
Object and scene-centric activity detection using
state occupancy duration modeling

Murtaza Taj and Andrea Cavallaro∗

Queen Mary, University of London
Mile End Road, London E1 4NS (UK)

{murtaza.taj,andrea.cavallaro}@elec.qmul.ac.uk

Paper ID 66

Abstract

We propose a video event analysis framework based on
object segmentation and tracking, combined with a Hidden
Semi-Markov Model (HSMM) that uses state occupancy du-
ration modeling. The observations generated by a multi-
object detector and tracker are used as emitting symbols
and the corresponding probabilities are computed using
multivariate Gaussians. Next, we recognize events by esti-
mating the most likely object state sequence using a HSMM
decoding strategy, based on the Viterbi algorithm. More-
over, the duration distribution enforces the state transition
after certain time and hence better models the events con-
strained on time intervals. We demonstrate and evaluate
the proposed framework on a dataset of approximately 20K
frames, and show that the duration modeling improves the
event detection results by 7% to 11%, compared to state-of-
the-art HMMs.

1. Introduction
The automated analysis of large volumes of data is

of great interest for indexing and retrieval of surveillance
videos. Algorithms capable of detecting objects and events
of interest based on motion patterns and semantic under-
standing are highly desirable to summarize videos or to trig-
ger alarms.

Video event detection algorithms can be classified into
three main groups, namely 3-D model-based, temporal tem-
plates and trajectory-based. 3D model-based approaches
treat an object as a set of connected parts and perform
detections on their activities ([4]). The activities can be

∗This work was supported in part by the EU, under the FP7 project
APIDIS (ICT-216023).

modeled as generalized action cylinders ([15]) or volumet-
ric features ([13]). Temporal templates use sequences of
simple events to model more complex events. Examples
of temporal template methods are Petri Nets ([9]) and Be-
lief Networks ([12]). Activity and plan prototypes are also
used to recognize object behaviors through perceptual pro-
cessing ([6]). A temporal template generated using re-
cency of motion in a sequence can also be used for com-
plex event recognition ([8]). Trajectory-based techniques
perform event detection by analyzing trajectories over cer-
tain time spans ([10]). Abnormal behaviors can be detected
by performing outliers detection using unsupervised clus-
tering ([3]). Since events are generally composed of specific
sequences of operations, HMMs are appropriate to model
them ([22]). Hidden Markov Models are also used to per-
form abnormal activity detection in crowds ([2]) by model-
ing normal motion paths using single HMM ([2]) or Mixture
of Gaussian HMMs ([1]). The main limitation of the above
mentioned HMM-based techniques is the use of an evalua-
tion strategy to obtain the sequences of events, as this result
in a dependence on the selected pattern.

The event detection problem can be decomposed into
three main steps: (i) the extraction of objects of interest, (ii)
the tracking of the objects, and (iii) the detection of events
generated by the tracked objects. As event detection can be
modeled as a random process that is segmental in nature, the
piecewise stationarity assumption of Hidden Markov Mod-
els (HMMs) is well suited for event modeling.

In this paper we improve the video event analysis
approach of [20] by using Hidden Semi-Markov Model
(HSMM) with time distribution modeling. The time dis-
tribution allows to incorporate in the model the dependency
on time for triggering events and enables a smoother state
transition than a thresholded decision. Moreover, the pro-
posed approach can be applied as object-centric or scene-
centric model to better fit the events of interest. The
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object-centric approach is used to model events associated
to objects whereas the scene-centric approach suits well for
environment-dependent events.

The paper is organized as follows. Section 2 provides an
overview of our detection and tracking algorithms used to
extract the objects of interest. The proposed event detection
approach is described in Section 3, followed by the exper-
imental results that are presented in Section 4. Finally, in
Section 5 we draw the conclusions.

