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Statistical Models for Assessing the Individuality of Fingerprints

Yongfang Zhu, Sarat C. Dass∗ and Anil K. Jain

Abstract

Following Daubert in 1993, forensic evidence based
on fingerprints was first challenged in the 1999 case of
USA vs. Byron Mitchell, and subsequently, in 20 other
cases involving fingerprint evidence. The main concern
with the admissibility of fingerprint evidence is the problem
of individualization, namely, that the fundamental premise
for asserting the uniqueness of fingerprints has not been
objectively tested and matching error rates are unknown.
In order to assess the error rates, we require to quantify
the variability of fingerprint features, namely, minutiae in
the target population. A family of finite mixture models
has been developed in this paper to represent the distribu-
tion of minutiae in fingerprint images, including minutiae
clustering tendencies and dependencies in different regions
of the fingerprint image domain. A mathematical model
that computes the probability of a random correspondence
(PRC) is derived based on the mixture models. A PRC of
2.25 × 10−6 corresponding to 12 matches was computed
for the NIST4 Special Database, when the numbers of
query and template minutiae both equal 46. This is also the
estimate of the PRC for a target population with similar
composition as that of NIST4.

EDICS: BIO-FING, BIO-THEO, FOR-VALI

I. Introduction

EXPERT testimony based on fingerprint evidence is
delivered in a courtroom by comparing salient fea-

tures of a latent print lifted from a crime scene with
those taken from the defendant. A reasonably high degree
of match between the salient features leads the experts
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to testify irrefutably that the source of the latent print
and the defendant are one and the same person. For
decades, the testimony of forensic fingerprint experts was
almost never excluded from these cases, and on cross-
examination, the foundations and basis of this testimony
were rarely questioned. Central to establishing an iden-
tity based on fingerprint evidence is the assumption of
discernible uniqueness; salient features of fingerprints of
different individuals are observably different, and there-
fore, when two prints share many common features, the
experts conclude that the sources of the two different
prints are one and the same person. The assumption of
discernible uniqueness, although lacking sound theoretical
and empirical foundations [20], allows forensic experts
to offer an unquestionable proof towards the defendant’s
guilt. To make matters worse, forensic experts are never
questioned on the uncertainty associated with their tes-
timonials (that is, how frequently would an observable
match between a pair of prints lead to errors in the
identification of individuals). Thus, discernible uniqueness
precludes the opportunity to establish error rates which
should be estimated from collecting population samples,
analyzing the inherent feature variability, and reportingthe
corresponding probability of two different persons sharing
a set of common features (known as the probability of
random correspondence).

A significant event that questioned this trend occurred
in 1993 in the case of Daubert vs. Merrell Dow Phar-
maceuticals [7] where the U.S. Supreme Court ruled that
in order for an expert forensic testimony to be allowed in
courts, it had to be subject to five main criteria of scientific
validation, that is, whether (i) the particular technique or
methodology has been subject to statistical hypothesis test-
ing, (ii) its error rates has been established, (iii) standards
controlling the technique’s operation exist and have been
maintained, (iv) it has been peer reviewed, and (v) it has
a general widespread acceptance [18]. Forensic evidence
based on fingerprints was first challenged in the 1999 case
of U.S. v. Byron C. Mitchell [23] under the Daubert ruling,
stating that the fundamental premise for asserting the
uniqueness of fingerprints had not been objectively tested
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and its potential matching error rates were unknown. After
USA vs. Byron Mitchell, fingerprint based identification
has been challenged in more than 20 court cases in the
United States, see for example, United States vs. Llera
Plaza [25], [26] in 2002 and United States vs. Crisp [24]
in 2003; also see [5] for additional court cases.

The main issue with the admissibility of fingerprint
evidence stems from the realization that the individu-
alization of fingerprints has not been subjected to the
principles of scientific validation. The uncertainty involved
in assessing fingerprint individuality can be formulated as
follows: Given a query fingerprint, what is the probability
of finding a fingerprint in a target population having
features similar to that of the query?” As mentioned earlier,
a satisfactory answer to this question requires (i) collecting
fingerprint samples from a target population, (ii) analyzing
the variability of the features from the different fingerprints
collected, and (iii) defining a notion of similarity between
fingerprints and reporting the corresponding probability
of two different individuals sharing a set of common
fingerprint features. We address issues (ii) and (iii) in this
paper assuming that a sample of prints is available from a
target population and a notion of similarity is given; see
also Figure 1. We do not address the issues and challenges
involved in sampling from a target population. Instead,
we assume that a database of prints is available and
demonstrate how the methodology described in this paper
can be used to obtain estimates of fingerprint individuality.
If the available database is representative of the target
population, then the estimates of fingerprint individuality
obtained based on the methodology presented here would
generalize to the target population. An analysis of vari-
ability of fingerprint features requires the development of
appropriate statistical models on the space of fingerprint
features that are able to represent all aspects of variability
observed in these features. Based on these models, the
probability of a random correspondence (PRC) (alterna-
tively, the probability that the observed match between
features in a pair of prints is purely due to “chance”) will
be determined.

There have been a few previous studies that addressed
the problem of fingerprint individuality using statistical
models on fingerprint features. All these studies utilized
minutiae features in fingerprints (both location and di-
rection information) to assess individuality. However, the
assumptions made in these studies do not satisfactorily
represent the observed variations of the features in ac-
tual fingerprint databases. For example, it is known that
fingerprint minutiae tend to form clusters [21], [22] but
Pankanti et al. [18] assumed a uniform distribution on
minutiae locations and directions which was then corrected
to match empirical results from the databases used in
their study. Another assumption made by Pankanti et al. is

Fig. 1. Intraclass variability in a fingerprint
database. Rows correspond to different fin-
gers whereas columns correspond to mul-
tiple impressions of the same finger. White
boxes correspond to location of fingerprint
minutiae.

that the minutiae location is distributed independently of
the minutiae direction. But, minutiae in different regions
of the fingerprint are observed to be associated with
different region-specific minutiae directions. Moreover,
minutiae points that are spatially close tend to have similar
directions with each other. These observations on the
distribution of fingerprint minutiae need to be accounted
for in eliciting reliable statistical models.

