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Abstract

We present an action recognition method based on the
concept of reliable inference. Our approach is formulated
in a probabilistic framework using posterior class ratios to
verify the saliency of an input before committing to any ac-
tion classification. The framework is evaluated in the con-
text of walking, running, and standing at multiple views and
compared to ML and MAP approaches. Results examin-
ing individual silhouette images with the framework demon-
strate that these actions can be reliably discriminated while
discounting confusing images.

1. Introduction

Advanced video surveillance systems will require the ca-
pability to detect the presence of people, track their move-
ments, and recognize their behaviors and actions. Typically,
analysis overseveralframes is employed to construct rep-
resentations for recognition (e.g., matching trajectories or
detecting characteristic motion patterns [1]). But how re-
liably could a system perform when limited to analysis of
only one frame, or two frames, or three frames, etc?

Clearly, reliable recognition of basic activities from the
smallest number of video frames would be advantageous to
automatic video-based surveillance, especially for systems
having limited computational processing time scheduled
per camera or for systems employing time-lapse record-
ing/processing. Also consider small unmanned aerial ve-
hicles (UAVs) or mobile robotic platforms equipped with
video cameras. These systems have a constantly changing
view area, and therefore immediate decisions about the ac-
tivity in the scene are desirable. Even if longer duration
video is available in some systems, rapid action detection
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may be particularly helpful in bootstrapping more sophisti-
cated action-specific tracking or recognition approaches.

However, as the number of frames is reduced, there will
be more actions confused during recognition. To evaluate
different short-term durations, an appropriate framework
capable of properly handling inconclusive information is
therefore desired over a forced-choice classification method
which can produce noisy results. We present a method that
automatically identifies the confusing information and re-
moves it from consideration during classification.

Our approach first examines an input with a series ofa
posteriori class comparisons to evaluate its discrimination
reliability. Only when the input is deemed “good enough”
for discrimination between the possible actions does a clas-
sification take place. This approach is particularly favor-
able when there is a high cost for making errors and low (or
no) cost for passively waiting for more information to ar-
rive (advantageous with real-time video). Other probabilis-
tic methods such asmaximum likelihood(ML) and maxi-
mum a posteriori(MAP) instead perform a forced-choice
classification, regardless of the saliency of the input.

We evaluate the proposed reliable-inference framework
using the task of discriminating walking, running, and
standing at multiple viewpoints. In this paper, we push the
classification task to the extreme and only consider input of
a single image (though the approach is clearly applicable
to other sequence-based analysis methods [3]). As single
frames from different views have more classification am-
biguity, rather than if multiple frames are considered, this
domain is a particularly good experimental testbed for the
reliable-inference approach.

We present results examining the framework with the
walking, running, and standing actions, and show that low
Bayes error rates can be achieved. We also make compar-
isons to alternative ML and MAP approaches, and examine
the discrimination ability as a function of viewpoint to de-
termine the best camera locations to recognize the actions.
To further illustrate the detection and elimination of confus-
ing poses, we present results discriminating subtle changes



in walking pace (slow, medium, fast).
We begin with a review of related single-frame detec-

tion and recognition methods (Sect. 2). Next we present
the reliable-inference framework (Sect. 3), including auto-
matic methods for probabilistic modeling of the classes and
for recognition. We then describe how the action database
was collected and what representational features were cho-
sen (Sect. 4). The experimental evaluations are presented
(Sect. 5), followed by a summary and conclusion (Sect. 6).

2. Related Work

In [11], wavelets were used to learn a characteristic
pedestrian template for detecting people in cluttered scenes.
The training set consisted of front- and rear-view color im-
ages of people in natural scenes (images were clipped and
scaled to a fixed size). The system was trained with addi-
tional negative examples using bootstrapping, and support
vector machines were employed for classification using the
wavelet coefficients as features.

A hierarchical coarse-to-fine template approach was
used in [7] to also detect pedestrians. The template hi-
erarchy was constructed automatically from examples us-
ing refinement clustering of images into prototypes. Dur-
ing matching, a distance threshold between prototype can-
didates and the new image were used to prune the search
through the hierarchy. Candidate matches were then veri-
fied using an RBF classifier.