2. Object extraction and tracking
Let an object detection module generate a set of R ob-

jects Ot = {O1
t , O

2
t , · · · , OR

t } at time t. The problem is
to associate objects between consecutive frames to estab-
lish the track Xr

t = {Or
t0 . . . O

r
t }, up to time t, of each

object Or
t . The event analysis is then performed based on

the tracks and on the available contextual information.
We perform video object extraction (foreground seg-

mentation) using a statistical color change detector ([7]), a
model-based algorithm that assumes additive white Gaus-
sian noise introduced by the camera. The noise amplitude
is estimated for each color channel separately. Given a ref-
erence image (i.e., an image without objects or an image
generated by an adaptive background algorithm ([19])), the
algorithm removes the effect of the camera noise based on
the hypothesis that the additive noise affecting each image
of the sequence respects a Gaussian distribution, with zero
mean and standard deviation σt. The value of σt is com-
puted on-line by analyzing the image difference in areas
without moving objects. After the background/foreground
classification, any isolated noise pixel is removed using di-
lation and erosion.

An important problem is that moving vegetation and fast
illumination changes reduce the accuracy of the object ex-
traction results by introducing false positive detections. For
this reason, we filter the detections using a Probability Hy-
pothesis Density filter (PHD filter) ([14]), which helps elim-
inating temporally inconsistent false positives and smooth-
ing the results of the detections (Figure 1). Once the ob-
jects are extracted, we associate objects across consecutive
frames in order to establish the track Xr

t for object r up to
time t. The trajectory Xr

t is estimated with a graph match-
ing algorithm ([21]).

Let {Xr}r=1...R be a set ofR object detections, v(xα
i ) ∈

Vi the set of vertices representing the detected objects at
time i, and e(v(xα

i ), v(xβ
j )) ∈ E the set of edges of the

graph G(V,E). Edges represent all possible track hypothe-
ses. Each v(xα

i ) belongs toD, a bi-partitioned digraph (i.e.,
a directional graph). The candidate correspondences at dif-
ferent observation times are described by the gain g associ-
ated to the edges that link the vertices. The best set of tracks
is computed by finding the maximum weighted path cover
of G. This step can be performed using the algorithm by

(a) (b)

(c) (d)
Figure 1. Comparison of object extraction results with and with-
out the PHD Filter. (a) Original frame; (b) change detection re-
sult without using the PHD Filter; (c) bounding boxes of the de-
tected objects without using the PHD Filter (6 false detections);
(d) bounding boxes of the filtered objects after applying the PHD
Filter (5 false detections have been removed).

Hopcroft and Karp ([11]) with complexity O(n2.5), where
n is the number of vertices in G. After the maximization
procedure, a vertex without backward correspondence mod-
els a new object, and a vertex without forward correspon-
dence models a disappeared object. The depth of the graph
K determines the maximum number of consecutive miss
detected or occluded frames during which an object track
can still be recovered.

The gain g between two vertices is computed using the
information in Xi, where the elements of the set Xi are
the vectors xα

i defining x, the state of the object x =
(x, y, ẋ, ẏ, h, w,H), where (x, y) is the center of mass of
the object, (ẋ, ẏ) are the vertical and horizontal velocity
components, (h,w) are the height and width of the bound-
ing box, and H is the color histogram. The gain for each
couple of nodes, (xα

i ,x
β
j ), is computed based on the po-

sition, direction, appearance and size of a candidate ob-
ject ([21]).

This process results in the track Xr
t for each object r.

The tracks of the objects are then used for event analysis, as
described in the next section.

3. Event analysis

3.1. HSMM with duration modeling

Let λ = {A,B, ω} be a continuous distribution first-
order Hidden Markov Model, where ω = {ω1, · · · , ωN}
represents the events (states) to be detected (we denote the
actual state at time t as ω(t));A = {aij} represents the state

IEEE INTERNATIONAL CONFERENCE ON ADVANCED SIGNAL AND VIDEO BASED SURVEILLANCE (AVSS), SANTA FE, NEW MEXICO, USA, 
1-3 SEPTEMBER 2008



Enters
Zone

Inside
Zone

Enters
Zone

Inside
Zone

aii

d(t)

i                     j

Figure 2. Examples of self-transition modeling for an Hidden
Markov Model: (top) self-transition probability (aii); (bottom)
self-transition replaced with a state occupancy duration pdf.

