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the target object is obstructed completely or phyteither
Abstract by elements of the static scene or other movingaibj
While dealing with occlusions explicitly or impliti has
The major difficulty in human tracking is the prebi received considerable attention in the trackingrditure,

raised by challenging occlusions where the targespn is ~ racking humans under challenging occlusions hag on
repeatedly and extensively occluded by either thef€cently started attracting the attention of thenpoter
background or another moving object. These types ofVision and pattern recognition communities. Not yonl
occlusions may cause significant changes in theqves tracking uno_lerocclusmns mustdeal with all thetypems of
shape, appearance or motion, thus making the dataUSual tracking, but also it has to tackle new peobl
association problem extremely difficult to solvenlie ~ dimensions such as frequently and severely occluibeus
most of the existing methods for human trackinghiaadle ~ @nd challenging data association. We clarify tha t
occlusions by data association of the complete lupoaly, ~ OPiective herein is not that of tracking the arated human

in this paper we propose a method that tracks peaptier bpdy, that is |mpract|cal at the typical level efsolytlon of
challenging spatial occlusions based on body packing. ~ Wide-area surveillance videos; rather, that ofkireg the
The human model we propose consists of five bodg pa Ioca}tlon of individual people as they move aroumel field
with six degrees of freedom and each part is regveesd by~ Of View.

arich set of features. The tracking is solved gsinayered In recent years, a few survey papers have covéred t
data association approach, direct comparison betwee ©OPIC Of occlusion management. In 2002, Gabeelal
features (feature layer) and subsequently matchatgeen ~ Presented a review of existing techniques and sysfer
parts of the same bodies (part layer) lead to alfidecision  {racking multiple occluded objects using singlemaritiple
for the global match (global layer). Experimentaisults ~ cameras [7]. In 2007, these authors have provided a

have confirmed the effectiveness of the proposéioaie comparative review of the main recent (2002-2006)
tracking methods dealing with significant occlusd@1l].

Moeslund et al. presented a survey of advances in
1. Introduction vi_sion-based humaq motion cgpture and analysisidiiady
pixel-based occlusion handling and part-based human
The interest in video tracking of objects has iase#l in tracking [10]. Yilmaz et al. in 2006 have provided
recent times with various emerging applicationshsaé  comprehensive survey on video tracking also adifrgss
surveillance, human-centered computing, anthroptacen occlusion handling [20]. In 2002 and 2003, Taolefi#]
video analysis, perceptual user interfaces, inte&ac and Zhou et al. [26], respectively, have proposetethod
computer games, ambient intelligence and sevehalrst for tracking objects under occlusions by capturihg
Tracking of a moving object implies accurately @@  spatial and the temporal constraints on the shayo¢ion
it in each frame of a frame sequence. Tracking iplelt  and appearance of the tracking objects in a dynéagier
targets simultaneously raises a further problem of representation. Wu and Nevatia in [18] and [19%pmsed a
probabilistic data association [4]: which objectwhich ~ human tracking method that takes into account the
along the frame sequence? This question typicallglves  deformable nature of the human body and the efiéct
matching single objects in consecutive frames bas®d occlusions by modeling a human by body parts. is th
coherent models of shape, motion and appearantedsa  paper, we follow a similar rationale by adding et
However, the problem becomes progressively moreemphasis to the data association problem andliti@o In
difficult to solve in the presence of increasinggét 2007, Pan and Hu proposed a human tracking algotliht
occlusions. Such occlusions mainly occur when tae/ of explicitly models the occluder through a multiptegs



approach [11]. However, the algorithm’s extensige of
template correlation operators may make it diffidol a
system to meet real-time constraints.