For discriminating humans and vehicles, two simple
properties (dispersedness, area) were used by [10] to clas-
sify regions selected from image differencing. To aid in
temporal consistency of the labeling, a classification his-
togram was computed to accumulate over time the class
labels assigned to a particular region. If the target region
persisted for a given duration, the peak in the classification
histogram was used to label the object.

A point distribution model was used in [2] to model the
changing silhouette contour shape of a walking person (at
different views) with cubic B-splines. Principal compo-
nents analysis (PCA) was used to capture the significant
modes of variation in the feature vectors for the various con-
tour shapes. The direction of walking for each pose was ap-
pended to the feature vector to enable the estimation of the
walking direction for new silhouette poses after reconstruc-
tion from the PCA space.

In [12], 2-D pose estimation from image silhouettes was
cast in a general unsupervised learning framework using
EM-based clustering to build a mapping between low-level
moment features and 2-D joint positions. The model was
trained using synthetic silhouettes rendered from multiple
viewpoints and was demonstrated with pose recovery on
both artificial and real images.

Our application of the reliable-inference framework sim-
ilarly employs an EM-based clustering of silhouette poses
using moment features as in [12], but unlike the above ap-
proaches, we formulate the classification task as a prob-
abilistic decision employing reliable-inference to classify
only the most discriminating poses. Our method is designed
to ignore unreliable information during immediate decision-
making, rather than necessarily requiring temporal consis-
tency before classification. We also examine multiple view-
points for each action and do not require any strong manual
thresholds in the framework.

3. Reliable-Inference Framework

We formulate our reliable-inference (RI) framework us-
ing the “key feature” approach proposed by [9]. The suc-
cess of inferring world propertyP from image featuref in
contextC can be formulated as thea posterioriprobabil-
ity p(P|f, C). The contextC refers to a particular closed-
world domain of properties that can occur in some situation.
A reliable inference ofP from f makesp(P|f, C) ≈ 1 and
the probability of an errorp(¬P|f, C) ≈ 0. To determine
the reliability off for inferring propertyP, we form a ratio
of these two probabilities

Rpost =
p(P|f, C)

p(¬P|f, C)
(1)

WhenRpost � 1, the featuref is said to be a highly reliable
indicator of propertyP.

Using Bayes’ rule,Rpost can be separated into the like-
lihood ratio and the ratio of the priors

Rpost =
p(P|f, C)

p(¬P|f, C)
=

p(f |P, C)
p(f |¬P, C)

· p(P|C)
p(¬P|C)

(2)

A large likelihood ratio indicates that the feature arises con-
sistently with the existence of the world property, but not in
its absence. This requirement alone however does not en-
sure a reliable inference. For if the ratio of priors becomes
too small, thenRpost can become small even in the pres-
ence of a large likelihood ratio. Hence a significant context-
dependant prior ratio is also required.

3.1. Reliable Action Inference

In this paper, we are interested in reliable-inference of
the action class (world property) given an image (feature)
of the person. A “key pose” therefore has a feature repre-
sentationf (multi-dimensional vector) that can be used to
reliably infer a particular actionAi occurring in contextC.
We can rewrite Eqn. 1 for the target actionAi as

Rpost =
p(Ai|f , C)

p(¬Ai|f , C)
=

p(f |Ai, C)p(Ai|C)∑
j 6=i p(f |Aj , C)p(Aj |C)

(3)



The termp(f |A, C) is referred to as the image model,
andp(A|C) is referred to as the action model. The context-
dependent reasoning provides a limited domainC of ac-
tions for consideration during recognition. For example, if
we know the person is traversing the scene, we could possi-
bly limit the context to only locomotory behaviors such as
walking and running to reduce the search space of solutions.

To evaluate theRpost for f , we first model the class like-
lihoods from training data and select appropriate context-
dependent priors.