transition probabilities, with aij = P [ω(t+1) = ωj |ω(t) =
ωi], 1 ≤ i, j ≤ N ; B = {bjt} represents the emission
probabilities, with bjt = P [Or

t |ω(t) = ωj ]. The emitting
symbols of each state are provided by the track Xr

t of the
observation Or

t of object r.
Given the model λ and the observation sequence, we

can obtain the associated optimal state sequence. Given the
probability of the best sequence up to time t, the single most
probable state sequence ω(t + 1) at time t + 1 can be ob-
tained as

δi(t) =max
Ωt−1

P (Ωt−1, ω(t) = ωi, O1 · · ·OT ), (1)

where Ωt−1 = {ω(1) · · ·ω(t − 1)} and O1 · · ·OT are the
observations from time 1 to T .

δi(t) = max
1≤t≤T−1

P (ω(t) = ωi|O, λ). (2)

According to the Markovian assumption, the conditional
probability distribution of future states depends on the cur-
rent state only and not on past states, hence using the For-
ward Viterbi we have

δj(t+ 1) = max
1≤i≤N

[δi(t)aij ]bj,Ol . 1 ≤ l ≤ T (3)

Finally, we compute the most likely hidden state sequence
ωT up to time t+ 1 as

ω(t+ 1) = arg max
1≤i≤N

[δi(t)aij ]. (4)

This simple Hidden Markov Model is unable to com-
pletely model certain events due to the duration distribution
of the observation sequence for a certain state. The Marko-
vian assumption constraints the state occupancy distribution
to be exponentially distributed ([16]). Therefore the estima-
tion of the most likely path ωT is problematic, because a
state with high self-transition probability aii can cause the
algorithm to stay in this state for a longer interval. To avoid
such self-transitions, we use Hidden Semi-Markov Models

(HSMM) ([18]) to enable the explicit modeling of duration
probability distribution d(t). The duration probability dis-
tribution is the probability of staying at least for a duration
τ in the state ωj , with 1 ≤ τ ≤ Dj (Figure 2). To compute
the most likely state sequence ωT using the durational dis-
tribution, we maximize the joint probability P [O,ω1

T |λ] by
re-writing Equation 2 as

δi(t) = max
O,1≤t≤T−1

P [ω(t) = ωi, O|λ]. (5)

Using the forward Viterbi algorithm we can solve Equa-
tion 3 as

δj(t+ 1) = max
1≤j≤N
1≤τ≤Dj

[ max
1≤i≤N

[δi(t)aij ]d(t)bj,Ol ], (6)

with 1 ≤ l ≤ T . Given the model λ = {A,B, ω} and
the duration probability distribution d(t), we can now use
Equation 6 to compute the best state sequence by perform-
ing the HMM decoding using the Viterbi algorithm. The
state transition probabilities aij can be defined empirically
or, if there is sufficient training data, can be calculated using
the Baum-Welch algorithm ([5]). In order to use the Viterbi
algorithm we need first to model the duration probability
distribution d(t) and the observation sequence.

3.2. Duration probability distribution

The duration probability distribution d(t) can be mod-
eled using different parametric duration distributions. We
evaluate two distributions, namely the half-normal distribu-
tion and the triangular distribution, which are well adapted
to the problem at hand. The half-normal distribution, dn(t),
can be expressed as

dn(t) =
1
σ

√
2
π

exp

(
−1

2

(
t− µ

σ

)2
)
, (7)

where σ is the variance, computed as 3σ = τ , and µ is the
mean. The mean is the time te when the object transits into
the state and te ≤ t ≤ T + te. The triangular distribution,
dt(t), can be expressed as

dt(t) =
2(τ + te − t)

τ2
. (8)

In case of events with high self-transitions a uniform dis-
tribution can be used which implicitly converts HSMM to
HMM. The selection of the appropriate distribution, for the
specific event or activity, can be done using Chi-square test.
The evaluation and analysis of the results obtained using
half-normal and triangular distributions are discussed at the
end of Section 3.3 and in Section 4.
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Figure 3. Multivariate scene-centric distribution model. (a) Se-
quence AP-11 C4; (b) Sequence BE-19 C1.