Possibly, the main limitation across the existiragking
literature is that no clear attempts have been nadeke
into account the nature and statistical distributiof
occlusions in the conceptual development stagehef t
tracking algorithm. While doing so inevitably spaides
the application, it also makes expectations forueate
tracking more realistic. In particular, careful sa@eration
must be given to the distribution of occlusions whe
tackling tracking of humans in very crowded enviramts
(e.g., train stations, airports and shopping mal&jch
environments are dominated by typical commuteffitraf
with dozens of people walking simultaneously along
various flows of directions (to various trains, texigates
etc). Trajectory patterns tend to be individual people do
not walk in formations and, within a common flovifferent
individuals exhibit varied speeds and paths. Onsthgle
individuals, occlusions tend to be a) repeatedfesglient;
b) partial, with different parts of the individuatcluded at
different times, and c) provided by different oatihg
elements at different times. Because of these tiondj a
tracking approach cannot rely on even seldom dwntire
unoccluded observations.

Given the above framework, the main contribution of
this paper is the definition of a part-based peageking
approach suitably mirroring the occlusion distribnt of
crowded environments. The simple part-based mosted u
in our approach can support effective trackinguliosuch
occlusions while at the same time be realistichiitgd on
typical surveillance videos. This model allows wsrect
target association even when only a few partstafget are
visible. Moreover, its updating procedure updathe t
model’s parts independently of one another, guasing
that the overall model can be kept up to date éwehe
absence of completely unoccluded views even fdaswed
periods of time.

The paper is organized as follows. In section 2, we
provide an overall structure of the proposed mebleogl/
and a detailed description of each individual congrd.
Section 3 presents the experiments carried outthed
analysis of the results obtained and Section 4lades the
paper.

2. Methodology

The approach we propose in this paper is a soltmitime
problem of effectively tracking people in crowdsher
approach is based on the adoption of a simplifiédwdated

Given that we want to retain use of typical widesar
surveillance views, the resolution of each targetof
low-medium quality. This prevents us from usingighh
number of degrees of freedom in the human model.
Therefore, we choose to limit the number of pasta few
only. Each part is characterized by a feature rsgdtiding
appearance (e.g., HSV color histogram etc) andiapat
features (e.g., centroid of the blob, principalsax inertia
etc). Data association is provided by matchingntioglel’s
parts to those of possible candidates in the cuframe.
We choose to restrict the predictive aspects opproach
to quantitities that can be realistically prediciethe crowd
scenario. The outline of our tracking algorithm dag
summarized as follows:

» Segmentation Obtain object segmentation for the
current frame by applying background subtractiothvei
Gaussian Mixture background model. Generate the
foreground image and label all objects presert in i

 Prediction For each currently tracked targgtbased
on its model, calculate the search range for itsiide new
position in the current frame and select all olgdetling
within the search range (candidates for a maggh,

» Alignment of model on candidatdsor each tracked
target,t;, and for each of its candidatesg, align the model
on the candidate and divide this into parts; extthe
relevant features for each part. Manage varioususicn
cases.

* Match features For each pair,t-c;, match their
features for each part. Infer global matching frparts’
matching. The candidate with sufficient, highekelihood
is considered as the current position of the target

» Update human moddUpdate the human model for the
matched and unmatched parts with separate policies.

Each of the above steps is explained in detailhi t
following subsections.

2.1. Segmentation

The initial process for most object tracking altjums
from static camera views consists of backgroundetiog
and foreground extraction. In our approach, we ase
Gaussian mixture model at pixel level for the baokgd
[9]. Foreground regions are extracted by background
subtraction, then morphologically closed, smootbhgda
median filter, and labeled by using connected carepts
labeling. A size filter is applied to remove noisgnall
regions and holes inside remaining regions arefilAs the
focus of this algorithm is only human tracking, siee filter
is also used to remove foreground regions whicmdb
correspond to an acceptable human body size. Tt re

human model to support the various stages of dataobtained from this initial step is a set of foragnd objects

association and tracking. An articulated modelafdruman
may range from a minimum of three parts (such asl laad
shoulders, torso and legs) to anatomical degretesedom.

or “blobs”. Shadow removal is then applied to sabfects
to filter out foreground shadow pixels and imprabe
blobs correspondence with the actual visual objgc3$.