3.2. Likelihood Modeling

We model the likelihood of feature vectorf appearing
from a particular action classAi (in a given context) as a
Gaussian mixture model

p(f |Ai) = p(f |θAi
) =

K∑
k=1

wk · gk(f |µk,Σk) (4)

wheregk(f |µk,Σk) is the likelihood off appearing from
the k-th Gaussian distribution parameterized by the mean
µk and covarianceΣk, with mixture weightwk. For es-
timating the parametersθAi

, we employ the Expectation
Maximization (EM) algorithm [5] that maximizes the class
log-likelihood

L(θAi
|f1, · · · , fN ) =

N∑
n=1

log(p(fn|θAi
)) (5)

for all N training examples in classAi.
Initial values for the means, covariances, and mixture

weights in Eqn. 4 can be estimated using K-means clus-
tering of the training samples (after whitening [6] to give
equal emphasis to each dimension off ). As the cluster-
ing result can vary depending on the seed values (initial
means), we repeat the entire EM algorithm multiple times,
each time using a K-means clustering result from a different
random seed initialization. Finally, we choose the EM mix-
ture model that produces the maximum class log-likelihood
(Eqn. 5).

3.2.1. Number of Components

One issue regarding mixture models is the number of clus-
ters/distributionsK needed to model the data. Rather than
manually selecting an arbitraryK, we automatically select
from models of differentK, the model that maximizes the
Bayesian Information Criterion (BIC) [13].

The BIC for a given model parameterizationθAi
is com-

puted as

BIC(θAi
) = 2L(θAi

|f1, · · · , fN )−M log(N) (6)

whereM is the number of independent model parameters
to be estimated. In our formulation, we have

M = K × (m +
m2 + m

2
) + (K − 1) (7)

with K distributions,(m+ m2+m
2 ) independent parameters

for each mean and covariance (m = dim(f)), and(K − 1)
independent mixture weights (

∑
wk = 1).

Since the class log-likelihood of the mixture model (Eqn.
5) improves when more parameters are added to the model
(i.e., largerK), the termM log(N) is used in Eqn. 6 to
penalize models of increasing complexity. The BIC is max-
imized in an information theoretic manner for more parsi-
monious parameterizations.

An iterative split-sample training and validation method
is also employed where 50% of the training examples are
randomly selected and used by K-means/EM to estimate the
model parameters, and the remaining 50% of the samples
are used to compute the BIC for evaluation of that model.

3.3. Reliability Decision

As previously stated, whenRpost � 1, f is a reliable
indicator ofAi. But how large doesRpost need to be for
this to happen? In other words, what is the value of the
decision thresholdλAi

such that we reliably classifyf as
indicating the presence of actionAi? Formally, we classify
f as an instance ofAi when

p(f |Ai, C)p(Ai|C)∑
j 6=i p(f |Aj , C)p(Aj |C)

> λAi
(8)

otherwise we make no strong commitment (i.e., choose
¬Ai).

To determine the value of the decision thresholdλAi
for

classAi, we compute the (Ai, ¬Ai) classification errors
for all of the training examples inC using multiple decision
thresholds (similar to constructing an ROC curve) and se-
lect the threshold that produces the lowest two-classRpost

Bayesian error

pλ(Error|C) = p(class(f) = ¬Ai|Ai)p(Ai|C) (9)

+ p(class(f) = Ai|¬Ai)p(¬Ai|C)
= p(class(f) = ¬Ai|Ai)p(Ai|C) (10)

+
∑
j 6=i

p(class(f) = Ai|Aj)p(Aj |C)

Alternatively, the error forAi could be manually bound and
the decision threshold automatically determined to give the
lowest error rate possible for the remaining classesAj 6=i.



3.4. Recognition

To perform recognition and determine the action label
(if any) for f , we compute theRpost of f for all Ai ∈ C
and compare each ratio with its own decision thresholdλAi

.
Any class meeting its decision threshold forf is placed into
a clique of potential classifications.

If the clique is empty after examining all classes, then
we make no commitment to an action classification (i.e.,
class(f) = ∅). If the resulting clique contains a single class,
then we reliably classifyf to that action. In the event that
the clique contains more than one action class (due to in-
dependentλ thresholds for each class), we choose the class
within the clique having the highestRpost (the most reliable
inference).

As opposed to ML or MAP approaches that always make
a forced-choice classification, RI only makes a class com-
mitment when it is confident enough that the feature vector
f can be reliably used to discriminate the actions.

