
 
 
 

The following paper posted here is not the official IEEE 
published version. The final published version of this paper  

can be found in the Proceedings of the IEEE Conference on Video and 
Signal Based Surveillance (2006 : Sydney, Australia):pp.33 

 
 
 
 

 

Copyright © 2006 IEEE.  

 

Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or 
for creating new collective works for resale or redistribution to servers or 
lists, or to reuse any copyrighted component of this work in other works 

must be obtained from the IEEE. 

 

http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Conference+on+Video+and+Signal+Based+Surveillance+%282006+%3A+Sydney%2C+Australia%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Conference+on+Video+and+Signal+Based+Surveillance+%282006+%3A+Sydney%2C+Australia%29


Classification-Based Likelihood Functions for Bayesian Tracking

Chunhua Shen1,2, Hongdong Li1,2, Michael J. Brooks3

1ViSTA program, Canberra Research Laboratory, National ICT Australia
2Research School of Information Science & Engineering, Australian National University

3School of Computer Science, University of Adelaide

Abstract

The success of any Bayesian particle filtering based
tracker relies heavily on the ability of the likelihood function
to discriminate between the state that fits the image well and
those that do not. This paper describes a general framework
for learning probabilistic models of objects for exploiting
these models for tracking objects in image sequences. We
use a discriminative classifier to learn models of how they
appear in images. In particular, we use a support vector
machine (SVM) for training, which is able to extract useful
non-linear information, and thus represent more complex
characteristics of the tracked object and background. This
is a particular advantage when tracking deformable objects
and where appearance changes due to the unstable illumi-
nation and pose occur.

A by-product of the SVM training procedure is the clas-
sification function, with which the tracking problem is cast
into a binary classification problem. An object detector di-
rectly using the classification function is then available. To
make the tracker robust, an object detector that directly uses
the classification function is combined into the tracker for
object verification. This provides the capability for auto-
matic initialisation and recovery from momentary tracking
failures. We demonstrate improved robustness in image se-
quences.

1 Introduction

Robust appearance-based tracking of objects in image
sequences has been extensively researched in recent years
due to its wide range of potential applications, including,
for example, video surveillance and human-machine inter-
action. One of the key problems affecting the performance
of visual trackers has been the lack of a suitable appearance
model. For a particle filtering based tracking algorithm,
the equivalent problem is to find a sufficiently robust likeli-
hood function. The likelihood function Pr(z|x) computes
a measure of how well a state hypothesis x fits the image

observations. The first particle filtering tracker CONDEN-
SATION uses bottom-up likelihood functions,1 where only
edge features is adopted [1]. Most of the other top-down
approaches use a single static template image to construct
a target representation based on density models. The refer-
ence is usually extracted from the first frame by hand and
kept fixed. It is difficult to update this type of target model
[2; 3; 4; 5; 6], and the target representation’s fragility usu-
ally breaks these trackers over a long image sequence. A
naive adaptation method replaces the template by the track-
ing results from the previous frames, but this can easily
undo the tracker. Considerable effort has been expended
to ease these difficulties. We believe that the key to finding
a solution is to find the right representation. In order to ac-
commodate appearance changes, the representation model
should be learned from as many training examples as possi-
ble.

Fundamentally two methods, namely off-line and on-
line learning, can be used for the training procedure. On-
line learning means constantly updating the representation
model during the course of tracking. Lim et al. [7] propose
an incremental eigenvector update strategy to adapt the tar-
get representation model. A linear probabilistic principal
component analysis model is used. The main disadvantage
of the eigen-model is that it is not generic and is usually
only suitable for characterising texture-rich objects. Jepson
et al. [8] update a wavelet model with the expectation max-
imisation (EM) algorithm. A classification function is pro-
gressively learned using AdaBoost for visual detection and
tracking in [9] and [10] respectively. Han and Davis [11]
adopt pixel-wise Gaussian mixture models to represent the
target model and sequentially update them. To date, how-
ever, less work has been reported on how to elegantly update
region-wise density models in tracking. Vermaak et al. [6]
use Monte Carlo EM to update a colour-histogram appear-
ance model. Motion information is used to determine when

1With a “bottom-up” likelihood model, no pre-set reference model is
needed for calculating the likelihood probability. In contrast, a “top-down”
likelihood model defines a likelihood probability by measuring the distance
between a hypotheses and the reference model.
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to update the model in their method. Nevertheless it de-
pends on the motion information that is not always reliably
available.

The idea of off-line learning an appearance model for
tracking is not new. Given an amount of training examples
of the tracked object, a representation model is obtained by
using clustering or subspace learning. For the task of find-
ing multiple people, Ramanan and Forsyth [12] learn an ap-
pearance model by clustering the candidate feature vectors
using mean-shift for each body segment. Black and Jep-
son [13] build an eigen-space representation using principle
component analysis (PCA) for tracking rigid and articulated
objects.