Various types of errors intrinsically affect theyseentation
stage, such as the case of partial segmentationtaue
occlusions. Such errors are discussed in detai&eirtion
2.4.

2.2. The human mode

Figure 1. The human model.

alignment and computationally heavy. In light o tibove,
we choose to use the following six features:

» Area The area of a segmented body part is measured by
counting the actual number of foreground pixelsthe
region.

» Perimeter The perimeter of a body part is the length of
its contour inclusive of the intersections between
rectangular parts.

» Centroid The part’s centroid is computed over all its
foreground pixels.

 Principal axis of inertia The moment of inertia, also
called mass moment of inertia, is the rotationallag of
mass i.e. the inertia of a rigid rotating body. sTfeature
helps with testing the rotation angle of the bodytp

» Color histogram Appearance is described by the
HSV color histogram of the part. We base the mesmsant
of color similarity between two HSV histograms upie
Minkowski metric [14].

» Amount of pixel overlapDespite deformations, we
expect the same part of a target to show signifioaarlap
in closely successive frames.

We note that all the above features enjoy limited
variance to small pose changes, deformations, icrgiom
in fitting of the spatial model, and light occlusg On the

The human model adopted in our approach is shown inother hand, major occlusions will cause significetmnges

Figure 1. It contains five parts: head, left amghtiarms, and
left and right legs. The model has an overall megtéar
shape and a total of six degrees of freedom inirttage
plane that are chosen as: the top left p&intyy; the blob’s
centroid, X;, Y.; and the heighth, and width,w, of the
rectangle. Such degrees of freedom, together with a
assumption on the head part’s height, subdividettezall
rectangle into five rectangular parts. The heati@eoupies
the top and its height is assumed as a fixed ptxgeroth.
The remaining four rectangles represent a body guh.
As illustrated in Figure 1, the torso and the twms are
split into two body parts where each part containg arm
and one half of the torso. We decided to consthetmodel

in this way as the torso component provides sorsgatde
stability to the part model by compensating for the
instability of the arms. A feature set for eacht gampletes
the model.

2.2.1 Thefeature set

There are many features that can potentially dountieito
obtain an effective tracking and data associatlgardhm
and the choice amongst them is essentially empiticaur
case, we aim to select features that are relatimelriant to
pose and deformation, and also to imprecise fitththe
spatial degrees of freedom of the model. They shaldo
be lightweight to extract and compare for compautel
reasons. Such requirements tend to exclude appmearan
templates as their cross-correlation is very semesito

to their values. Therefore, the chosen feature{§gt.1 m,
M = 6, promises a good choice towards correct data
association.

2.3. Prediction

The first step in the prediction procedure is tmmfivhich
detected objects are within the range of predicfiama
target (gating). Within this search range, a maighi
procedure will then select the most likely objddte search
range is a rectangle area centered at the centfoitle
human model, with width and height proportionalthe
magnitude of the centroid’s speed. In other wortttis,
prediction range is based on motion magnitude antynot
its direction. In our experiments, the human mdson
direction proved not reliably predictable even ks
nonparametric models such as patrticle filters 58, @nlike
other types of targets, a person can suddenly ehésg
motion towards any direction; this is especiallg tase
with the relatively low frame rates of typical sailance
cameras.

Overall, the prediction process can be describethéy
following steps:

1. Estimate the search range based on the curretidoca
of the target and the magnitude of its centroigses!
filtered and predicted using a Kalman filter. The
linear/Gaussian assumption of the Kalman filtedbkol
well for these features.



periods of time. More specifically, our methodolodyes
not aim to handle long-term occlusions; instead, we

apply the head detection procedure described inexplicitly focus on the occlusions caused by crovims

2. For each blob, determine whether it consists ofemor
than one person (under-segmentation) and, if isdoe
Section 2.4 and [22] in order to separate evergqer
included within the blob.

