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Abstract

This paper presents the implementation of a video seg-
mentation unit used for embedded automated video surveil-
lance systems. Various aspects of the underlying segmen-
tation algorithm are explored and modifications are made
with potential improvements of segmentation results and
hardware efficiency. In addition, to achieve real-time per-
formance with high resolution video streams, a dedicated
hardware architecture with streamlined dataflow and mem-
ory access reduction schemes are developed. The whole
system is implemented on a Xilinx FPGA platform, capa-
ble of real-time segmentation with VGA resolution at 25
frames per second. Substantial memory bandwidth reduc-
tion of more than 70% is achieved by utilizing pixel locality
as well as wordlenghth reduction. The hardware platform
is intended as a real-time testbench for observations of long
term effects with different parameter settings, which is hard
to achieve on a PC platform.

1. Introduction

Automated video surveillance system is gaining substan-
tial interests in the research community in recent years. This
is partially due to the progress in technology scaling that en-
ables more robust yet computationally intensive algorithms
to be realized in reasonable performance. The advantage
of surveillance automation over traditional TV based sys-
tem lies in the fact that it is a self contained system capable
of automatic information extraction, e.g. moving objects
extraction and tracking. The result is a fully or semi auto-
mated surveillance systems, potentially cutting the cost of
human resources observing the output from cameras. Typi-
cal applications may include both civilian and military sce-
narios, e.g. traffic control, security surveillance in banks or
antiterrorism.

Crucial to all these applications is the quality of the video
segmentation, which is a process of extracting objects of
interest (foreground) from an irrelevant background scene.
The foreground information, usually composed of moving
objects, is passed on to later analysis units, where objects
are tracked and their activities are analyzed. A wide range
of segmentation algorithms have been proposed in the lit-
erature [2, 13, 9], with aimed robustness to different situa-
tions. A comparison is made in [12] on the segmentation
qualities derived from various approaches. In fact, no per-
fect system exists to handle all kinds of issues within differ-
ent background models. Furthermore, for realistic imple-
mentation of such system, trade-offs have to be made be-
tween system robustness (quality) and system performance
(frame rate, resolution, etc.). In [11], a background model
based on pixel wise multi-modal Gaussian distribution is
proposed with the robustness to multi-modal background
situations, which are quite common in both indoor and out-
door environments. A multi-modal background is caused
by repetitive background object motion, e.g. swaying trees,
flickering of the monitor etc. As a pixel lying in the re-
gion where repetitive motion occurs will generally consists
of two or more background colors, the RGB value of that
specific pixel changes over time. This will result in false
foreground detection in most other approaches. Various
modifications to the algorithm for potential improvements
are also reported [5, 8, 3, 14, 15]. However, none of these
works address the issue of the algorithm performance in
terms of meeting real-time requirements with reasonable
resolution. Pixel wise image processing is costly in com-
putation and storage, let alone each pixel is characterized
by several Gaussian distributions, each of which contains
several parameters. In [11], only a frame rate of 11-13 FPS
is obtained even for a small frame size of 160×120 on an
SGI O2 workstation. In our PC implementation on an AMD
4400+ processor, a frame rate of 4-6 FPS is observed for
video sequences with 352×288 resolution. In addition to
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performance issues, we have found no studies on possible
algorithm modifications that could lead to potentially better
hardware efficiency.

In this paper, we present a dedicated hardware archi-
tecture capable of real-time segmentation with VGA res-
olution at 25 FPS. A variety of memory access reduc-
tion schemes are implemented, resulting in more than 70%
memory bandwidth reduction. Furthermore, various modi-
fications to the algorithm are made, with potential improve-
ments of hardware efficiency. The paper is organized as
follows. Section 2 and 3 discuss the original algorithm and
possible modifications for hardware efficiency. The hard-
ware architecture is presented in Section 4, together with
the memory bandwidth reduction scheme explained in de-
tail. Finally, the results and conclusions are covered in Sec-
tion 5 and 6.