The problem of establishing individuality estimates
based on fingerprints is in contrast to DNA typing where
the probability of a random correspondence has been
studied extensively and quantified (see, for example, [10]).
The DNA typing problem (inherently 1-D) is in some sense
simpler to analyze compared to the fingerprint individual-
ity problem (inherently 2-D); also, the act of acquiring
fingerprint impressions as well as the condition of the
physical finger itself (i.e., cuts and bruises, and distortions)
introduces many sources of noise. This paper proposes to
determine reliable estimates of the probability of a random
correspondence between two fingerprints via appropriate
statistical models in a spirit similar to that of DNA typing.

To address the issue of individuality, candidate models
have to meet two important requirements: (i) flexibility,
that is, the model can represent the observed distributions
of the minutiae features in fingerprint images over differ-
ent databases, and (ii) associated measures of fingerprint
individuality can be easily obtained from these models. In
practice, a forensic expert uses many fingerprint features
(minutiae location and direction, fingerprint class, inter-
ridge distance, etc.) to make the match, but here we
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only use a subset of these features, namely, the minutiae
locations and directions, to keep the problem tractable. We
introduce a family of finite mixture models to represent the
observed distribution of minutiae locations and directions
in fingerprint images. The reliability of the models is
assessed using a criteria based on the degree to which
the models are able to capture the observed variability in
the minutiae locations and directions. We then derive a
mathematical model for computing the PRCs based on the
elicited mixture models.

The rest of this paper is organized as follows: Section
II describes the finite mixture models proposed for the
minutiae features (both location and direction). We also
develop tests to demonstrate the appropriateness of the
mixtures as distributional models for fingerprint minutiae
compared to the uniform distribution. Section III devel-
ops a new mathematical model for computing the PRC,
whereas Section IV describes the experimental results
based on the NIST Special Database 4 [17], and FVC2002
[13] databases.

II. Statistical Models On Minutiae Location
and Direction

A minutiae is the location of a ridge anomaly in a fin-
gerprint image [14]. Forensic experts and most automatic
fingerprint matching systems use minutiae for identifica-
tion since these features have been shown to be stable
and can be reliably extracted from prints. There are many
types of ridge anomalies that occur in fingerprint images
- examples of these include ridge endings, bifurcations,
islands, dots, enclosures, bridges, double bifurcations,tri-
furcations, and others. However, in this paper, we only
consider the two dominant types of minutiae, namely,
endings and bifurcations. The main reasons for this are that
the occurrence of the other ridge anomalies is relatively
rare, and it is easy to consistently detect minutiae endings
and bifurcations compared to other minutiae types. Each
minutiae is characterized in terms of two components: (i)
its location, i.e., the spatial coordinates of its position,
and (ii) its direction, i.e., the angle subtended by the
minutiae measured from the horizontal axis. We also do
not distinguish between minutiae bifurcation and ending
since it is often not easy to distinguish between them
by automatic systems. Subsequently, the term “minutiae
features” will be used to refer to the location and direction
of a minutiae in a fingerprint impression. See Figure
2 for an example of minutiae features for a fingerprint
impression from the FVC2002 DB1 [13] database.

Let X denote a generic random minutiae location and
D denote its corresponding direction. LetS ⊆ R

2 denote
the subset of the plane representing the fingerprint domain.
Then the set of all possible configurations forX is the

θ

θ

s=(x,y)

s=(x,y)

(a) (b) (c)

Fig. 2. Minutiae features consisting of the
location, s, and direction, θ, for a typical
fingerprint image (b): The top (respectively,
bottom) panel in (a) shows s and θ for a ridge
bifurcation (respectively, ending). The top
(respectively bottom) panel in (c) shows two
subregions in which orientations of minutiae
points that are spatially close tend to be very
similar.

(x, y) ≡ s coordinate points inS. The minutiae direction,
D, takes values in[0, 2π). Denoting the total number of
minutiae in a fingerprint image byk, we will develop a
joint distribution model for thek pairs of minutiae features
(X,D): { (Xj ,Dj), j = 1, 2, . . . k }, that accounts for (i)
clustering tendencies (non-uniformity) of minutiae, and (ii)
dependence between minutiae location and direction (Xj

andDj) in different regions ofS.
The proposed joint distribution model is based on a

mixture consisting ofG components or clusters. Letcj

be the cluster label of thej-th minutiae location and
direction (Xj ,Dj), cj ∈ {1, 2, . . . , G}, j = 1, 2, . . . , k.
The labelscj are independently distributed according to a
single multinomial withG classes and class probabilities
τ1, τ2, . . . , τG, such thatτj ≥ 0 and

∑G

j=1 τj = 1. Given
label cj = g, the minutiae locationXj is distributed
according to the density

fX
g ( s |µg, Σg ) = φ2( s |µg, Σg ), (1)

whereφ2 is the bivariate Gaussian density with meanµg

and covariance matrixΣg. Equation (1) states that the
minutiae locations arising from theg-th cluster follow a
two-dimensional Gaussian with meanµg and covariance
matrix Σg.

The Von-Mises distribution [15] is a typical distribution
used to model angular random variables, such as minutiae
directions in our case. So, we assume the distribution of
j-th minutiae direction,Dj , belonging to theg-th cluster
follows the density

fD
g (θ | νg, κg, pg) = pg v(θ) · I{0 ≤ θ < π}
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Fig. 3. Probability distribution plots of the
Von-Mises distribution with center νg = π/4,
and with two different precisions, κg and κ∗

g,
with κg < κ∗

g. The values of v(θ) at π/2 and
−π/2 are equal to each other due to the cycli-
cal nature of the cosine function.

+(1 − pg) v(θ − π) · I{π ≤ θ < 2π}, (2)

where I{A} is the indicator function of the setA (that
is, I{A} = 1 if A is true, and0, otherwise),pg is a
real number between0 and1, andv(θ) is the Von-Mises
distribution given by

v(θ) ≡ v( θ | νg, κg) =
2

I0(κg)
exp{κg cos2(θ − νg)},

(3)
with I0(κg) defined as

I0(κg) =

∫ 2π

0

exp{κg cos(θ − νg)} dθ. (4)

In (3), νg andκg represent the mean angle and the preci-
sion (inverse of the variance) of the Von-Mises distribution,
respectively. Figure 3 plots two density functions associ-
ated with Von-Mises distributions with common meansνg

but with two different precisionsκg < κ∗
g. This figure

shows thatνg represents the “center” (or modal value)
while κg controls the degree of spread around the center
(thus, the density with precisionκ∗

g has higher concentra-
tion aroundνg). The densityfD

g in (2) can be interpreted
in the following way: The ridge flow orientation,O, is
assumed to follow the Von-Mises distribution (3) with
meanνg and precisionκg. Subsequently, minutiae arising
from theg-th component have directions that are eitherO
or O + π with probabilitiespg and1 − pg, respectively.