3. Confirm as candidates for matching only those pzopl

whose centroids fall within the search range.

For prediction and tracking, Kalman filters havesibe
adopted wherever conditional probabilities appeated
respect Gaussian hypotheses and linear propagatien.
use three separate Kalman filters for separaterfesas we
assume they are independent of each other [17] fildte
Kalman filter,KF, :

KFe Ze={Xo Yo X ={Xo Yo X V) @)
is used for estimating the centroid of the blob &sdpeed,

and deriving the search window size as linearlypprtonal
to the speed magnitude. The observation spacestsri

motion, i.e. short-term, repeated, and on diffepamts. We
categorize the occlusion situation into three casesmal
segmentation, under-segmentation and partial setgti@m
The normal segmentation case occurs when the séggnen
blob’s width and height measurements are similathto
prediction. The observation in this case is obthin&@sed on
the actual segmentation. In the under-segmentatise
multiple physical objects are merged into a singleb.
Therefore, the segmented blob’s width (height)
measurement is significantly larger than the ptedievidth
(height). In the partial segmentation case, thenseged
blob’s width (height) measurement is significargiyaller
than the predicted width (height). We deal withfrsunder-

or partial segmentation situations by analyzing btheb
using a head detection algorithm. In our trackipgraach,

XY and is represented in terms of frame-basedhe core assumption we make about the scene ithtdps

coordinates. From empirical observations, the spdeal
blob in the state space appears to be relativalylest The
second Kalman filteiKF, , is used for estimating the height,
h, and widthw:

KFy Z={hwh X, = {hw i} @)

of the heads are visible at all times. Such anmaptan is
widely utilized in the tracking literature (e.g.5]].
Therefore, we use the head asaachor for aligning our
human model onto the candidates for matching. Bogly
we found that the use of heads as anchors and basie
assignment rules between models and blobs provide

When the target person is side-viewed, as the humanequivalent information to depth ordering.

walking gait is periodic, the correct motion moHak to be
periodic. A basic view estimator can be used tastdihe
motion model. The third Kalman filteKF;, is used to

estimate the displacement between the top-leftarahithe
bounding box and the centroid.
he = Xy = X, 3)
We =Yy —Ye (4)

KFs Zg={he W} X4 :{hcchvhcch} (5)
This estimate is particularly useful to map the ham
model onto an observation blob in the case of under
miss-segmentation. When such situations are deltettte
centroid is not calculated using the normal appnpeather,
assuming that the top-left-corner can still be neated
based on previous observations. In case of occlusice
observed quantities cannot be reliably observag, tthe
predicted values are confirmed by all three KalrRaters.
Note that the aforementioned three Kalman filtensld be
straightforwardly combined into a single Kalmantéiil
However, we chose to separate them due to théhaicthe
combined matrix would be blob-based (certain fesgur
influence only certain state).

2.4. Occlusion analysis and management

In our system, the main assumption for handling
occlusions is that people may frequently occluddnexdher;
however, the same parts do not stay occluded fog lo

To this aim, we need a head detection algorithrhitha
capable of handling significantly variable conditsoin
terms of equatorial viewpoint (i.e. frontal, prefilback
view, from -180 degrees to +180 degrees), tilt angke.
from horizontal to aerial), scale and resolution.e W
presented one such head detector in detail in 2cisely,
we build a model for the head based on appearance
distributions and shape constraints. The appearance
distribution models the colors of hair and skin dgts of
Gaussian mixtures in the XYZ and HSV color spadés
shape constraint fits an elliptical model to thedidate
region and compares its parameters with priorsthasehe
human anatomy. In this work, we further test thapsh
constraint by use of the Hough transform as thel Ineadel
may provide miss detections in some frames.

