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Abstract—Two different Genetic Algorithm (GA) architectures ~ recognition rate of the system is maximized. Two different GA
are applied to a feature selection problem in on-line signature ver- have been implemented:

ification. The standard GA with binary coding is first used to find GA with bi ding - it hes f boptimal
a suboptimal subset of features that minimizes the verification  * with binary coding: It searches for a suboptima

error rate of the system. The curse of dimensionality phenomenon solution in the complete space 2f*° possible solutions.

is further investigated using a GA with integer coding. Results  « GA with integer coding: it searches for a suboptimal
are given on the MCYT signature database comprising 330 users solution of a specified dimensiod. In this case the
(16500 signatures). Signatures are represented by means of a set . . 100

of 100 features which can be divided into four different groups dimension of the search space(s d

according to the signature information they contain, namely: ) . . . Ea

time, 7i) speed and accelerationiii) direction, and iv) geometry. Four different scenarios are considered: skilled and random

The GA indicates that features from subsetsi and iv are the forgeries with 5 and 20 training signatures. The original
most discriminative when dealing with random forgeries, while features are divided into four different groups according to the
parameters from subsetsi: and iv are the most appropriate to  sjgnature information they contain, namelytime, ii) speed
maximize the recognition rate with skilled forgeries. and accelerationiji) direction, andv) geometry. Comparative
experiments are also given, resulting in some indications of
[. INTRODUCTION the most discriminant information for the different scenarios

e considered.
In many pattern classification tasks, patterns are representeghagits are given using all the 16500 signatures from the

by a vector of feature values. This set of features does n@fy supjects of the publicly available MCYT signature data-
always form the optimal group of parameters for all problemg,se (5. The optimization criteria used for the convergence of
as they may be redundant, irrelevant, or dependent with e3gR GA is the minimization of the system EER which is com-
other depending on the scenario considered. puted according to the similarity scores calculated using the

The task of selecting the most discriminative features forganalanobis distance. GA showed remarkable performance in
particular classification problem in a high dimensional spagg the experiments carried out.

is known as feature selection. Givendadimension problem  Thjs paper is structured as follows. The implementation of
there exist2? possible subsets of features. Thus, for not-sghe GA is detailed in Sect. Il. In Sect. Il we present the
large values ofd, exhaustive search is usually not feasiblgjata used in the experiments, the features extracted from the
Many different algorithms have been presented in literature §gynatures and the experimental protocol followed. Results and

cope with this feature selection problem [1], being one of thgrther discussion are reported in Sect. IV. Conclusions are
most popular the Genetic Algorithms (GA) [2] [3]. finally drawn in Sect. V.

GA are non deterministic methods which apply the rules
of selection, mutation and recombination to a population of Il. I MPLEMENTATION
subjects each of them representing a possible solution to th&Vhen applying a GA to a particular problem, there are three
problem. The goodness of each solution is computed accordingin points to be taken into account [2] representation
to some optimization criteria having the best individuals @oding) of the candidate solutions,) objective function to
higher probability of surviving to the next generation (naturdie maximized, andii) genetic operators that will be used
selection). Following an iterative process a near to optimahd their probabilities of occurrence. In the present work two
solution is reached. different representations for the candidate solutions have been
In this work GA are applied to feature selection in agonsidered.
on-line signature recognition problem [4]. Each signature « Binary coding: individuals (possible solutions) are rep-
is represented by means of a 100 dimensional vector. The resented by a binary vector of dimension 100. A bit set
problem to be solved can be stated as follows: given a set to 1 means that the corresponding feature is selected,
of patterns (signatures) in a 100-dimensional space, find a and a bit set to 0 that it is not selected. No control is
subset of features of dimensieh with d < 100, where the exerted on the number of 1's of a particular solution so its



SET OF GLOBAL FEATURES CONSIDERED IN THIS CONTRIBUTION EXTRACTED FROI6], AND SORTED BY INDIVIDUAL DISCRIMINATIVE POWER. T'