3.3. Object-centric and scene-centric models

For the observation sequence model, the emitting symbol
is the observation of the rth object Or

t at time t. The emis-
sion probabilities bjt are modeled as a continuous function
describing the state. We propose and evaluate two models
to estimate bjt, namely a scene-centric and an object-centric
model. In the scene-centric approach, the bjt are modeled
as a multivariate Gaussian. For each jth state we use a mul-
tivariate Gaussian Nj(µ,Σ) with mean µ and covariance Σ
as

bjt =
1√

(2π)n|Σj |
exp

(
−1

2
(X − µj)T Σ−1

j (X − µj)
)
,

(9)
where n = 4, µj = {µx, µy, µw, µh} and |Σj | is the deter-
minant of the covariance matrix Σj , which we assume to be
a diagonal matrix: Σj = diag[σ2

x, σ
2
y, σ

2
w, σ

2
h]. The values

for µj and Σj are set based on the contextual information
specific to the task at hand (Figure 3).

In the object-centric approach, we model bjt as a mul-
tivariate distribution composed of a mixture of a normal
and a uniform distribution Nj(µ,Σ, ρ, C,D) with mean µ,
covariance Σ, weight ρ and range of uniform distribution
[C,D]:

bjt =
ρ

(2π)
K
2 |Σj |

1
2

exp

(
K∑

k=1

[
(θk − µθk

)2

2σ2
θk

])
+

+
(1− ρ)
π

K∏
k=1

[
ψθk

σθk

]
, (10)

where K=2; θ1=x and θ2=y. Therefore σx and σy are
the standard deviations, respectively. The functions ψk are
piecewise binary and defined as

ψx =

 1 if Cx < x < Dy

0 otherwise
, (11)

and

ψy =

 1 if ζ(Cx) < y < ζ(Dy)

0 otherwise
, (12)

P1‘(u,v)
P2‘(u,v)

1ωμ

2ωμ

Figure 4. Multivariate object-centric distribution model. The dis-
tribution of the states is placed on the line joining the centroids of
the objects.

where ζ = ±σy

√
1− (x−xc

σx
)2 + yc , with (xc, yc) repre-

senting the object centroid around which the model is built,
and π

∏2
k=1 σθk

is the area of an ellipse. |Σj | is the determi-
nant of the covariance matrix, with Σj = diag[σ2

x, σ
2
y] and

therefore |Σj | = σxσy in Equation 10. The values of the
elements in Σj depend on the state to be modeled, whereas
the value of µ is assigned dynamically. This is the key point
of the proposed object-centric modeling. The value of µ of
the first state is set as the centroid of the reference object
Oref

t (Figure 4). The remaining state distributions are then
placed around Oref

t to estimate the possible state of Oref
t

with respect to the objects Or
t . The µ of the other states are

positioned on the line passing through the centroid of the
two objects (Oref

t and Or
t ) at a distance that is a function

of the variances of the states to be detected. The rationale
for using Gaussian functions instead of hard boundaries and
fixed threshold is to increase the flexibility of the algorithm
in order to detect several different events in different sce-
narios.

Let us see two examples of event modeling using the
scene-centric and the object-centric models for the PETS1,
the CAVIAR2 and the ETISEO3 datasets. We use the object-
centric HMM shown in Figure 5 to model the events in the
PETS and the CAVIAR datasets. In this case, we model
three events, namely the attended, unattended and aban-
doned baggage event. For the PETS sequences, the bag-
gages are detected based on their size and aspect ratio (rang-
ing between 1 and 1.8). For the attended baggage (ω1)
event, σx =

√
2 ∗ 36 and σy =

√
2 ∗ 96 respectively,

whereas for the unattended baggage (ω2) and the aban-
doned baggage (ω3) events the values are σx =

√
36/2

and σy =
√

96/2. These values are based on the calcu-
lation that, for this scenario, 1m in world-coordinates cor-
responds in the ground plane to 36 pixels along the x-axis
and to 96 pixels along the y-axis. A baggage is considered
unattended when its related object (the owner) is 2m away.
A baggage is considered abandoned when its related ob-