4. Walking, Running, and Standing

We selected a context of walking (W), running (R), and
standing (S) to evaluate the RI framework. Each action
class contains silhouette images of poses at various times,
efforts/styles, and views. Unless a large number of synchro-
nized cameras at different locations are employed to col-
lect the images, each pose cannot be simultaneously imaged
at each viewpoint to conduct consistent view-based evalua-
tions. To address this problem for our experiments, we used
a Vicon-8 motion-capture system and Maya animation soft-
ware to create a 3-D person model to render each action (1
cycle) at multiple viewpoints.

The walking and running actions were performed at
slow, medium, and fast paces to include the natural vari-
ations produced at different locomotion speeds [4]. Two
common standing poses of hands-on-hips and hands-at-
side were also performed, with small movement variations
within each style. Example silhouette images are shown in
Fig. 1. Each pose was rendered at 21 different viewpoints
separated by30◦ horizontal and vertical intervals (see bot-
tom image of Fig. 1). The total number of images for
classesW, R, andS were 2184, 1512, and 1974, respec-
tively.

4.1. Silhouette Features

We represented each silhouette image with a feature vec-
tor of 7 similitude moments [8]. These moments produce
excellent global shape descriptors for binary (and grayscale)
images in a translation- and scale-invariant manner. If rota-
tion invariance is also desired, absolute moment invariants
[8] could be employed.

For silhouette imageI, its first 7 similitude moments are
given by

ηij =
νij

(ν00)
i+j
2 +1

(11)

for orders2 ≤ (i + j) ≤ 3, with the central momentsνij

computed as

νij =
∑

x

∑
y

(x− x̄)i(y − ȳ)jI(x, y) (12)

The resulting7×1 feature vectorf compactly represents
the shape of the silhouette image as

f = [η02, η03, η11, η12, η20, η21, η30]T (13)

We make no particular claim that these are the optimal fea-
tures, and many other types of feature descriptors could
have been used to represent the silhouette shapes.

5. Experimental Evaluations

First we examined the individualRpost discrimination
results of the actions using all of the silhouette images. Next
we compared the RI recognition results to ML and MAP,
and also examined the recognition as a function of view-
angle. We further analyzed the walking motions using the
RI framework to classify the walking pace.

We initially constructed the likelihood mixture model for
each class using the approach outlined in Sect. 3.2. For
eachK under consideration (2–24, in steps of 2), the K-
means/EM algorithm was repeated 15 times (EM itself was
limited to 30 iterations) and the model producing the maxi-
mum class log-likelihood was selected as the best model for
thatK. The best models (one for eachK) were then com-
pared using the BIC, and the one having the largest BIC
was selected as the optimal model. This entire process was
repeated for 3 different split-sample partitions of the class
data and the model having the overall largest BIC was se-
lected as the final likelihood model.

In Fig. 2.a, we show the BIC values as a function of
K for the running data using three different split-sample
iterations. The resulting mixture model corresponding to
the maximum BIC (atK=4) is shown in Fig. 2.b.

5.1. Decision Errors inRpost

Once the likelihood models were created for each class,
the Rpost decision thresholds were calculated using the
method outlined in Sect. 3.3.

We initially employed equal priors:p(W|C) = p(R|C)
= p(S|C) = 1/3. TheRpost Bayesian error (Eqn. 10) as
a function ofλ for running is shown in Fig. 3. TheRpost

errors produced using the optimal decision thresholdλ for
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Figure 1. Example silhouettes for action classes walk, run, and stand. Each class has multiple
efforts/styles (top row), and each pose is rendered at 21 different views (bottom image).

each class are presented in Table 1.a. We also calculated
the decision thresholds using a different choice of priors:
p(W|C) = .5, p(R|C) = .2, andp(S|C) = .3. The result-
ing Rpost errors for these priors are presented in Table 1.b
for comparison.

The Rpost Bayesian errors for both sets of priors yield
approximately 5% error for walking and running, and only
1% error for standing. This result is encouraging, given
only a limited mixture model is used to generalize the fea-
tures in each class. Therefore the error statistics demon-
strate the potential for each class to be reliably distinguished
from the remaining classes.