TABLE |

DENOTES TIME INTERVAL, t DENOTES TIME INSTANT, N DENOTES NUMBER OF EVENTSAND 6 DENOTES ANGLE

# Time related feature i3 Direction related feature
# | Speed and Acceleration related featL Geometry related feature
[ Ranking | Feature Description [[ Ranking | Feature Description
1 signature total duratioff’s N (pen-up$
3 N (sign changes oflz/dt anddy/dt) average jerky
standard deviation of, standard deviation of,
7 (standard deviation of)/A, N (local maxima inz)
standard deviation of. standard deviation of.,
11 Jrms N (local maxima iny)
13 t(2nd pen-dowy/ T, (average velocityd)/vg, max

Amln (vmax— "/m|n>(1maxfzmin)

en-down
=5 P! LWmax |1~ rmin 1) Ay

(Tjast pen-up— zmax)/ Az

(1lst pen-dowr™ l’mln)/A

(Wast pen-up~ Ymin)/Ay

(y1st pen-dowrn— Ymin)/ Ay

(Twv) /(ymax — Ymin)

(Twv)/(zmax — Tmin)

(pen-down duratior?,)/Ts

@/Ulhmax

(Yast pen-up~ ymax)/Ay

T((dy/dt)/(dz/dt)>0)
T((dy/dt)/(dz/dt)<0)

U/Umax

(y1st pen-down— ymax)/Ay

(Zjast pen-up_ Tmin)/Ae

(velocity rmsv)/vmax

(ImaxfzmirpAy
(ymax—ymin)Ax

(velocity correlationu. , )/vZ,..

T (v, > Olpen-up /T

N(v, =0)

direction histograms

(y2nd local max— Y1st pen-dowﬁ/Ay

(zmax— xmin)/xacquisition range

(15t pen-down™ #max)/ A«

T (curvature > Thresholdcury)/Tw

(integrated abs. centr. acgy)/amax

T(vy < O]pen-up /T

T(vs > Olpen-up /T,

(73rd local max— *1st pen-dowr}u/Aw

N(v, =0)

(acceleration rms)/amax

(standard deviation aof)/A,

T ((dz/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0)

(tangential acceleration rmg)/amax

(T2nd local max— 1st pen-dow?l/Aw

T(vy < Olpen-up/Tw

direction histogramss

t(3rd pen-down/ T

(max distance between poinfsimin

(¥3rd local max— ¥1st pen-dowﬁ/ Ay

(Z — 2min) /T

direction histogranss

direction histogramns;

T(vs < 0)/T

T(Uy > 0)/Tw

T(’Uy < O)/Tw

direction histogramnss

(St (0 )T

direction histogramnsg

T (1st pen-up/T,

spatial histogrant,

direction histogranms,

(ymax ymin)/yacquisition range

(1St t(Umymax))/Tw

spatial histogrant,

6(1st to 2nd pen-down

0(1st pen-down to 2nd pen-up

direction histograms;

t(jx,max)/Tw

spatial histograni, Ja,max
0(1st pen-down to last pen-up 0(1st pen-down to 1st pen-up
(Ist t(zmax))Tw Ja
T(2nd pen-up/Tw (Istt(vmax ) ) Tw
Jy,max 6(2nd pen-down to 2nd pen-up
Jmax spatial histogranis
(Ist t(vy,min))Tw 2nd t(zmax ) Tw
(3Brd t(zmax ) ) Tw (st t(vy,max))Tw
tGmax)/ Lo tGymax)/ L
direction change histogram, 94 (3rd t(Yymax) ) Tw
direction change histogramy 96 Ty
direction change histogram A (initial direction)
0(before last pen-up 100 2nd t(Ymax ) Tw




. . . TABLE I
search space comprises all the possible SUbs_etSv NOt {ShpariSON OFEERVALUES (IN %) OF THE BINARY GA SOLUTION AND
those of a specified size. A rank-based selection strategy =~ THE CASE OF USING THE WHOLE SET OH00FEATURES

[7] is used to avoid premature convergence, together

with a one-point crossover operator [7]. Crossover and Skilled forgeries Random forgeries

mutation probabilities were heuristically set to 0.85 and 5TR. 20 TR. 5TR. 20 TR.