1http://www.cvg.rdg.ac.uk/PETS2006/index.html
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
3http://www.silogic.fr/etiseo/index.html

IEEE INTERNATIONAL CONFERENCE ON ADVANCED SIGNAL AND VIDEO BASED SURVEILLANCE (AVSS), SANTA FE, NEW MEXICO, USA, 
1-3 SEPTEMBER 2008



Attended Unattended Abandoned

Figure 5. HMM model for baggage detection on the PETS and
CAVIAR datasets. Each state represents an event. The initial state
is selected as the state with the maximum emission probability bjt

at time t0.
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Figure 6. Scene-centric HMM model for activity monitoring on the
ETISEO dataset. Each state represents an event. The initial state
is selected as the state with the maximum emission probability bjt

at time t0.

HMM HSMM-TRI HSMM-HN
AP 0.882 0.980 0.956
BE 0.790 0.966 0.980

Total 0.847 0.965 0.975

Table 1. Performance comparison between the proposed HSMM
algorithm with half-normal and triangular distribution for state
occupancy duration and event detection using HMM without state
duration modeling.

ject is 3m away, for at least 30 seconds. For the CAVIAR
sequences, the baggages are detected in a similar fashion
and the parameters of the events are defined as follows.
For the attended baggage (ω1) event, σx =

√
2 ∗ 36 and

σy =
√

2 ∗ 36 respectively, whereas for unattended bag-
gage (ω2) the values are σx =

√
36 and σy =

√
48 and

for abandoned baggage (ω3) the values are σx =
√

24 and
σy =

√
24.

The scene-centric HMM model is used for activity mon-
itoring for the ETISEO dataset (Figure 6). In this case we
model ten events, namely enter zone, inside zone, exit zone,
change zone, opens, closes, go up stairs, go down stairs,
empty area, and stopped object. The definition of the ar-
eas of interest is part of the contextual information provided
with the dataset. The most likely state sequence ωr

T for each
object r is computed by applying the forward Viterbi algo-
rithm after every 25 to 50 observations. The last state ω(t)
of the state sequence is then used as the initial state ω(0)
for next computation. The event detection algorithm using

Algorithm 1 Event Detection
ω = {w1, w2, . . . , wN} : events (states that an object can acquire)
aij : state transition probabilities between state i to l
µj : mean for each state i; Σj : covariance matrix for each state j
Xr

t : observation for object r at time t ; count : counter

1: for t = 1 to end do
2: Compute: Xr

t
3: for j = 1 to n do
4: Compute br

jt :

5: br
jt = 1√

(2π)n|Σj |
exp

(
− 1

2
(Xr

t − µj)
T Σ−1

j (Xr
t − µj)

)
6: end for
7: count← count + 1
8: if count = n then
9: Initialize initial state ωr

0
10: if ω0 = −1 then

ωr
0 ← ζ( max

j=1...l
br
jt) (13)

11: where ζ returns ωj corresponding to br
jt

12: end if
13: Apply Forward Viterbi Algorithm:

δ(t) = max
i

[δr(t− 1)aij ]b
r
jt

δj(t) = max
1≤j≤N
1≤τ≤Dj

[ max
1≤i≤N

[δi(t− 1)aij ]d(t)bj,Ol ] 1 ≤ l ≤ T

ωr
T = arg max

i
[δr(t− 1)aij ]

ωr
0 ← ωr

t

14: end if
15: end for

the forward Viterbi algorithm for HSMM is summarized in
Algorithm 1.

Table 1 shows the performance comparison between the
proposed algorithm (with the two different duration distri-
butions) and the HMM-based algorithm without state du-
ration modeling ([20]). The comparison was done on the
ETISEO sequences AP-11 (C1 and C4) and BE-19 (C1) us-
ing the CREDS protocol which provides a weighted sum
of the true positive, false positive and false negative detec-
tions ([17]). It is possible to notice that the duration mod-
eling in HMM improves the results and that the modeling
using the triangular distribution outperformed by 3.75% the
half-normal distribution. In summary, the HSMM model
with triangular distribution performed at 96%, the HSMM
model with half-normal distribution obtained a score of
92.5% and the HMM scored 85%.