The head detection step provides a list of candiifar
matching against the model, typically with multiptdose
responses for a single head. We do not attemplustec
such multiple responses. Instead, we use all ahthe
possible candidates and let the matching procechwese
the most likely. This raises a fine point aboutféegure set
used in our approach. As stated in Section 2.Belfdature
set is designed to be limitedly variant to posdoiaeation
and imprecise fitting of the spatial model ontcaadidate.
While this design decision supports correct dasagiation
even in challenging circumstances, an undesirable
side-effect is that it may lead to inaccurate atignt of the
model and the candidate. In turn, this causes tiatwf the



{f}i=1.m features values and, in the medium-long term, the final decision for the local match.

unacceptable model degradation and data association Let us note each feature of the part in the modelthe
failure. Therefore, in order to mitigate the impast  gpservation a§; and f, , respectively. The scors; is
inaccurate matches we introducearectionstepafter the " ° '

matching procedure has identified the best cangidette then computed as follows:

head of the human model is used as a templatatorstor ~ if Ith; >d; >uth; thens, =1,else s, =0 (6)
the best matching head in the search range by &enpl |f. —f |

correlation. Given that such templates are verylisitee dy, =—n—== (7)
correlation operator carries a negligible compaotsl m

overhead. The correction is confirmed only if teatgl As shown in our experiments in Section 3, this ioetr

matching is very good and the distance betweemttehed ~ proved sufficient to cope with the changes occgrrin
head and candidate’s head is within a thresholdhdf  between feature values in two successive framebouti
correction is confirmed, the model is rebuilt basedthe ~ occlusions. When occlusions occur, qualitativettgre are
new head position, and each of the body part featis two situations: i) the occlusion mminor and features still

re-computed. match; ii) the occlusion igajor and features don’t match.
Examples of challenging occlusions are provided and This is a desirable effect in agreement with trefee and
analyzed in detail in the Experiments section. part rationale underpinning our approach. Insteas,
decided to leave motion features out of the feasateas
2.5. Matching they appeared unreliable in this respect. We thegrpss

from feature matching to part matching by usinggberes

In the proposed system maiching is achieved bygusin S;, calculated during feature matching. Each body PRI,

layered data association approach. More specificdiliect N
comparison between features (feature layer) andis given a match score as:

subsequently matching between parts of the sam&dod if dp, > thp, thens, =1,elses, =0 (8)
(part layer) lead to a final decision for the glbbsatch te : :

(global layer). Thus, the matching obtained betwesrked d. = zwf S )
targets and blobs is referred to as global matatreds the P =

matching obtained between the parts of the same b
referred to as local match.

The overall matching process can be described by th 6
following steps: wa =1
1. For each unoccluded candidate, divide its bkion ~

into five parts based on the blob’s bounding bo# an The head has double the weight of the other body pae

2 ('::entroid.hExtrallcgfedature(stor each plart.h h mod to its role as anchor in our tracking algorithm.
- For each occluded candidate, apply the humaremo All weights and thresholds have been tuned emplyica

onto the candidate and extract part features acugiyd in our experiments to date. However, learning them

3. ﬁxpply part-dbyl-partj feﬁture cgr;parison bgtweeal th Iautomatically from labeled training data is the uscf
uman model and the candidate to estimate localg e development.

matches.
Infer the global match from the local matches. 252 Global Match
. Choose the candidate that provides the bestilg@ss
global match. The global match must also be above a Global match is performed based on the weighted
threshold and provide an adequate match ratiothéh  combination of the local matches.
runner-up. o k" =argmaxD, ) (10)
Local and global matches are further describechin t K
following subsections.

Weights in (8) have been chosen empirically ankbvol
the constraint that they sum up to 1:

o

5
D =) W, S, (11)
=1

. ) following the constraint that the weights sum ug.to
For each body part, a comparison can be obtained by A strong local match outputs a higher weight thareak
calculating the difference between the featuresthsf local match. The final decision for the data asstimi
difference is set within a boundary to provideely score  of || the potential candidates. In general, thespe with
or decision. The weighted sum of all the decisiorwides the highest global match likelihood is consideradttae

2.5.1 Local match



current position of the target person. However ifitiple

potential candidates have similar global matchlilikeds

or all the global match likelihoods are too wedlert we do
not make a decision in the current frame and prbte¢he
next frame. In the next frame, multiple predictiane made
based on the multiple potential candidates in tleipus
frame and a final decision is made based on thdt@tion

of the global match likelihoods from two frames.