0.01 respectively. We picked a population size of 100 and

the GA ran for 250 generations. GA || 10.01 (60) | 3.31 (54) | 4.11 (57) | 0.78 (53)
« Integer coding: individuals are represented by a vector| 10q 14.52 4.70 5.94 2,60

of length M, being M the dimension of the subspace

to be found. Each element of the vector is an integer in

the range[1,100] and selects the corresponding feature

of the original set. As in sequential feature selectiomodel. That is,20 x 330, or 5 x 330 genuine scores for the

methods [1], in this case the dimension of the subset caases of few/many training signatures, respectively. Impostor

be specified. Again a rank-based selection strategy is usawdres come from the comparison of the trained model with

together with an order crossover operator [8]. Mutatiothe 25 forgeries of the dono2§ x 330 impostor scores).

is carried out randomly changing an element value. In the random forgeries scenario impostors claim the gen-

Crossover and mutation probabilities, and population sizéne user’s identity using their own signature. Client scores

were set to the same values as in the binary GA. Tlaee obtained the same way as in the skilled forgeries case.

number of generations was 350. We compare one signature of each user with one signature of

In both cases the evaluation function that measures tB¢ery other donor of the database to generate3fi9ex 330
fitness (goodness) of each individualfis= 1/EER. The ob- impostor similarity scores.
jective of the GA is to find the solution among all possible that
maximizesf. The EER of the system is computed according to . . .
the similarity scores calculated using the Mahalanobis distarfce EXPeriment 1. Genetic Evolution
(x — pus)TZ 1 (x — u;))'/?, wherex is the pattern being In Fig. 1 (a), the evolution of the best individual of the
classified,u; is the mean of clasg andX is the covariance binary GA for the case of skilled forgeries with 20 training
matrix. signatures is shown. The dashed line shows the EER of the
system for the case of using the whole set of 100 parameters.
We can see that the GA converges in the iteration 100 (no real
A. Data set description improvement is produced in the next generations) and that the
Experiments were carried out on the MCYT Signaturgubset of features found clearly outperforms the case of using

database which comprises 330 signers. Each user contribid#®f the 100 parameters.
with 25 original signatures and 5 forgeries of each of his 5 In Table Il the EER for the four scenarios considered and
precedent donors. Thus, 25 original signatures and as ma@f the best subset of attributes found by the GA in each
forgeries are available for each of the 330 subjects, to complé&se is given in the first row. The dimension of the subspace
the 16500 signatures that conform the database. All of thég@lution is shown in brackets. In the second row the EER of
were used in the experiments. An in depth description of tiée system when using 100 parameters is specified so that both

IV. RESULTS

Il1. EXPERIMENTAL PROTOCOL

database can be found in [5]. EER values can be compared.
) The GA finds in all cases a subset of features that not only
B. Features considered reduces the computation cost (it has about half number of

The set of 100 global parameters considered to represégdtures), but also provides a better classification accuracy.
each signature is described in [6] and given here in TableThis fact shows the curse of dimensionality phenomenon that
We have generated four different groups of features accordiwgl be further studied using the integer GA.
to the signature information they contain, namely:time In Fig. 1 (b), the evolution of the integer GA is depicted
(white cells in Table 1)i7) speed and acceleration (light greyfor the case of skilled forgeries with 20 training signatures and
cells),iiz) direction (dark grey cells), anid) geometry (black M = 20, being M the fixed dimension of the subspace to be
cells). The features assigned to each class are the followfognd. We see that the GA finds a subspace of dimension 20
(the numbering criterion followed is the same used in [6]). where the system works better than in the 100 dimensional