4. Experimental results

We demonstrate the proposed algorithm on standard
event detection sequences from the PETS 2006, CAVIAR
(’leaving bags behind’) and ETISEO datasets. These se-
quences (whose details are given in Table 2) include in-
door and outdoor scenarios with pedestrians, vehicles, ob-
jects and their interactions. The PETS dataset contains
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Dataset Seq. Cameras Resol. N. of Fr.
frames rate

ETISEO AP-11 C4 , C7 720x576 805 , 805 12.5
BE-19 C1 , C4 768x576 1025 , 950 25
RD-6 C7 720x576 1201 25

PETS S1 C3 720x576 3022 25
S3 C3 768x576 2372 25
S5 C3 720x576 3402 25
S6 C3 720x576 2802 25

CAVIAR CL1 NA 384x288 1441 25
CL2 NA 384x288 1357 25

Total number of frames 19182 -
Table 2. Summary of the datasets used in the experiments.

high-quality sequences (duration: 94 to 136 seconds),
the CAVIAR dataset contains low-resolution sequences of
medium quality (duration: 54 to 57 seconds), and the
ETISEO dataset contains sequences of lower quality (du-
ration: 40 to 64 seconds).

Object unattended Object unattended

Warning : Object unattended from 30 secs Warning : Object unattended from 30 secs

Alarm : Object abandoned from 30 secs Alarm : Object abandoned from 30 secs

(a) (b)
Figure 7. Sample event detection results from the PETS 2006
dataset using the object-centric event modeling. (a) Sequence S1
(frames 2004, 2754 and 2790); (b) Sequence S5 (frames 2083,
2833 and 2890).

To evaluate the performance of the event analysis results,
we compute three measures: the accuracy, the precision
and the sensitivity. Let FP be the number of false posi-
tive detections, TP the number of true positive detections,
and FN the number of false negative detections. More-

(a) (b)
Figure 8. Example of left baggage detection on the CAVIAR dataset
using the object-centric event modeling. (a) Abandoned and at-
tended baggage event in sequence CL1 (frame 1014, 1070 and
1334); (b) attended and unattended baggage event in sequence
CL2 (frame 548, 670 and 721).

over, let GT be the starting or ending frame number corre-
sponding to an event in the ground truth and AD the cor-
responding frame number identified by the event detector
for the same event. The accuracy quantifies the frame-level
performance of the algorithm. The accuracy is defined as
γ =

[
1− |GT−AD|

NF

]
× 100, where NF is a normalizing

factor representing maximum allowed difference between
AD and GT. Precision and sensitivity are sequence-level
measures. The precision is the measure of the robustness
against false positives. The sensitivity is the measure of
the robustness against false negatives. The precision is de-
fined as TP/(TP + FP ) and the sensitivity is defined as
TP/(TP + FN).

Figure 7 shows sample event detection results on the se-
quences S1 and S5 of the PETS 2006 dataset. The im-
ages show the detection of the object around which the
model is built (the bag) and the subsequent sequence of
events, namely a warning (unattended baggage) and an
alarm (abandoned baggage). To evaluate the results, we
computed the accuracy of the detection: for S1, the accu-
racy for the warning event is 90.5% and for the alarm event
is 92.9%; for S3, the accuracy is 100% for both events;
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(a) (b)
Figure 9. Sample tracking and event detection results for the
ETISEO dataset using the scene-centric event modeling for ETI-
VS2-AP-11 (frame 23, 690 and 750). The detected events are
stopped, empty area, enter zone and inside zone. (a) Camera 4;
(b) Camera 7.