2 Gauss Mixture Background Model

The algorithm is briefly formulated as follows: Mea-
sured from consecutive video frames, the values of any
pixel can be regarded as a Gaussian distribution. Charac-
terized by mean and variance values, the distribution rep-
resents a location centered at its mean values in the RGB
color space, where the pixel value is most likely to be ob-
served over frames. A pixel containing several background
object colors, e.g. the leaves of a swaying tree and a road,
can be modeled with a mixture of Gaussian distributions
with different weights. The weight of each distribution in-
dicates the probability of matching a new incoming pixel. A
match is defined as the incoming pixel within J times stan-
dard deviation off the center, where J is selected as 2.5 [11].
The higher the weight, the more likely the distribution be-
longs to the background. Mathematically, the portion of the
Gaussian distributions belonging to the background is de-
termined by

B = argminb

(
b∑

k=1

ωk > H

)
, (1)

where H is a predefined parameter and ωk is the weight of
distribution K. If a match is found, the matched distribution
is updated as:

ωk,t = (1 − α)ωk,t−1 + α (2)

µt = (1 − ρ)µt−1 + ρXt (3)

σ2 = (1 − ρ)σ2
t−1 + ρ(Xt − µt)T (Xt − µt); (4)

where µ, σ are the mean and variance respectively, α, ρ are
the learning factors, and Xt are the incoming RGB values.
The mean, variance and weight factors are updated frame

by frame. For those unmatched, the weight is updated ac-
cording to

ωk,t = (1 − α)ωk,t−1, (5)

while the mean and the variance remain the same. If none
of the distributions are matched, the one with the lowest
weight is replaced by a distribution with the incoming pixel
value as its mean, a low weight and a large variance.

3 Algorithm Modifications

The algorithm works efficiently only in controlled envi-
ronment. Many issues regarding algorithm weaknesses in
different situations are addressed in many publications[5, 8,
3, 14]. In this section, instead of mainly focusing on im-
proving algorithm robustness, we propose several modifi-
cations to the algorithm, with major concern on their im-
pacts that could lead to potentially improved hardware ef-
ficiency. The modifications being made are covered in de-
tail in the following sections and can be characterized into 3
categories: purely technical (Section 4.1, 4.2), related to the
approach (Section 3.1, 3.2) and application specific (Section
3.3).

3.1 Color Space Transformation

In theory, multi-modal situations only occur when repeti-
tive background objects are present in the scene. This is not
always true in practice. Consider an indoor environment
where the illumination comes from a fluorescence lamp.
An example video sequence of such environment is taken
from our lab, and 9 pixels picked up evenly from the scene
are measured over time. Their RGB value distributions are
drawn in Fig. 1(a). (All figures are also available through
[1] for reference). Clearly shown from the figure, instead
of 9 sphere like pixel distributions, the shapes of the pixel
clusters are rather cylindrical. Pixel values tend to jump
around more in one direction than another in the presence
of illumination variations caused by the fluorescence lamp
and camera jitter. This should be distinguished from the sit-
uation where one sphere distribution is moving slowly to-
wards one direction due to slight daylight changes. Such
a case is handled by updating the corresponding mean val-
ues in the original background model. Without an upper
bound for the variance, the sphere describing the distribu-
tion tends to grow until it covers nearly every pixel in the
most distributed direction, thus taking up a large space such
that most of it does not belong to the distribution (sphere A
in Fig. 1(b)). A simple solution to work around this problem
is to set an upper limit for the variance, e.g. the maximum
value of the variance in the least distributed direction. The
result is multi-modal distributions represented as a series of
smaller spheres (spheres B-E in the same figure). Although
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Figure 1. RGB color space

a background pixel distribution is modeled more precisely
by such method, several Gaussian distributions are inferred
which are hardware costly in terms of extra parameter up-
dating and storage. In [10] D.Magee proposed a cylindrical
model to address the issue, with primary axes of all dis-
tribution cylinders pointing at the origin. However, more
parameters are needed for each cylindrical distribution than
the spherical counterpart, let alone hardware costly compu-
tation needed to transform RGB value to cylindrical coor-
dinates, e.g. division, square root. In addition, not every
distribution cylinder is oriented to the origin, see the left
middle distribution in Fig. 1(a).