. original space.
C. Scenarios g P

Four different scenarios are considered: skilled and randdn Experiment 2: Curse of Dimensionality
forgeries with 5 and 20 training signatures. Experiments with the integer coding were also car-
In the case of skilled forgeries impostors try to access thed out in the skilled forgeries scenario forMd =
system imitating the genuine user’s signature. Client scores &€l0, 20, 40, 60, 80, 90]. Results for 5 and 20 training signa-
computed comparing the test set (comprising signatures thates are shown in Fig. 2. The solid line shows the solution
were not used for the training) of each user with his trainddund by the GA and the dashed line is the performance of
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Fig. 2. Comparison between the GA and the feature selection top ranked scheme proposed in [6)/whehe feature subset size.

the system when adopting the top ranked individual featuog finding a near to optimal solution to the problem, with the
selection strategy used in [6]. The GA clearly outperformadvantage that the dimension of the feature subset can be fixed.
the other feature selection scheme. Interestingly, with the GA

approach the curve drops faster for smilland the best EER C. Discussion
value reached is lower. From the curves depicted in Fig. 2 we can observe that

the most discriminant features have already been found for
The curse of dimensionality phenomenon can be seen i = 20 as the improvement for bigger values &f is very
Fig. 2. We can observe how the EER of the system decreasasll (6.8% and 8.3% for 5 and 20 training signatures re-
as additional features are considered, eventually reachingpeectively). Based on this result we compared the best feature
minimum value and then starts to worsen with the introducti@ubsets of dimension 20 found by the GA for the skilled and
of more features. Worth noting this minimum is reached faandom forgeries scenarios with 5 training signatures. The two
around 60 features, as previously predicted by the binary Gigature subsets were analyzed and the results are summarized
We also compared the best EER values found by the binamyTable Ill. In each cell the number of features of each class
GA and those obtained with the integer GA for the two skillets shown.
forgeries scenarios considered and for the same dimension ofrom the results shown in Table Il we can see that the
the subspace. As expected, both results are very siril&4 most discriminant features for skilled forgeries are those of
relative difference), thus, the integer coding GA is also capalieoups regarding speed and acceleratiohdnd geometry of
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Fig. 3. Genuine signature (left), skilled forgery (top middle), and random forgery (bottom middle) of two different signers (top row and bottom row). On the
right we depict two of the geometry parameters that were selected as most discriminant in the 20 dimensional subsets for both random and skilled forgeries
scenarios. Features from the genuine signature and the two forgeries on the left are highlighted.

. . . TABLE Il
the S|gnaturez@). For the random scenario the best features are  Nywser oF FEATURES FOR THE SKILLED(S) AND RANDOM (R)
groups regarding temporal informatiof) Gnd geometryi). SCENARIOS WITH5 TRAINING SIGNATURES AND M = 20 FEATURES

Thus, we can conclude that the most informative parameters f§-ONG/NG TO EACH OF THE FOUR GROUPS DESCRIBED IBECT. I1I-B.
either cases are the ones regarding geometry information and
the least informative those based on angles and directions (

In Fig. 3 we depict two of the geometry parameters that were | S5 TR. 4 7 2 7
selected as most discriminant by the GA for both scenarios, R 5 TR g 1 0 11
skilled and random. We can see that for these two parameters i
a perfect classification of the random forgeries depicted is

possible, and a fairly good separation of genuine and skilled

forgeries.

Time | Speed| Direction | Geometry

V. CONCLUSIONS . . . . .
enon. Different dimension subspaces were found in which the

Two GA schemes were presented and applied to a featueeognition rate of the system was improved compared to the
subset selection problem for on-line signature verificationriginal 100 dimensional space. It was shown experimentally
Four different scenarios (skilled and random forgeries with that features regarding speed and acceleration information of
and 20 training signatures) were considered. Both algorithrie signatures are the most suitable for the skilled forgeries
showed remarkable performance in all the experiments carrszknario, while those dealing with temporal information should
out, clearly displaying the curse of dimensionality phenonbe used in the random forgeries case.
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