2.6. Updating

The updating process is crucial for our algorithon t
perform as desired. Correct updates of the humatemo
will allow correct prediction and matching, whilecorrect
updates will corrupt the human model and lead
significant faults in the prediction and matchinmggesses.
In general, decision for update is based on bathaijland
local match results. Update at the global leveloines
update of the geometrical features

{X..Y.,hwh  w}.

) c.l
The update for body part depends on the body part
matching decision. If there is a match, then thisrea
complete replacement of the spatial features (ohttind
position) and partial replacement of the area,npetér and
principal axis of inertia features by using a rungnaverage
on the values of the model and the observation. The
histogram instead is replaced completely or leliefsre. In
the case afio matchonly spatial features are replaced, other
features remain as they are. Geometrical featumreshe
other hand, are always updated to keep the whally bo
model consistent. These rules apply to all bodyspard all
cases.

to

3. Experiments

While an increasing number of papers have started
addressing the issue of how to perform quantitative
comparison of existing algorithms (e.g., [3, 6]),
performance evaluation of visual surveillance systds
still an unresolved issue. There is no commonlyeedr
performance evaluation criteria (i.e., how to perfo
objective/ comprehensive/ comparative evaluatiany o
represent the complexity and range of issues hdndte.)
for tracking in crowds. We thus carried out two esiments
in order to evaluate the performance and stabilftghe
proposed approach under various occlusion condition
gualitatively. We tested our tracking algorithm on
sequences from the CAVIAR dataset [2] and the AVSS
2007 dataset [1].

From the CAVIAR dataset we used a sub-sequence fro
the video named "WalkByShoplcor.mpg", where a aupl
is walking along a corridor browsing, and there pgesons
going inside and coming out of stores. There are no
illumination changes; however there is occurrende o

occlusions between the target and the rest of dloplp in
FOV.

=1 W |

5) fr# 340 (6) fr# 364

Figure 2. The proposed algorithm handling a chgilem
long-term occlusion from the CAVIAR dataset.

For our experiment we only used around 368 framts w
98 frames of background. The length of the occlusgo
around 80 frames. Representative frames are shown i
Figure 2. Please note that as we chose to usesatstibe
frame numbers displayed in the figure do not cquesd to
the actual frame numbers in the dataset. The rgetan
around the object corresponds to the target angaitts,
while the bright green rectangle represents theckgange.
The segmented blob and the head candidates alaydidp
from left in the lower right corner of each imagde first
image shows the target person in full view with boely
model by parts fitted onto the segmented blob. Sé¢wond
image displays the case where the spatial fitragidesired
while the target encounters initial stages of osiola. In the
third image the target faces significant occlusiom the
part matching returns low likelihood for the ocahadbody
parts. The fourth image shows how the speed ofrthael
adaptation is necessarily a tradeoff between #alsihd
responsiveness. Therefore, the model gradually

rT\ncorporates occlusions by obtaining a good maacttte

left and right legs despite being occluded, as waslthe
unoccluded body parts of the object, namely, hkdidand
right arms. The fifth image displays how the model
eventually survives occlusion by another personl e



sixth image reflects how the model of the persartiseved parts, while the bright green rectangle represietsearch
after occlusions pass. range. The segmented blob and the head candideges a
displayed from left in the lower left corner of baimage.
The firstimage shows the target person in fulwigith the
body model by parts fitted onto the segmented bldie
second and third images display the cases wheratpet
person is occluding another person in the FOV. fbheth
image displays how the target survives the occiusio
situation.