To be able to model background pixels using a single
distribution but without much hardware overhead, color
space transformation is employed in our implementation.
By transforming RGB into YCbCr space, the correlation
among different color coordinates in RGB space are mostly
removed in YCbCr color space, resulting in nearly inde-
pendent color components. With varying illumination en-
vironment, only the Y component (intensity) varies accord-
ingly, leaving Cb and Cr components (chromaticity) more
or less constant. In [7], such feature is utilized for shadow
reduction. Consequently, values of three independent com-
ponents of a pixel in YCbCr color space tends to spread
equally. As shown in Fig. 2, most pixel distributions are
transformed from cylinders back to spheres, capable of be-
ing modeled with a single distribution. The transformation
from RGB to YCbCr is linear, and minor hardware over-
head with only a few extra multipliers and adders are intro-
duced, where multiplication with constance can be further
utilized to reduce the hardware complexity.
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Figure 2. YCbCr color space

3.2 Algorithm Simplifications

Two simplifications are made to the algorithm. As dis-
cussed in the previous section, setting an upper bound for
the variance prevents a single distribution from growing too
big. This also has a side effect that could result in more
distributions but further simplified implementation. In the
original algorithm specification, for the same reason that
growing distribution will absorb more pixels, the weight of
that distribution will soon dominate all others. To overcome
this, all updated Gaussian distributions are sorted according
to the ratio ω/σ instead of ω in [11]. In this way, the dis-
tribution with only dominant weight does not get to the top,
identified as background distribution. With bounded vari-
ance, all distributions can now be sorted by their weights
only, effectively eliminating division units in the implemen-
tation.

Another simplification is made in the process of fore-
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Figure 3. The system architecture of the segmentation unit.

ground/background detection. Instead of using equation 1,
the determination can be made by checking the weight of
each distribution only, since one pixel cluster will not spread
out in several distributions by color space transformation
to YCbCr. This results in automatic single or multi modal
background model without having to adjust the value of H
which is hard coded in the hardware.

3.3 Objects Reentering the Scene

With a slow learning factor, a foreground object that is
standing still in the scene will finally become background
after a relative long time, e.g. half a minute. This is a
way for the background model to be adaptive to newly in-
troduced background objects, e.g. a car enters a parking
lot and stay there for a day. This could be problematic in
some cases when people are standing still in front of a cam-
era, e.g. a man who is filling up a form in front of a bank
counter. Once he is background, around the same amount of
time is required to fully remove him from the background
distribution when he leaves. If the same person reenters
the scene shortly afterwards, he will quickly be detected as
background. To solve the problem, an approach with differ-
ent learning factors is proposed for foreground/background
switchings in forward and backward directions. Since the
weight of each distribution works independently as indi-
cated by the second simplification mentioned above, the
forward and backward updating could be carried out at dif-
ferent speeds. As a result, a background object will turn
into foreground much faster than a fixed foreground object
takes to become background. However, this has to be dis-

tinguished with multi-modal situations, e.g. the leaf of a
swaying tree will reenter the same position from time to
time. A counter can be used to record the number of time a
distribution switches between background and foreground.
When a certain value is reached, e.g. 3-4, the distribution is
regarded as multi-modal, thus foreground and background
switchings are back to the same speed.

