matches among all choice of bounding boxes that determine a minutiae match.
pairs withm andn values within+5 of the mean in the  Larger bounding boxes yield higher spurious matches and
overlapping area. Note that as or n or both increase, increase the PRCs as a result. Better matching techniques
the values of PRCs for both the models become largethat reduce the number of spurious matches will decrease
as it becomes much easier to obtain spurious matcheghe magnitude of the PRCs. Our future work will focus on
for larger m and n values. More importantly, however, improving the models presented here further by consid-
is the fact that the Poisson probabilities based on theering spatial dependence between the observed minutiae,
mixture models are, again, orders of magnitude largerinstead of assuming independence. We will also investigate
compared to the corrected uniform. Note that the meanother mixture distributions on the minutiae locations and
of As (the theoretical mean number of matches) as well directions that are possibly better at capturing the oleskrv
as the PRCs corresponding to the Poisson and mixturevariability in the features compared to the Gaussian and
models are closer to the empirical counterparts comparedvon-Mises distributions.

to Pankanti's model.
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Database (m,n) | Mean Overlapping Area (pix&) | M 12
NIST (52,52) 112,840 413
FVC2002 DB1 | (51,51) 71,000 259
FVC2002 DB2 | (63,63) 110,470 405

TABLE IV. Table giving the mean m and n in the overlapping area, the mean overlapping area and the
value of M for each database.

Database (m,n,w) Empirical Mixture Pankanti
Mean no. of matcheg PRC Mean A PRC Mean A PRC
NIST (52,52,12) 7.1 3.9x 1073 3.1 4.4 %1073 1.2 43 %1078
FVC2002 DB1 | (51,51,12) 8.0 2.9 x 1072 4.9 1.1 x 1072 2.4 4.1 x10-6
FVC2002 DB2 | (63,63,12) 8.6 6.5 x 102 5.9 1.1 x 1072 2.5 4.3 x 10~
TABLE V. A comparison between fingerprint individuality est imates using the (a) Poisson and
mixture models, and (b) the corrected uniform of Pankanti et al. [18]. The 2.5% genuine non-match

criteria is chosen when assessing the PRCs.
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