Combining the distributions of the minutiae location
(X) and the direction (D), it follows that each(X,D)

(a) (b)

(c) (d)
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Fig. 4. Assessing the fit of the mixture models
to minutiae location and direction: Observed
minutiae locations (white boxes) and direc-
tions (white lines) are shown in panels (a)
and (b) for two different fingerprints from the
NIST Special Database 4. Panels (c) and (d),
respectively, show the cluster labels for each
minutiae feature in (a) and (b). The clusters in
3-D space are shown in panels (e) and (f) with
x, y, z as the row, column, and the orientation
of the minutiae.

is distributed according to the mixture density

f( s, θ |ΘG) =

G
∑

g=1

τg fX
g (s |µg, Σg) · f

D
g (θ | νg, κg, pg),

(5)
where fX

g (·) and fD
g (·) are defined as in (1) and (2),

respectively. In (5),ΘG denotes all the unknown parame-
ters in the mixture model which includes the total num-
ber of mixture components,G, the mixture probabilities
τg, g = 1, 2, . . . , G, the component means and covariance
matrices offX

g ’s given by µG ≡ {µ1, µ2, ...., µG}, and
ΣG ≡ {Σ1,Σ2, ...,ΣG}; the component mean angles
and precisions offD

g ’s given by νG ≡ {ν1, ν2, . . . , νG}
andκG ≡ {κ1, κ2, . . . , κG}, and the mixing probabilities



5
pG ≡ {p1, p2, . . . , pG}. The model in (5) allows for (i)
different clustering tendencies in the minutiae locations
and directions viaG different clusters, and (ii) incorporates
dependence between the minutiae location and direction
since if Xj is known to come from theg-th component,
then it follows that the directionDj also comes from the
same mixture component.

The mixture density given in (5) is defined on the entire
planeR

2, and is not restricted to the fingerprint domain
S. We correct this by defining the mixture model on the
fingerprint areaA ⊂ S as

fA(s, θ |ΘG) =
f(s, θ |ΘG)

∫

s∈A

∫ 2π

θ=0
f(s, θ |ΘG) dθ ds

. (6)

If most of the fingerprint areaA encompass the entire
rectangular sensing area,S, i.e., A ≈ S,

fA(s, θ |ΘG) ≈ f(s, θ |ΘG) (7)

since then the denominator in (6)
∫

s∈A

∫ 2π

θ=0

f(s, θ |ΘG) dθ ds ≈ 1. (8)

To estimate the unknown parameters in the model, we
develop an algorithm based on hierarchical agglomeration
and the EM algorithm [8], [16] for unrestricted multivariate
mixture models. The optimal number of components,G∗,
is selected using the Bayes Information Criteria (BIC).
The BIC has been widely used in various model selection
problems and has the property that it selects a model that is
most parsimonious (one having the least number of model
parameters). Details of the EM algorithm and the BIC used
here are given in Appendix A of the technical report [28].

Figure 4 illustrates the fit of the mixture model to two
fingerprint images from the NIST 4 database. Observed
minutiae locations (white boxes) and directions (white
lines) are shown in panels (a) and (b). Panels (c) and (d),
respectively, give the cluster assignment for each minutiae
feature in (a) and (b). The cluster label of(Xj ,Dj) is
estimated according to equation (46) in Appendix A of
[28] after the EM algorithm has converged. Panels (e) and
(f) plot the minutiae features in the 3-D(X,D) space
for easy visualization of the clusters (in both location and
direction). The BIC criteria yieldsG∗ to be 3 and 2 for
panels (a) and (b), respectively. In panels (c-f), minutiae
from the same cluster are labeled with the same color,
shape and number.

Another way to show the effectiveness of the fit of the
models to the observed data is to simulate a realization
from the fitted models. Figures 5 (a) and (b) show two
fingerprints whose minutiae features were fitted with the
mixture distribution in (6). Figures 5 (e-f) show a simulated
realization when eachX andD is assumed to be uniformly
distributed independently of each other. Note that there is
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Fig. 5. All (X,D) realizations from the pro-
posed model ((c) and (d)), and from the uni-
form distribution ((e) and (f)) for two different
images ((a) and (b)). The true minutiae loca-
tions and directions are marked in (a) and (b).

a good agreement, in the distributional sense, between the
observed (Figures 5 (a) and (b)) and simulated minutiae
locations and directions from the proposed models (Figures
5 (c) and (d)) but no such agreement exists for the uniform
model.

III. Probability of Random Correspondence
(PRC)

The probability of a random correspondence (PRC) is
the chance that an arbitrary impostor fingerprint from a
target population will share a sufficiently large number
of minutiae with the query. Small (respectively, large)
values of the PRC imply that it is unlikely (respectively,
likely) that minutiae in a fingerprint of an individual other
than the query source will match those of the query. Let
Q (respectively,T ) denote the query (respectively, file)
fingerprint image from the individualIQ (respectively,
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Fig. 6. Identifying the matching region for a
query minutiae.

IT 6= IQ). To compute the PRC, we first define a minutiae
match betweenQ andT . A pair of minutiae features inQ
and T , (XQ,DQ) and (XT ,DT ) respectively, is said to
match if for fixed positive numbersr0 andd0,

|XQ − XT |s ≤ r0 and |DQ − DT |a ≤ d0, (9)

where

|XQ − XT |s ≡
√

(xQ − xT )2 + (yQ − yT ) (10)

is the (spatial) Euclidean distance between the minutiae
locationsXQ = (xQ, yQ) andXT = (xT , yT ), and

|DQ −DT |a ≡ min(|DQ −DT |, 2π − |DQ −DT |) (11)

is the angular distance between the minutiae directionsDQ

andDT ; see Figure 6. The definition of a match in (9) is
same as that used by Pankanti et al. [18], and depends on
two parametersr0 andd0. Large (respectively, small) val-
ues of the pair (r0, d0) will lead to spurious (respectively,
missed) minutiae matches. Thus, it is necessary to select
(r0, d0) judiciously so that both kinds of matching errors
are minimized. A discussion on how to select (r0, d0) is
presented in Section III-C and postponed for now.