4 Hardware Architecture

To perform the algorithm with VGA resolution in real-
time, a dedicated hardware architecture, with a streamlined
data flow and memory bandwidth reduction schemes, is im-
plemented to address the computation capacity and memory
bandwidth bottlenecks. Algorithm modifications covered in
previous sections are implemented with potential benefits
on hardware efficiency and segmentation quality. This is
a large improvement to the previous work [6], where only
352×288 resolution is achieved without any memory reduc-
tion schemes and algorithm modifications. In this section, a
brief overview of the system architecture of the segmenta-
tion unit is given, followed by detailed discussions on mem-
ory reduction schemes.

The system architecture is shown in Fig. 3 and works as
follows: With each new incoming pixel from the camera
converted to YCbCr components, a match is performed be-
tween the new pixel and a mixture of Gaussian that are read
from the DDR buffer. A matched Gaussian is switched to
the bottom(3 in the figure), where all of its parameters are to
be updated. An unmatched Gaussian only needs to update
its weight, where two learning factors are used to address
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the issue of objects reentry. With a matched Gaussian be-
ing the background, the weights of unmatched Gaussian de-
crease quickly. A no match signal is asserted if a new pixel
fits in no distributions, forcing the distribution on the bot-
tom to be replaced by a new one. According to the simplifi-
cations made in previous sections, the foreground detection
is achieved by simply comparing the weight of the distribu-
tion on the bottom with a predefined parameter H. All Gaus-
sian parameters are sorted and stored in an DDR SDRAM,
with manipulated data flow controlled by a DDR controller.
With various buffers and pipelining, a sequence of binary
data indicating background and foreground is streamed out
to a monitor through a VGA controller.

4.1 Wordlength Reduction

Slow background updating requires large dynamic range
for each parameter in the distributions. This is due to the
fact that parameter values are changed slightly between
frames, but could accumulate over time. In this section, pa-
rameter wordlength reduction is investigated for potential
memory bandwidth reduction.

According to Eqn. 3 and 4, the mean and variance of a
Gaussian distribution is updated using a learning factor ρ.
The difference of mean and variance between current and
previous frame is derived from the equation as

∆µ = µt − µt−1 = ρ(Xt − µt−1), (6)

∆σ2 = σ2
t −σ2

t−1 = ρ((Xt−µt)T (Xt−µt)−σ2
t−1). (7)

Given a small value for ρ, e.g. 0.0001, a unit difference be-
tween the incoming pixel and the current mean value results
in a value of 0.0001 for ∆µ. To be able to record this slight
change, 22 bits have to be used for the mean value, where
14 bits accounts for the fractional part. Less bits can be
achieved by ignoring small deviations of the incoming pixel
from current mean, while picking up only large ones. The
extreme case is when only the largest deviation is picked,
where the incoming pixel is in the range of 2.5 times stan-
dard deviation off the current mean. Larger than that, the
incoming pixel will not match the current distribution. With
an upper bound for the variance, e.g. 16, a maximum value
of 0.0001 × 2.5 × √

16 = 0.001 is derived for ∆µ, which
can be represented by 10 bits. Using a wordlength lower
than that, no changes would be recorded ever. In practice,
the bits for fractional parts should be somewhere in between
10-14 bits. With similar calculations, 7-14 bits are obtained
for the fractional parts of a variance. Together with 16 bits
weight and integer parts of the mean and the variance, 81-
100 bits are needed for a single Gaussian distribution. To
reduce this number, a wordlength reduction scheme is pro-
posed. From Eqn. 6, a small positive or negative number is
derived depending on whether the incoming pixel is larger
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Figure 4. Memory bandwidth reduction over
frames is shown to the left and memory band-
width reduction versus different threshold is
shown to the right.