for S5, the accuracy is 88.8% and 83.02% for warning and
alarm, respectively, and for S6 the accuracy is 98.5% and
95.5%. Both precision and sensitivity for PETS are uni-
tary as the object-centric approach selects events associated
with detected objects only and the baggage was detected.
Figure 8 shows sample event detection results on the se-
quences CL1 and CL2 of the CAVIAR dataset. Figure 8(a)
shows the detection of the abandoned and attended baggage
events, which are generated as the person first abandoned
the baggage and then reappears and approaches the bag-
gage. Figure 8(b) shows that the person has left the baggage
at the end of the stairs moving toward the kiosk machine and
hence the attended and then unattended baggage events are
generated. In accordance with the ground truth available for
the CAVIAR dataset, we compute the accuracy of the detec-
tion of the activities related to the baggage. For CL1, the
event initialization accuracy is 95% and the event termina-
tion accuracy is 94.66%. The event initialization accuracy
for CL2 is 97.33% and the termination accuracy is 95.60%.
The reason for these values is that the automated detection
spans an interval that is a subset of the ground truth interval.
This is due to the merging of the blob of the baggage with

Start frame End frame
GT AD Acc GT AD Acc

AP-11-C4 (Precision: 1.00, Sensitivity: 0.56)
empty area 1 12 98.53 689 664 96.67
enters zone 675 664 98.53 720 728 98.93
inside zone 690 731 94.53 804 803 99.87

stopped 1 2 99.87 804 803 99.87
stopped 1 3 99.73 804 803 99.87

All 98.24 99.04
AP-11-C7 (Precision: 1.00, Sensitivity: 0.50)
empty area 1 187 75.20 689 653 95.20
enters zone 675 658 97.73 720 695 96.67
inside zone 690 696 99.20 804 803 99.87

stopped 1 2 99.87 804 803 99.87
All 93.00 97.90

BE-19-C1 (Precision: 0.65, Sensitivity: 0.65)
closes 335 371 95.20 453 450 99.60
opens 258 250 98.93 320 300 97.33
opens 366 395 96.13 400 407 99.07

stopped 270 283 98.27 1025 1024 99.87
All 97.13 98.97

BE-19-C4 (Precision: 0.87, Sensitivity: 0.35)
inside zone 185 180 99.33 245 338 87.60

opens 77 101 96.80 150 180 96.00
opens 737 717 97.33 780 776 99.47

stopped 170 206 95.20 950 1048 86.93
All 97.17 92.50

RD-06-C7 (Precision: 1.00, Sensitivity: 0.25)
stopped 570 559 98.53 710 743 95.60

All 98.53 95.60

Table 3. Event detection precision and sensitivity for 5 test se-
quences of the ETISEO dataset.

that of the person when the bag is placed on the floor. This
results in a delayed detection of the event. Similarly, when
the baggage is picked up, the two objects are merged thus
resulting in an anticipation of the event. Improvements in
the object detection accuracy will help in further enhancing
the event detection accuracy. Similarly to the PETS dataset,
the precision and sensitivity scores for the CAVIAR dataset
are unitary as all events are detected.

Figure 9 shows detection results on the ETISEO dataset
for the enter zone, inside zone, stopped and empty area
events. The green rectangle drawn on the tarmac is the zone
considered for triggering the events enter zone, inside zone
and empty area. The stopped event is detected anywhere
in the scene. Table 3 shows the accuracy for the detected
events in all ETISEO sequences. The videos with the re-
sults for object tracking and event detection are available at
http://www.elec.qmul.ac.uk/staffinfo/andrea/event.html.
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5. Conclusions
We presented an event detection framework based

on object-centric and scene-centric Hidden Semi-Markov
modeling (HSMM). First, multiple object extraction is
achieved using color based change detection followed by
a PHD filter and then graph theory is used for data asso-
ciation. Event detection is performed on the HSMM using
the Viterbi decoding strategy to estimate the sequence of
events performed by each object. We showed that HSMM
has better capabilities of representing events than HMM due
to the embedding of the state occupancy duration modeling,
which not only resulted in an improvement in accuracy of
7% to 11%, but also provides capabilities of detecting time
constrained events without hard thresholds. We showed that
the scene-centric approach can better model the activities
associated to the contextual information, whereas activi-
ties related to the objects, irrespective of the environment,
can be better modeled using the object-centric approach.
The framework was evaluated on standard event detection
datasets; with 19182 frames of indoor and outdoor standard
test sequences.

Our current work addresses the use of proposed approach
in multi-camera networks. Moreover, we will investigate
the problem of event detection of multiple interacting ob-
jects.
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