Suppose the following quantities are available:
(i) m: number of minutiae in query fingerprintQ with
minutiae denoted by(XQ

i ,DQ
i ), i = 1, 2, . . . ,m.

(ii) n: number of minutiae in file fingerprintT with
minutiae denoted by(XT

i ,DT
i ), i = 1, 2, . . . , n.

(iii) w: number of matching minutiae betweenQ andT .
We assume that the query and file minutiae are distributed
independently according to the mixture densities

fQ(XQ,DQ) = f(XQ,DQ |ΘQ
G), (12)

and
fT (XT ,DT ) = f(XT ,DT |ΘT

G), (13)

respectively. Then, the PRC is the probability of obtaining
exactly w matches betweenQ and T when IQ 6= IT . In
order to compute the probability of obtainingw matches,

we impose the condition that the minutiae sets ofQ and
T cannot be too close to each other; this is a reasonable
assumption to make since minutiae can occur only on
ridges and therefore, should be at least one inter-ridge
distance away from one another (see also Pankanti et al.
[18] for a similar condition). In Appendix B of [28], we
show that the probability of obtaining exactlyw matches
given there arem andn minutiae inQ andT , respectively,
is given by the expression

p∗(w ; Q,T ) =
e−λ(Q,T ) λ(Q,T )w

w!
(14)

for largem andn; equation (14) corresponds to the Poisson
probability mass function with meanλ(Q,T ) given by

λ(Q,T ) = mnp(Q,T ), (15)

where

p(Q,T ) = P (|XQ − XT |s ≤ r0 and|DQ − DT |a ≤ d0)
(16)

denotes the probability of a match when(XQ,DQ) and
(XT ,DT ) are random minutiae from (12) and (13), re-
spectively. The mean parameterλ(Q,T ) can be interpreted
as the expected number of matches from the total number
of mn possible pairings betweenm minutiae inQ andn
minutiae points inT with the probability of each match
beingp(Q,T ). The Poisson distribution in (14) is obtained
using arguments similar to when a binomial distribution
with a large number of trials and small probability of
“success” can be approximated by a Poisson distribution,
provided the expected number of “successes” is moderate.
For this reason, the Poisson approximation is also called
the law of rare events. In our case, if we define “success”
to be a minutiae match, then (i) the number of trials,mn,
is large, (ii) the probability of a success,p(Q,T ), is small,
and (iii) the number of impostor matches betweenQ andT
is moderate (not exceeding 10 in the databases we worked
with), thus, justifying the validity of the Poisson law.

The above discussion is general and holds true for any
distribution for the query and file minutiae. In particular,
when the distributions on the minutiae (both location and
direction) are chosen to be uniform, we get the following
expression forλ(Q,T ):

λU (Q,T ) = mnpL pD, (17)

where pL (respectively,pD) is the probability thatXQ

and XT (respectively,DQ and DT ) will match. The
probability of a location and direction match appears as
the productpL pD since the minutiae location and direction
are distributed independently of each other.

For a fingerprint database consisting ofF different
fingers with a single impression per finger, we wish to
find the most representative value for the probability of
a random correspondence, PRC, for this database. There
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are a total ofF (F − 1)/2 pairs of impostor fingerprint
images(Q,T ) from the entire database. The average PRC
corresponding tow minutiae matches is given by

PRC=
2

F (F − 1)

∑

(Q,T ) impostorpairs

p∗(w ; Q,T ), (18)

where p∗(w ; Q,T ) is as defined in (14); note that
p∗(w ; Q,T ) is symmetric inQ and T , and thus it is
sufficient to consider only theF (F−1)/2 distinct impostor
pairs instead of the totalF (F − 1). Each of the probabil-
ities, p∗(w ; Q,T ), is a very small number such as10−6

or 10−7. Thus, the average PRC in (18) is highly affected
by the largest of these probabilities, and is, therefore, not
reliable as an estimate of typical PRCs arising from the
impostor pairs. A better measure would be to consider an
average of the trimmed probabilities. Letα denote the per-
centage ofp∗(w ; Q,T ) to be trimmed, and letp∗(w;α/2)
and p∗(w; 1 − α/2), respectively, denote the lower and
upper100α/2-th percentiles of these probabilities. Theα-
trimmed mean is given by

PRCα =
2

F (F − 1)(1 − α)

∑

(Q,T ) impostor

p∗α(w ; Q,T ),

(19)
where if p∗(w;α/2) ≤ p∗(w ; Q,T ) ≤ p∗(w; 1 − α/2),

p∗α(w ; Q,T ) =

{

p∗(w ; Q,T )
0, otherwise.

(20)

A. Incorporating Multiple Impressions per Finger

To utilize multiple impressions of a finger (such as
from databases in the Fingerprint Verification Competitions
(FVCs) [12], [13]), we combine minutiae from different
impressions into a single “master” on which the mixture
model is fit. The minutiae consolidation procedure we fol-
low is described in detail in [28] and [27]. An illustration
of the consolidation procedure is shown in Figure 7 where
multiple impressions of the same finger (a) are aligned to
the reference image (b) to obtain the master fingerprint (c).
The process of minutiae consolidation has two advantages:
(i) A more reliable fit of the mixture model is obtained,
and (ii) the assumption of largem and n required for
computing the individuality estimates is satisfied. PRCs for
w matches are then obtained using (14) for theF (F−1)/2
impostor master pairs. The consolidation process involves
averaging the location and direction of the same minutiae
obtained from the multiple impressions. This helps smooth
out any non-linear distortion effects that can affect the
estimate of fingerprint individuality. In this paper, we do
not model the variability in the partial prints corresponding
to each finger as was done in [27].

Fig. 7. Master fingerprint construction; (a) 4
different impressions of a finger, (b) refer-
ence impression, and (c) master.