In contrast, classification2 is a powerful bottom-up pro-
cedure: It is trained off-line and works on-line. Due to
the training being typically built on very large amounts of
training data, its performance is fairly promising even with-
out on-line updating of the classifier/detector. It is often
beneficial to combine a bottom-up process into a top-down
tracker. The way the two components are combined is ap-
plication dependent and plays a critically decisive role in the
robustness and efficiency of the tracker. Inspired by image
classification tasks with colour density features (e.g., [14])
and real-time detection [15], we learn off-line a represen-
tation model from multiple training data. By considering
tracking as a binary classification problem, a discrimina-
tive classification rule is learned to distinguish between the
tracked object and background patterns. In this way a robust
object representation model is obtained.

This proposal provides a basis for considering the de-
sign of enhanced particle filtering based trackers. Unlike
the conventional principle of comparing the feature content
of candidate regions to a reference model, we compute a
classification probability with the learned classifier and em-
bed it within a particle filtering framework. In this way, we
obtain a hybrid generative/discriminative model which, as
we will show, is more promising than the standard genera-
tive particle filters.

A by-product of the training is the classification func-
tion, with which the tracking problem is cast into a binary
classification problem. An object detector directly using the
classification function is then available. Combining a de-
tector into the tracker makes the tracker more robust and
provides the capabilities of automatic initialisation and re-
covery from momentary tracking failures.

We discuss the proposed likelihood functions in Section
2. Experiments on real video sequences are presented in
Section 3, followed by concluding remarks.

2Object detection is typically a classification problem.

2 Method

To make this paper self-contained, we briefly review the
technique of Bayesian particle filtering and support vector
machine. We then summarise the proposed algorithm and
show how the proposed likelihood functions lead to better
tracking performance.

2.1 Particle Filtering

We work in a Bayesian framework using a generative
approach. The goal is to estimate the posterior probabil-
ity distribution Pr(xt|z1:t) for the state xt of the tracked
target at time t given a sequence of image observations
z1:t = (z1, . . . zt). With the first-order Markovian assump-
tions that the state at time t is only dependent on the pre-
vious state while the observation is only dependent on the
current state, a recursive Bayes formula can be derived and
used for inference: Pr(xt|z1:t) ∝ Pr(zt|xt) Pr(xt|z1:t−1)
where the prior is the previous posterior propagated across
the temporal axis,

Pr(xt|z1:t−1) =
∫

Pr(xt|xt−1) Pr(xt−1|z1:t−1) dxt−1.

When the dynamic and observation models are non-linear
and/or non-Gaussian, the above posterior cannot be analyt-
ically computed and one has to resort to numerical approx-
imations. In visual tracking problems, the dynamic model
can be approximated by a linear model while the observa-
tion model is usually highly non-linear.

To handle the multi-modality of the posterior distribu-
tion, non-parametric approximate methods are used that
represent distributions by a set of N samples or particles
with associated normalised weights {(xi

t, w
i
t)}N

i=1. This
is the essential idea of particle filtering. The posterior is
then formulated as Pr(xt|z1:t) =

∑N
i=1 wi

tδ(xt − xi
t),

where δ(·) is the Dirac function. The above integral is now
tractable with this numerical approximation.

Assume we can sample the particles from an importance
density Prf (·), i.e., xi

t ∼ Prf (xt|xi
t−1,z1:t), then each

particle’s weight is set to

wi
t ∝

Pr(zt|xi
t) Pr(xi

t|xi
t−1)

Prf |(xt|xi
t−1,z1:t)

, i = 1, . . . N. (1)

Before or after the importance sampling step, a selective
re-sampling step is adopted to ensure the efficiency of the
particles’ evolution. Based on the discrete approximation
of the posterior, different estimates of the state at time t can
be devised. In our experiment, we use the Monte Carlo ap-
proximation of the expectation (minimum mean square er-
ror estimate) x̃t = 1

N

∑N
i=1 xt ≈ E(xt|z0:t) as the tracker

output at time t.
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• Initialisation: t = 1. Sample N particles
{(xi

t−1, w
i
t−1)}N

i=1 from the prior.

• Re-sampling: Re-sample to obtain N replacement
particles {(xi

t−1,
1
N )}N

i=1, according to the weights
wi

t−1.

• Importance sampling: For n = 1, . . . , N , sam-
ple N particles xi

t from the importance proposal
Prf (xt|xi

t−1,z1:t), and evaluate the weights ac-
cording to Equation (1). Normalise the weights.

• t = t + 1. Go to the Re-sampling step to process
the next frame.

Figure 1. The standard particle filtering algorithm.

To summarise, we present the complete algorithm for a
particle filter in Figure 1.