To illustrate the non-uniformity ofRpost for different
images over time, we plot in Fig. 4 the (W, ¬W) Rpost

values for a non-training horizontal side-view (Rx = 0◦,
Ry = −90◦) three-cycle walking sequence. This plot
clearly shows that certain frames are more reliable (hav-
ing a higherRpost) than others during the action. We also
computed for each class the maximum and minimumRpost

values for examples across all views. The most reliable and
least reliable pose for each class are shown in Fig. 5.

5.2. Recognition

To evaluate the proposed RI recognition method (Sect.
3.4), we compared the RI results to ML and MAP classifi-
cations. In Table 2, we present the classification results of
RI and ML using equal priors (MAP is equivalent to ML
when using equal priors). The overall Bayes error for each

Rpost λ Err|W Err|R Err|S Rpost error
W, ¬W 8.9 .0847 .0443 .0122 .0471
R, ¬R 0.2 .0600 .0714 .0258 .0524
S, ¬S 0.1 .0069 .0159 .0193 .0140

(a) Equal Priors

Rpost λ Err|W Err|R Err|S Rpost error
W, ¬W 7.8 .0504 .0847 .0228 .0490
R, ¬R 0.3 .0275 .1336 .0218 .0470
S, ¬S 0.1 .0055 .0159 .0263 .0138

(b) Unequal Priors

Table 1. Rpost errors corresponding to deci-
sion thresholds λ for walking ( W), running
(R), and standing ( S) using (a) equal priors
and (b) unequal priors (see text).

method was calculated as

p(Error|C) = p(Error|W)p(W|C)
+ p(Error|R)p(R|C)
+ p(Error|S)p(S|C) (14)

and yielded 6.31% error for RI and 7.89% error for ML. If
we do not consider assignment to∅ as an error for RI and
normalize the remaining RI errors by the number of images
actually committed to an action class, the new RI error rate
is lowered to 4.99%. In this case, 76 frames (1.34% of the
total) were unclassified.
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Figure 2. Likelihood model for running. (a)
BIC values for different K using three split-
sample iterations. (b) Mixture model (contour
plot at 4σ) corresponding to the maximum BIC
(at K = 4).

The classification results for RI vs. MAP using the alter-
nate (unequal) priors are presented in Table 3. The Bayes er-
rors were 6.44% for RI and 7.22% for MAP. Again, if we do
not consider the unclassified images (106 frames,1.87%),
the Bayes error for RI is reduced to 4.76%.

For both sets of priors, the RI framework produced lower
Bayes errors than ML and MAP. With the high FPS avail-
able from real-time video, the percentages of unclassified
(skipped) frames in each case is insignificant. Though the
improvements in error rates were fairly small in these ex-
amples, they nonetheless demonstrate that the method is
capable of achieving a better performance and identifying
confusing information (which may produce more signifi-
cant improvements in other cases).
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Figure 3. Rpost error as a function of λ for R
vs. ¬R using equal priors.

Classification
Input Method W R S ∅ % Error
W RI 1999 131 14 408.47/6.76

ML 2126 53 5 – 2.66
R RI 67 1399 10 36 7.47/5.22

ML 222 1281 9 – 15.28
S RI 24 35 1915 0 2.99/2.99

ML 78 35 1861 – 5.72

Table 2. Recognition rates comparing RI and
ML classification using equal priors. Er-
rors in bold correspond to using only class-
committed examples.

5.3. View-Based Discrimination

The previous evaluation computed classification and er-
ror rates using 21 viewpoints. We next evaluated the recog-
nition capability of RI as a function of the viewpoint to de-
termine which views are most informative toward discrimi-
nation of the given actions. The Bayes error for the images
at each of the 21 views is presented in Table 4. As expected,
the best views for recognition were located near the side
(Ry = −90◦) at mostly horizontal views. Interestingly, a
downward looking view from behind the person produced
the largest error (22%).