B. Identifying Clusters of Fitted Mixture Models

In order to compute the probability of random cor-
respondence based on the mixture models, our method-
ology involves fitting a separate mixture model to each
fingerprint impression/master from a target population. An
important difference between the proposed methodology
and previous work is that we fit mixture models to each fin-
ger/master, whereas previous studies assumed a common
distribution for all fingers/impressions. Assuming a com-
mon minutiae distribution for all fingerprint impressions
has a serious drawback, namely, that the true distribution
of minutiae may not be modeled well. For example, it is
well-known that the five major fingerprint classes in the
Henry system of classification (i.e., right-loop, left-loop,
whorl, arch and tented arch) have different class-specific
minutiae distributions. Thus, using one common minutiae
distribution may smooth out important clusters in the dif-
ferent fingerprint classes. Moreover, PRCs depend heavily
on the composition of each target population. Consider
the following example: The proportion of right-loop, left-
loop, whorl, arch and tented arch classes of fingerprints
is 31.7%, 33.8%, 27.9%, 3.7% and 2.9%, respectively, in
a population of British people as reported in [6]. Thus,
PRCs computed for fingerprints from this population will
be largely influenced by the mixture models fitted to the
right-loop, left-loop and whorl classes compared to arch
and tented arch. More important is the fact that the PRCs
will change if the class proportions change (for example,
if the target population has an equal number of fingerprints
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in each class, or with class proportions different from the
ones given above). By fitting separate mixture models to
each finger, we ensure that the composition of a target
population is correctly represented.

To formally obtain the composition of a target popu-
lation, we adopt an agglomerative hierarchical clustering
procedure [9] on the space of all fitted mixture models.
The dissimilarity measure between the estimated mixture
densitiesf andg is taken to be the Hellinger distance [11]

H(f, g) =

∫

x∈S

∫

θ∈[0,2π)

(
√

f(x, θ) −
√

g(x, θ))2 dx dθ.

(21)
The Hellinger distance,H, is a number bounded between
0 and 2, withH = 0 (respectively,H = 2) if and only if
f = g (respectively,f andg have disjoint support). For a
database withF fingers, we obtain a total ofF (F − 1)/2
Hellinger distances corresponding to theF (F − 1)/2
mixture pairs. The resulting dendrogram can be cut to
form N clusters of mixture densities,C1, C2, . . . , CN , say,
based on a thresholdT . Note thatN = 1 when T = 2,
and asT decreases to0, N increases toF (F−1)/2. When
the number of clusters isN , we define the within cluster
dissimilarity as

WN =

N
∑

i=1

1

2|Ci|
D(Ci) (22)

where
D(Ci) =

∑

f,g∈Ci

H(f, g) (23)

is the sum of all distancesH(f, g) for f and g in Ci,
and |Ci| is the number of mixture densities inCi. Note
that asN increases,WN decreases to0. To choose the
optimal number of clusters, we use the “elbow criteria”:
Let GN = |WN − WN−1| denote the absolute difference
between the within cluster dissimilaritiesWN−1 andWN .
We selectN∗ as the number of clusters if the values of
GN for N > N∗ are insignificant (close to 0) compared to
the value ofGN∗ . The criteria is named after the “elbow”
that is created atN = N∗ in the plot ofWN versusN .

Once the number of clustersN∗ has been determined,
we find the mean mixture density for each clusterCi as

f̄(x, θ) =
1

|Ci|

∑

f∈Ci

f(x, θ). (24)

The mean parameterλ(Q,T ) in (15) depends onQ andT
via the mean mixture densities of the clusters from which
Q and T are taken. IfQ and T , respectively, belong to
clustersCi and Cj , we haveλ(Q,T ) ≡ λ(Ci, Cj) with
the mean mixture densities ofCi andCj used in place of
the original mixture densities in (16). Letp∗(w ; Ci, Cj)
denote the Poisson probability

p∗(w ; Ci, Cj) = e−λ(Ci,Cj)
λ(Ci, Cj)

w

w!
. (25)

To obtain the 100(1 − α)% trimmed mean, we de-
note the lower and upper100α/2-th percentiles of
{ p∗(w ; Ci, Cj), 1 ≤ i, j ≤ N∗} by p∗C(w;α/2)
and p∗C(w; 1 − α/2). Also, define the set of all
trimmed p∗(w ; Ci, Cj) probabilities asT ≡ { (i, j) :
p∗C(w;α/2) ≤ p∗(w ; Ci, Cj) ≤ p∗C(w; 1 − α/2)}. Then,
the 100(1 − α)% trimmed mean PRC is

PRCα =

∑

(i,j)∈T
|Ci| |Cj | p

∗(w ; Ci, Cj)
∑

(i,j)∈T

|Ci| |Cj |
. (26)

C. Estimation of (r0, d0)

Parameters(r0, d0) determine the matching region for
a query minutiae. In the ideal situation, a genuine pair
of matching minutiae in the query and file will correspond
exactly leading to the choice of(r0, d0) as(0, 0). However,
factors such as skin elasticity and non-uniform fingertip
pressure can cause the minutiae pair that is supposed
to perfectly match, to slightly deviate from one another.
To avoid rejecting such pairs as non-matches, non-zero
values of r0 and d0 need to be specified for matching
pairs of genuine minutiae. We adopt the procedure taken
by Pankanti et al. [18] for selecting a reasonable value
for the pair (r0, d0) such that only a small pre-specified
proportion of genuine matches will be rejected. The value
of r0 is determined based on the distribution of Euclidean
distances between every pair of matched minutiae in the
genuine case. We align pairs of genuine fingerprints and
find the corresponding pairs of minutiae. The value ofr0 is
selected based on the distribution of the Euclidean distance
between the locations of the minutiae pairs. The value of
r0 is selected so that only the upper2.5% of the genuine
matching distances (corresponding to large values ofr) are
rejected.

In a similar fashion, we can compute the distribution of
the angular distance between the directions for minutiae
pairs. The value ofd0 is determined to be the97.5%-th
percentile of this distribution (again, the upper2.5% of the
genuine matching angular distances will be rejected).

Pankanti et al. [18] used a database of 450 mated
fingerprint pairs where the true minutiae locations and
the correspondences between minutiae in each genuine
fingerprint pair were determined by a fingerprint expert.
Using this ground truth correspondence, they estimatedr0

andd0 to be15 and22.5, respectively. These values will
be used in our experiments to estimate the probability of
random correspondence.