As mentioned, the dynamics model (Pr(xt|xt−1)) and
the likelihood function (Pr(zt|xt)) determine a particle fil-
ter’s performance. We focus on learning a better likelihood
function for visual tracking. In theory many classifiers can
be used for this training purpose. In this work, we train
a support vector machine (SVM) to distinguish the fore-
ground and background. We show that a carefully selected
kernel based non-linear SVM is powerful, yet compared
with a conventional fixed-template approach, no computa-
tion overhead is introduced. This is particularly important
for real-time application. Next we recall some important
concepts of SVM.

2.2 Support Vector Machine

Support vector classifiers are developed from the theory
of Structural Risk Minimisation [16]. SVMs implicitly map
the data into a dot product space F via a (usually non-linear)
map Φ(·). Although typically F is high-dimensional, with
the kernel trick, it is not necessary to explicitly work in that
space. An SVM computes a hyperplane in the kernel space
which separates the data in F by a large margin.

An SVM constructs a symmetric and positive definite
kernel matrix (Gram matrix) which represents the similar-
ities between all training datum points. Given M training
data {(xi, yi)}M

i=1, where x ∈ IRd and y ∈ {+1,−1}, the
primal optimisation problem of 1-norm soft margin SVM is
written as:

min
ξ,w,b

1
2
‖w‖2 + C

∑M

i=1
ξi,

s.t. yi(w�Φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, ∀i. (2)

Here ξ = {ξi}M
i=1 is the slack variable set and the regu-

larisation parameter C determines the trade-off between the
SVM’s generalisation capability and training error; b is the

offset. In order to use kernel functions, (2) is usually con-
verted into its dual:

max
α

∑M

i=1
αi − 1

2

∑M

i,j=1
αiαjyiyjk(xi,xj),

s.t. 0 ≤ αi ≤ C,∀i,
∑M

i=1
αiyi = 0. (3)

Here Kij = k(xi,xj) = 〈Φ(xi),Φ(xj)〉 is the kernel
matrix. The above optimisation problem can be efficiently
solved by quadratic programming. The decision rule is then
given by sign (f(x)) with

f(x) =
∑M

i=1
yiαik(xi,x) + b. (4)

The output, f(x), of an SVM is an un-calibrated value, not
a probability of a class given an input. A posterior proba-
bility

Pr(y = +1|x) =
1

1 + exp(Af(x) + B)
(5)

is estimated by fitting a sigmoid to a set of SVM-distances
using the method proposed by Platt [17]. The parameters
A,B in (5) are obtained using maximum likelihood estima-
tion from a training set.

2.3 Probability Product Kernel

Measuring the similarity between image patches is of
central importance in computer vision. In SVMs, the kernel
k(·, ·) plays this role. Most commonly used kernels such
as Gaussian and polynomial kernels are not defined on the
space of probability distributions. Recently various proba-
bilistic kernels have been introduced, including the Fisher
kernel [18], TOP [19], Kullback-Leibler kernel [20] and
probability product kernels (PPK) [21], to combine gener-
ative models into discriminative classifiers. A probabilistic
kernel is defined by first fitting a probabilistic model p(xi)
to each training vector xi. The kernel is then a measure
of similarity between probability distributions. PPK is an
example [21], with kernel given by

k�
ρ(q(x),p(x)) =

∫
X

q(x)ρp(x)ρ dx (6)

where ρ is a constant. When ρ = 1
2 , PPK reduces to a

special case, termed the Bhattacharyya kernel:

k�
1
2
(q(x),p(x)) =

∫
X

√
q(x)

√
p(x) dx. (7)

In the case of discrete histograms, i.e., q(x) = [q1 · · · qm]�

and p(x) = [p1 · · · pm]�, (7) becomes

k�
1
2
(q(x),p(x)) =

√
q(x)

�√
p(x) =

m∑
u=1

√
qupu. (8)
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When ρ = 1, k�
1(·, ·) computes the expectation of one dis-

tribution over the other, and hence is termed the expected
likelihood kernel [21]. In [22] its corresponding statisti-
cal affinity is used as similarity measurement for tracking.
The Bhattacharyya kernel is adopted in this work because
it has been empirically shown, at least for image classifi-
cation, that the generalisation capability of expected likeli-
hood kernel k�

1(·, ·) is weaker than the Bhattacharyya ker-
nel. Meanwhile, non-linear probabilistic kernels includ-
ing Bhattacharyya kernel, Kullback-Leibler kernel, Rényi
kernel, etc., perform similarly [23]. Moreover, the Bhat-
tacharyya kernel is simple and has no kernel parameter to
tune.