than the current mean. Instead of adding a small positive or
negative fractional number to the current mean, a value of
1 or -1 is added. The overshooting caused by such coarse
adjustment could be compensated by the update in the next
frame, e.g. without illumination variation, the mean value
will fluctuate with a magnitude of 1, which is negligible
since Gaussian distribution is usually a sphere with a diam-
eter of more than 10. In a relatively fast illumination vary-
ing environment, e.g. less than 25 RGB value changes in a
second, fast adaptation to new lighting conditions is also en-
abled by adding or subtracting ones in consecutive frames.
With coarse updating, only integers are needed for mean
specification, which effectively reduce the wordlength from
18-22 down to 8 bits. Similar approach can be applied to the
variance, resulting in a wordlength of 6 bits, where 2 bits
account for fractional part. Together with the weight, the
wordlength of a single Gaussian distribution can be reduced
from 81-100 to only 44 bits, over 43% reduction is accom-
plished even compared to the extreme case in the normal
updating scheme. In addition, less hardware complexity is
achieved as a bonus since multiplication with the learning
factor of ρ is no longer needed.

4.2 Pixel Locality

In addition to wordlength reduction, a data compression
scheme for further bandwidth reduction is proposed by uti-
lizing pixel locality for Gaussian distributions in adjacent
areas. We classify ”similar” Gaussians in the following
way: from the definition of a matching process, each Gaus-
sian distribution can be simplified as a three dimensional
cube in the YCbCr color space, where the center of the cube
is composed of YCbCr mean values whereas the border to
the center is specified by J times variance. One way to mea-
sure the similarity between two distributions is to check how
much of the two cubes volume that overlap. If the over-
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Figure 5. The result before and after morpho-
logical filtering for different thresholds, (Left)
original result, (Middle) with 0.8, and (Right)
with 0.4 threshold.

lap volume takes up certain percentage of both Gaussian
cubes, they are regarded as ”similar”. The reason for such
criteria lies in the fact that a pixel that matches to one dis-
tribution will most likely match to the other, if they have
enough overlapping volume. The percentage is a threshold
parameter that can be set to different values among different
simulations.

In the architecture, two similar distributions are treated
as equivalent. By only saving non overlapping distributions
together with the number of equivalent succeeding distri-
butions, memory bandwidth is reduced. Various threshold
values are selected to evaluate the efficiency for memory
bandwidth reduction. With a low threshold value where less
overlapping Gaussians are regarded as the same, more sav-
ings could be achieved. However, more noise is generated
due to increasing mismatches in the matching block. Fortu-
nately, such noise is found non-accumulating and therefore
can be reduced by later morphological filtering[4]. Fig. 4
shows the memory bandwidth savings over frames with var-
ious threshold values. From the figure, memory bandwidth
savings tends to stabilize (around 60%) after initialization.
The quality of segmentation results before and after mor-
phology is shown in Fig. 5, where it is clear that memory
reduction comes at the cost of segmentation quality. Too
low threshold value results in clustered noises that would
not be filtered out by morphological filtering. In this imple-
mentation, a threshold value of 0.8 is selected, combined
with wordlength reduction scheme, a memory bandwidth
reduction of over 70% is accomplished.

5 Results

The system is implemented on a Xilinx VirtexIIpro vp30
FPGA development board. A KODAK KAC-9648 CMOS
sensor is used to capture color images at 25 fps with VGA
resolution. Real time segmentation performance is achieved
on video sequences with 3 Gaussian distributions per pixel

at an operating frequency of 100 MHz. The issue regarding
objects reentrance is much improved. With the proposed
memory reduction schemes, off-chip memory bandwidth is
reduced from 576 MB/s to 170 MB/s.

6 Conclusions

Real-time video segmentation with VGA resolution can
be achieved by proposed joint memory reduction scheme.
Substantial memory bandwidth reduction comes at the cost
of segmentation quality. This can be minimized by care-
ful tradeoffs and specific morphology post processing. Al-
gorithm modifications are of great importance for the effi-
ciency of the hardware implementation. By utilizing differ-
ent color space, several simplifications are made that results
in great hardware savings. The algorithm is implemented
on an Xilinx VirtexIIpro vp30 FPGA development board,
capable of video segmentation at 25 FPS with VGA resolu-
tion.
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