IV. Experimental Results

Our methodology for assessing the individuality of fin-
gerprints are validated on three target populations, namely,
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Fig. 8. Empirical distributions of the number
of minutiae in the (a) NIST database, (b) mas-
ter prints constructed from the FVC2002 DB1
database, and (c) master prints constructed
from the FVC2002 DB2 database. Average
number of minutiae in the three distributions
are 62, 63 and 77, respectively.

the NIST Special Database 4 [17], FVC2002 DB1 and
FVC2002 DB2 [13] fingerprint databases. The NIST fin-
gerprint database [17] is publicly available and contains
2,000 8-bit gray scale fingerprint image pairs of size 512-
by-512 pixels. Because of the relative large size of the
images in the NIST database, we used the first image
of each pair for statistical modeling. Minutiae could not
be automatically extracted from two images of the NIST
database due to poor quality. Thus, the total number of
NIST fingerprints used in our experiments isF = 1, 998.

For the FVC2002 database, also available in the public
domain, we used two of its subsets DB1 and DB2. The
DB1 impressions (images size= 388× 374) are acquired
using the optical sensor “TouchView II” by Identix, while
the DB2 impressions (image size= 296×560) are acquired
using the optical sensor “FX2000” by Biometrika. Each
database consists ofF = 100 different fingers with 8
impressions (L = 8) per finger. Because of the small size
of the DB1 and DB2 databases, the minutiae consolidation
procedure was adopted to obtain a master. The mixture
models were subsequently fitted to each master.

The best fitting mixture model (see (5) and (6)) was
found for each finger for these three databases. Two types
of statistical tests for checking the appropriateness of the

mixture model (6) as a distribution on fingerprint minutiae
were carried out. The first type of test was to select
between two models, either the mixture or the uniform,
for the minutiae for each finger based on the likelihood
ratio (the mixture and uniform models were fitted to the
master whenever the consolidation procedure of Section
III-A was adopted for a database). This model selection
procedure can decide only between the mixture and the
uniform model. However, it may be the case that the true
distribution on fingerprint minutiae is neither one of these.
Thus, the second type of statistical test carried out was
to assess the goodness of fit of the mixture model to
the observed distribution of minutiae for each finger. The
quality of fit of the mixture distribution was determined
via a p-value where large p-values (p-values ¿ 0.01) led to
the conclusion that the mixture distribution is an adequate
model; otherwise, when the p-value is smaller than .01,
the mixture distribution is inadequate. In a similar fashion,
we also tested the goodness of fit of the uniform model
to the distribution of minutiae for each finger. Based on
these statistical tests, we found strong evidence for the
appropriateness of the mixture models as a distribution on
fingerprint minutiae for all the three databases. We refer
the reader to the technical report [28] for more details on
the tests that were carried out as well as the experimental
results.

The distributions ofm and n for the three fingerprint
databases are shown in Figures 8 (a), (b) and (c), respec-
tively (the distribution ofm and the distribution ofn are
identical, and hence only one histogram is obtained). The
meanm (andn) values for the NIST, FVC2002 DB1 and
FVC2002 DB2 databases are approximately62 , 63 and77
respectively (For the FVC databases,m andn are reported
as the mean number of minutiae centers in each master).

For the three databases, NIST 4, FVC2002 DB1 and
FVC2002 DB2, the agglomerative clustering procedure
in Section III-B was carried out for the fitted mixture
models to findN∗. The resulting number of clusters is
given in Table I. Table I also gives the means of the
following quantities for each database:m andn, the whole
fingerprint area, andλ for the mixture models representing
the theoretical mean number of impostor matches. The
last column gives the mean PRC,PRCα, corresponding
to the “12-point match” criteria (see [1], [18]) based on
the mixture models (i.e., obtaining 12 or more matches
or w = 12). We chooseα = 0.05 to correspond to the
5% trimmed mean of the probabilities. Note that the mean
values ofm and n for the NIST and DB1 databases are
similar but meanλ of DB1 is larger than that of NIST,
resulting in a much larger mean PRC for DB1 compared
to NIST. Considering DB1 and DB2 now, the meanλ
remains the same but the mean number of minutiae in
DB2 is much larger compared to DB1. A larger number
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of minutiae implies a greater chance of obtaining a random
match and hence a larger mean PRC value.

A comparison ofPRCα (α = 0.05) was carried out for
two different choices ofλ for the Poisson model: (i)λ
derived from the cluster of mixture models (see equations
(14), (25) and (26)) and (ii)λ derived from the uniform
model (see equations (17) and (26)). The values ofm
and n are taken to be the mean in each database. Table
II gives the results of this comparison for the NIST and
FVC2002 databases based on the whole fingerprint area.
Note that the fingerprint individuality estimates using the
mixture models are orders of magnitude higher compared
to the uniform model. A reason for this is that when
minutiae from the query and file have similar clustering
tendencies, a larger number of random matches will arise
compared to the uniform model. Table II also gives the
empirical number of matches for every pair of impostor
fingerprints in each database based on the matcher reported
in [27]. This matcher optimally aligns them query minu-
tiae (XQ

i ,DQ
i ), i = 1, 2, . . . ,m with the n file minutiae

(XT
j ,DT

j ), j = 1, 2, . . . , n to obtain the best number of
matches. The mean number of matches as well as the PRC
for each database is reported in Table II in the ’Empirical’
column. The empirical PRC is the proportion of impostor
pairs with 12 or greater matches among all pairs with
m and n values within±5 of the mean. Note that the
empirical number of matches and the PRCs are closer to
the values derived from the mixture models compared to
the uniform, suggesting the appropriateness of the mixture
models in representing the distribution of minutiae.

Since the mathematical model for the PRC was devel-
oped for any combination ofm, n and w, we found the
trimmed mean PRC value corresponding tom = n = 46
and w = 12 is set to12 for the three databases as an
example. The PRCs are given in Table III for the mixture
and uniform distributions. Note, again, that the PRCs
derived from the mixture model are orders of magnitude
higher compared to the uniform. Note that the PRCs
depend on the choice of(r0, d0) used. If r0 (and d0) is
increased, we increase the chance of obtaining spurious
matches and as a result, the PRCs increase. The reverse
happens whenr0 (and d0) is decreased. We believe the
proposed methodology based on the mixture model gives
a more realistic estimate of fingerprint individuality since
it is a better model for minutiae clustering tendencies and
intra-class variability observed in fingerprint databases.