The PPK has an interesting characteristic that the map-
ping function Φ(·) is explicitly known: Φ(q(x)) = q(x)ρ.
This is equivalent to directly setting x = q(x)ρ and the
kernel k�

ρ(xi,xj) = x�
i xj . Consequently for discrete PPK

based SVMs, in the test phase the computational complex-
ity is independent of the number of support vectors. This
is easily verified. For example, for histogram based image
classification like [14], given a test image x, the histogram
vector p(x) is immediately available. In fact we can in-
terpret discrete PPK based SVMs as linear SVMs in which
the input vectors are q(xi)ρ—the features non-linearly3 ex-
tracted from raw images xi. By contrast, [24] applied the
reduced set method to reduce the number of support vectors
for speeding up the classification phase. Applications which
favour fast computation in the test phase, such as large scale
image retrieval, might also benefit from this property of the
discrete PPK.

2.4 The State Space and Dynamics and
Likelihood Function

We want to track a patch of interest in the image plane.
The patch is a rectangle in shape. In this work, we estimate
the location of the target d = (x, y) in the image coordin-
ate system and the scale s. We define the state at time t as
xt = (dt,dt−1, st, st−1). A second-order auto-regressive
dynamics model is used here: xt = S1xt−1 + S2xt−2 +
vt, vt ∼ N (0, Σ), where vt is a multivariate normal dis-
tribution and the matrices S1, S2 define the deterministic
component, and Σ the stochastic component. These matri-
ces could be learned from a set of manually-labelled repre-
sentative sequences. A fixed model is used here, which is
composed of three independent constant velocity dynamics
on xt, yt and st.

The second critical factor in a particle filter is the like-
lihood model. Typically particle filtering based trackers
define a likelihood function by converting the distance be-
tween the current hypothesis xi and the template x∗ (under
certain metric D(·, ·)) to a weighted exponential probability

3When ρ = 1, it is linear.

Pr(zi|xi) ∝ exp(−λD(xi,x∗)) The parameter λ must be
manually tuned. See, for example, [5].

As mentioned earlier, we learn likelihood functions di-
rectly from both positive and negative training data using
SVMs. Specifically, the particle filter’s likelihood function
is defined by the classifier’s posterior probability learned in
Equation (5), That means,

Pr(z|x) ∝ Pr(y = +1|x). (9)

This likelihood function is then plugged into the Bayesian
tracking algorithm described in Figure 1.

3 Experiments

It is often beneficial to incorporate a bottom-up classi-
fier/detector into a tracker. In the tracking experiment, an
SVM verification is performed after the particle filtering
tracker finds a candidate location. If the SVM score is posi-
tive, we accept the result and switch to the next frame. Oth-
erwise a negative score triggers a search in a wider region,
using either a brute-force detector or AdaBoost detectors.

To make the representation more robust, we train a SVM
model for the specific person we want to track. In the
SVM training, we use only RGB colour channels as the
features. All the negative training data are extracted from
the background. The image size is 128 × 96. The size of
the tracked object is about 18 × 18. In the first experiment,
the tracked face moves quickly. Hence the displacement be-
tween neighbouring frames is large. The tracker is started
manually. Armed with a detector/localiser, the proposed al-
gorithm tracks the whole sequence successfully. Figure 2
summarises the tracking results.

The second experiment tests the tracker’s robustness to
partial occlusion. The tracked face moves behind the cubi-
cle. Our proposed tracker can recover from momentary fail-
ure. When the object verification returns a negative score,
the tracker applies a search around the area where it fails.
The tracking results are presented in Figure 3. A limitation
of the proposed algorithm, also of most trackers, is that the
tracker tends to fail if the size of the target is too small. Mo-
tion information could be utilised to alleviate this problem.

4 Conclusion

To summarise, we have proposed a novel approach to
particle filtering based tracking, which is more robust than
conventional trackers. Specifically we use an SVM for
training a robust likelihood model, which can represent
more complex characteristics of the tracked object and
background. It is advantageous when tracking deformable
objects and where appearance changes due to the unstable
illumination and pose occur.
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Figure 2. SVM tracking. Frames #1,#3,#7,#20,#24,#30 are shown. The target can be tracked through the whole sequence despite large
displacements.

Figure 3. SVM tracking. Frames #4,#11,#18,#38,#42,#49 are shown. In many frames (e.g., #18 and #38 in the figure) the target is partially
occluded by the cubic. The SVM tracker survives in these difficult frames.

Future work will focus on the following possible av-
enues:

• As mentioned, other machine learning approaches
such as relevance vector machines [25; 26] or Gaus-
sian processes [27] might be employed to learn the
representation model. It is interesting to compare the
performances of different approaches;

• More discriminative features such as Gabor filtering
responses will be used to make the tracker more robust;

• Continuous updating of the representation model can
capture changes of the target appearance/backgrounds.
As discussed in Section 1, previous work such as
[8; 10; 7; 11] has demonstrated the importance of
this on-line update during the course of tracking. The
incremental SVM technique well meets this end [28;
29], which efficiently updates a trained SVM function
whenever a sample is added to or removed from the
training set.
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