5.4. Identifying Walking Pace

To further demonstrate the RI method in terms of iden-
tifying confusing images, we examined the differences in
the slow, medium, and fast walking paces (see Fig. 1) at
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Figure 4. Rpost values (log) for a new three-
cycle walking sequence.
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Figure 5. The most reliable and least reliable
poses in terms of Rpost.

multiple views. As these walking efforts are very similar
in appearance, we expect the RI method to identify several
poses that are too confusing to classify.

The likelihood mixture model for each walking pace was
estimated using the approach in Sect. 3.2. TheRpost errors
for the walking paces using equal priors are reported in Ta-
ble 5. As expected theRpost discrimination errors are quite
large (20–32%). The most reliable and least reliable side-
view pose for each pace are shown in Fig. 6, where the most
reliable poses at this view appear to capture different stride
extensions.

In Table 6, we present a comparison of the RI and ML
classification results for this data. For each walking pace,
several poses were deemed unreliable by RI and were there-
fore placed in the∅ category. The RI Bayes error was
59.54% and the ML Bayes error was 41.71%. Without con-
sideration of the unclassified poses (42% unclassified), the

Classification
Input Method W R S ∅ % Error
W RI 2074 60 10 40 5.04/3.26

MAP 2148 32 4 – 1.65
R RI 128 1305 15 6413.69/9.88

MAP 337 1164 11 – 23.02
S RI 45 31 1896 2 3.95/3.85

MAP 87 31 1856 – 5.98

Table 3. Recognition rates comparing RI and
MAP classification using unequal priors.

Ry

0◦ −30◦ −60◦ −90◦ −120◦ −150◦ −180◦

0◦ .01 .10 .01 .01 .02 .12 .04
Rx 30◦ .06 .10 .04 .01 .00 .15 .05

60◦ .02 .02 .07 .12 .04 .12 .22

Table 4. Bayes error for walking, running, and
standing at each view.

error for RI was reduced to 32.00%.
Though the RI approach did not classify 42% of the im-

ages, the method is still applicable given that there are typi-
cally 30–40 frames during a single walk cycle with 30 FPS
video (thus more than half of the frames per walk cycle are
reliably classifiable on average).

6. Summary and Conclusions

We presented a method for reliable inference of hu-
man actions. The approach is formulated in a probabilistic
framework that first verifies the reliability of inference of an
input before committing to any action classification. To de-
termine that an input is a reliable indicator of actionAi, we
form thea posterioriprobability ratioRpost for classesAi

and¬Ai, and check that it is above a minimum Bayesian
error threshold derived from the training data. To model
the class likelihoods, we outlined an EM-based Gaussian
mixture-model technique using the Bayesian Information
Criterion to automatically determine the optimal number of
mixture components.

For recognition, we select the class having the largest
valid Rpost. If no class has a validRpost, then the system
does not commit to any action classification. The recogni-
tion results examining single frames of walking, running,
and standing at multiple views showed encouraging results
with approximately 5% Bayes error for class-committed
poses (ML=8%, MAP=7%).



Rpost λ Rpost error
Wslow, ¬Wslow 5.3 .2589
Wmed, ¬Wmed 1.6 .3173
Wfast, ¬Wfast 4.8 .2003

Table 5. Rpost errors corresponding to deci-
sion thresholds λ for slow, medium, and fast
walking paces using equal priors.

Classification
Input Method Slow Med Fast ∅ % Error
Slow RI 370 77 13 380 55.95/19.57

ML 620 129 91 – 26.19
Med RI 120 169 87 33876.33/55.05

ML 273 232 209 – 67.51
Fast RI 31 61 338 200 46.35/21.40

ML 92 106 432 – 31.43

Table 6. Recognition rates comparing RI and
ML classification of slow, medium, and fast
walking using equal priors.

In future work, we plan to train and evaluate the system
with multiple actions of several people in outdoor scenes.
We are currently developing a night-vision surveillance sys-
tem using thermal cameras that produce images amenable
to our framework (See Fig. 7). We also plan to investigate
local part-based feature representations to compare with the
global moment descriptors. As the framework is not inher-
ently constrained to use only single images as input, our
next step is to evaluate the approach with multiple frames
using Motion History Images (MHIs) [3] for short-duration
action modeling.
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