In the following paragraphs, we will compare our results
with those of Pankanti et al. [18]. There are two main
differences between the experiments presented in this
section with the ones discussed in the previous paragraphs
(i.e., Tables II and III). First, we consider the “corrected”
uniform model of Pankanti et al. instead of the fully
uniform model; differences between the two models will

be discussed subsequently. Second, we consider now the
area of overlap between the query and file instead of the
whole fingerprint area. In [18], the uniform distribution
was assumed for obtaining the probabilities corresponding
to a location match between a query and file minutiae pair.
It follows from this assumption that the number of loca-
tion matches is distributed according to a hypergeometric
distribution (see [18] for details). Further, Pankanti et al.
[18] assume that the probability of a match between a pair
of minutiae directions,

P{|Di − Dj |a ≤ d0} ≡ l0, (27)

is independent ofi andj, and independent of the minutiae
location matches. If we assume a uniform distribution on
the minutiae directions and considerd0 = 22.5o, the value
of l0 now is0.125. This choice ofl0, also noted in [18], is
not able to represent the observed clustering characteristics
of the minutiae locations and directions. Subsequently, the
value of l0 = 0.267 was suggested in [18] based on em-
pirical observations. With the hypergeometric distribution
for the number of matches in the minutiae locations, and
with the choice ofl0 = 0.267, the theoretical probabilities
of obtaining exactlyw matches (in both minutiae location
and direction) obtained in [18] is called the “corrected”
uniform model. Pankanti’s model can be approximated
using the Poisson probabilities in (14) with meanλU as
in (17) with the following choices forpL andpD:

pL =
1

M
and pD = 0.267, (28)

whereM is the number of cells in the overlapping area
(see [18] for details). Table IV gives the meanm andn in
the overlapping area, the mean overlapping area, and the
value ofM for each of the three databases.

A comparison between the fingerprint individuality
estimates obtained using the proposed methodology and
Pankanti’s approach corresponding to minutiae matches
in the overlapping area is given here. The query and
file fingerprints in the NIST and FVC databases are
first aligned using the matcher described in [19]. Then,
bounding boxes encompassing all minutiae points in the
query and file fingerprints are determined. The overlap
area between the two bounding boxes is taken to be the
area of overlap between the query and file fingerprints.
Thus, the fingerprint individuality estimates presented here
are dependent on the matcher. In order to compute the
Poisson probabilities using (14) and (25), we further re-
strict the mixture models onto overlapping area. This is
similar to (6) with A representing the overlapping area,
instead of the whole fingerprint area. Also, fingerprint
individuality estimates based on the corrected uniform
model of Pankanti et al. [18] is obtained. Table V gives
the PRCs corresponding to the meanm, mean n and
mean overlapping area for the NIST and FVC databases.



11Database (m, n, w) N∗ Mean Fingerprint area Meanλ PRC
NIST (62, 62, 12) 33 2.5 × 105 2.5 4.1 × 10−4

FVC2002 DB1 (63, 63, 12) 9 1.2 × 105 5.09 5.9 × 10−3

FVC2002 DB2 (77, 77, 12) 12 1.8 × 105 5.14 8.4 × 10−3

TABLE I. The number of clusters, N∗, as well as mean λ and PRCα based on the mixture models for
the three databases. The 2.5% genuine non-match criteria is chosen when assessing the PRCs.

Database (m, n, w) Mixture Uniform Empirical
Meanλ PRC Meanλ PRC Mean no. of matches PRC

NIST (62, 62, 12) 2.5 4.1 × 10−4 1.46 2.9 × 10−7 7.1 3.4 × 10−3

FVC2002 DB1 (63, 63, 12) 5.09 5.9 × 10−3 2.95 1.0 × 10−4 8.0 1.4 × 10−2

FVC2002 DB2 (77, 77, 12) 5.14 8.4 × 10−3 2.96 8.4 × 10−5 8.6 1.9 × 10−2

TABLE II. A comparison between the PRCs obtained from the mix ture and uniform models based
on mean m, n and the “12-point match” criteria with empirical values. Th e 2.5% genuine non-match
criteria is chosen when assessing the PRCs.

Database (m, n, w) N∗ Meanλ for Mixture Mixture Uniform
NIST (46, 46, 12) 33 1.87 2.25 × 10−6 5.0 × 10−10

FVC2002 DB1 (46, 46, 12) 9 2.72 5.6 × 10−5 2.8 × 10−7

FVC2002 DB2 (46, 46, 12) 12 1.84 4.1 × 10−6 3.2 × 10−9

TABLE III. A comparison between PRCα obtained from the mixture and uniform models for m = n =
46 and w = 12. The 2.5% genuine non-match criteria is chosen when assessi ng the PRCs.

The empirical mean number of matches is obtained as
before. The empirical PRC is computed as the proportion
of impostor pairs with 12 or greater matches among all
pairs withm andn values within±5 of the mean in the
overlapping area. Note that asm or n or both increase,
the values of PRCs for both the models become large
as it becomes much easier to obtain spurious matches
for larger m and n values. More importantly, however,
is the fact that the Poisson probabilities based on the
mixture models are, again, orders of magnitude larger
compared to the corrected uniform. Note that the mean
of λs (the theoretical mean number of matches) as well
as the PRCs corresponding to the Poisson and mixture
models are closer to the empirical counterparts compared
to Pankanti’s model.

V. Summary and Conclusion

A family of finite mixture models is proposed as a
flexible and reliable way of representing minutiae variabil-
ity in fingerprint images. These models better represent
the clustering property of minutiae features observed in
fingerprint images compared to the uniform distribution.
We believe our model gives rise to more reliable individu-
ality estimates that are, in fact, orders of magnitude larger
than the uniform due to minutiae clustering tendencies in
query and file fingerprints pairs. In order to compute the
probability of random correspondence, we developed the

Poisson distribution with the mean parameter derived from
the fitted mixture distributions. The PRCs depend on the
choice of bounding boxes that determine a minutiae match.
Larger bounding boxes yield higher spurious matches and
increase the PRCs as a result. Better matching techniques
that reduce the number of spurious matches will decrease
the magnitude of the PRCs. Our future work will focus on
improving the models presented here further by consid-
ering spatial dependence between the observed minutiae,
instead of assuming independence. We will also investigate
other mixture distributions on the minutiae locations and
directions that are possibly better at capturing the observed
variability in the features compared to the Gaussian and
Von-Mises distributions.