Figure 3. lllustration of the data association phae at the P T 4
feature layer. Featured, to fs are area, perimeter,
gradient, speed, color histogram, and overlappixglf

respectively, an({dpj} . Is the final match for the body

part represented as total.

In addition to Figure 2, Figure 3 illustrates thatal A @
association procedure at the feature layer foiGA¥IAR (3) fr# 135

(4) fri 142

da“.”‘SEt- The c_:omparlson res_ults fc_)r the features, ar Figure 4. The proposed algorithm handling a caséh wi
perimeter, gradient, and speed in the ideal cazddibe as occlusion from the AVSS 2007 dataset.

low as possible. However, the comparison resulctdor _ _

histogram similarity and overlapping pixels betwetbe It is clear from Figures 2-4 that our method can

candidate and the model, in the ideal case, shmmults high ~ successfully handle repeated, partial and/or ahgihe
as possible. In the example demonstrated in Figuthe  long-term occlusions.

head, right arm and right leg are considered asatch

whereas the left arm and the left leg are consile® 4. Conclusions

not-a-matchdue to occlusion. Consequently, features that
are not matched are not updated in the human mekbelse
note that these comparisons are obtained betweendtel
and the observation for the same person (i.e. ttaagd
candidate are the same person). This is clearlypdstrated
with the speed feature where the comparison alwetysns

a match If the candidate is a different person, then the
feature comparison will vary significantly.

We also used a sub-set of the AVSS 2007 datas#idor
i-Lids bag challenge. This is a dataset for evetéction in
CCTV footage and the event of interest is abandoned
baggage. For our experiment we only used 489 framtas
125 frames of background from a sub-sequence ofidie®
labeled as "AVSS AB Easy Divx.avi". The length of
occlusions within this sub-set is around 20 frames
Representative frames are shown in Figure 4 (Pleses§l]
for further details on the dataset). In this segeedhe target
person is occluding another person in the FOV. Agidie
rectangle around the object corresponds to thetargl its

In this paper, we presented a method for trackihg o
humans in crowded environments with occlusions tead
to be, a) repeated and frequent; b) partial, witfernt
parts of the individual occluded at different timesd c)
provided by different occluding elements at diffgrgmes.
Under these assumptions, we defined a part-base@rhu
tracking approach suitably supporting the varidages of
data association and tracking by mirroring the wsioin
distribution of crowded environments. We firstlyopted a
simplified articulated human model consisting eEfbody
parts with six degrees of freedom, and each ppresented
by a rich set of features. We then used a layersd d
association approach, where direct comparison legtwe
features (feature layer) and subsequently matdhétgeen
" parts of the same bodies (part layer) led to d fieaision
for the global match (global layer).

Overall, we demonstrated with experiments that the
simple part-based model used supports effectivekitrg
through repeated, partial and/or challenging laTgat



occlusion typically encountered in surveillanceegd. This
model allows us correct target association evemvamty a
few parts of a target are visible. Moreover, itsagng
procedure updates the model’s parts independehiype
another, guaranteeing that the overall model cakebeup
to date even in the absence of completely unocdluakvs
even for sustained periods of time. However, tlgsrithm
is expected to break down wherever medium-size
occlusions affect most parts (e.g., 4 out of 5)hef model
for a sustained period of time. Incorrect data eission
might then occur if the features of the occludifjeat are
similar to those of the tracked target.

As future work we intend to extend the system priesk
in this paper in various ways. Firstly, we plarchkange the
semi-automated initialization to be a fully-autoetht
initialization procedure. Secondly, the trackingao§ingle
target can be extended to tracking multiple targets
simultaneously. The method presented only handles
challenging spatial occlusions; it can be extertddubandle
challenging temporal occlusions where the targesqre
will be occluded by a single object extensively éotong
period of time. Additionally, learning the weigtasd the
thresholds automatically from labeled training daithalso
be explored.
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