VI. Acknowledgments

The authors would like to thank P. K. Pathak, Yi Chen,
Karthik Nandakumar and Salil Prabhakar for helpful ad-
vice and support during the preparation of this manuscript.
This research is partially supported by the NSF ITR grant
0312646 and ARO grant W911NF-06-1-0418.

References

[1] B. Budowle, J. Buscaglia, and R. C. Perlman. Review of the
scientific basis for friction ridge comparisons as a means of
identification: Committee findings and recommendations.



12Database (m,n) Mean Overlapping Area (pixel2) M

NIST (52,52) 112,840 413
FVC2002 DB1 (51,51) 71,000 259
FVC2002 DB2 (63,63) 110,470 405

TABLE IV. Table giving the mean m and n in the overlapping area, the mean overlapping area and the
value of M for each database.

Database (m,n,w) Empirical Mixture Pankanti
Mean no. of matches PRC Meanλ PRC Meanλ PRC

NIST (52,52,12) 7.1 3.9 × 10−3 3.1 4.4 × 10−3 1.2 4.3 × 10−8

FVC2002 DB1 (51,51,12) 8.0 2.9 × 10−2 4.9 1.1 × 10−2 2.4 4.1 × 10−6

FVC2002 DB2 (63,63,12) 8.6 6.5 × 10−2 5.9 1.1 × 10−2 2.5 4.3 × 10−6

TABLE V. A comparison between fingerprint individuality est imates using the (a) Poisson and
mixture models, and (b) the corrected uniform of Pankanti et al. [18]. The 2.5% genuine non-match
criteria is chosen when assessing the PRCs.

Forensic Science Communications, 1(2), 2006. Online at:
http://www.fbi.gov/hq/lab/fsc/backissu/jan2006/research/200601 research02.htm.

[2] S. Cole. Witnessing identification: Latent fingerprint ev-
idence and expert knowledge.Social Studies in Science,
28(5–6):687–712, 1998.

[3] S. Cole. What counts for identity? The historical origins of
the methodology of latent fingerprint identification.Science
in Context, 27(1):139–172, 1999.

[4] S. Cole. A History of Fingerprinting and Criminal Identifi-
cation. Harvard University Press, 2001.

[5] S. Cole. “Is Fingerprint Identification Valid? Rhetorics of
Reliability in Fingerprint Proponents Discourse”.Law &
Policy, 28(1):109–135, January, 2006.

[6] H. Cummins and C. Midlo.Fingerprints, Palms and Soles.
Dover, New York, 1961.

[7] Daubert v. Merrel Dow Pharmaceuticals Inc, 509 U.S. 579,
113 S. Ct. 2786, 125 L.Ed.2d 469 (1993).

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-
likelihood for incomplete data via the EM algorithm.Jour-
nal of the Royal Statistical Society. Series B, 39(1):1–38,
1977.

[9] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data.
Prentice Hall, 1988.

[10] J. J. Koehler. When are peole persuaded by DNA Match
Statistics? Law and Human Behaviour, 25(5):493–513,
2001.

[11] L. LeCam. Asymptotic Methods in Statistical Decision
Theory. Springer-Verlag, 1986.

[12] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman,
and A. K. Jain. FVC2000: Fingerprint verifica-
tion competition. IEEE Trans. Pattern Analysis and
Machine Intelligence, 24(3):402–411, 2002. Online:
http://bias.csr.unibo.it/fvc2000/databases.asp.

[13] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and
A. K. Jain. FVC2002: Fingerprint verification compe-
tition. In Proceedings of the International Conference
on Pattern Recognition, pages 744–747, 2002. Online:
http://bias.csr.unibo.it/fvc2002/databases.asp.

[14] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar.Hand-
book of Fingerprint Recognition. Springer-Verlag, 2003.

[15] K. V. Mardia. Statistics of Directional Data. Academic
Press, 1972.

[16] G. J. McLachlan and T. Krishnan.The EM Algorithm and
Extensions. Wiley, 1997.

[17] NIST: 8-bit gray scale images of fingerprint image groups
(FIGS). Online: http://www.nist.gov/srd/nistsd4.htm.

[18] S. Pankanti, S. Prabhakar, and A. K. Jain. On the indi-
viduality of fingerprints.IEEE Trans. Pattern Analysis and
Machine Intelligence, 24(8):1010–1025, 2002.

[19] A. Ross, S. Dass, and A. K. Jain. A deformable model for

fingerprint matching. Pattern Recognition, 38(1):95–103,
2005.

[20] M. J. Saks and J. J. Koehler. The coming paradigm shift in
forensic identification science.Science, 309:892, 2005.

[21] S. C. Scolve. The occurence of fingerprint characteristics
as a two dimensional process.Journal of the American
Statistical Association, 74(367):588–595, 1979.

[22] D. A. Stoney and J. I. Thornton. A critical analysis of
quantitative fingerprint individuality models.Journal of
Forensic Sciences, 31(4):1187–1216, 1986.

[23] U. S. v. Byron Mitchell. Criminal Action No. 96-407, U.
S. District Court for the Eastern District of Pennsylvania,
1999.

[24] U. S. v. Crisp, 324 F 3d 261 (4th Cir 2003).
[25] U. S. v. Llera Plaza, 179 F Supp 2d 492 (ED Pa 2002).
[26] U. S. v. Llera Plaza, 188 F Supp 2d 549 (ED Pa 2002).
[27] Y. Zhu, S. C. Dass, and A. K. Jain. Statistical models for

fingerprint individuality. Proceedings of the International
Conference on Pattern Recognition (ICPR), 3:532 – 535,
2006.

[28] Y. Zhu, S. C. Dass, and A. K. Jain. Statisti-
cal models for assessing the individuality of finger-
prints. Technical Report MSU-CSE-06-25, Michigan State
University, 2006. Online at http://www.cse.msu.edu/cgi-
user/web/tech/reports?Year=2006.


