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Abstract

We present a novel approach to 3D face recognition us-
ing compact face signatures based on automatically de-
tected 3D landmarks. We represent the face geometry with
inter-landmark distances within selected regions of inter-
est to achieve robustness to expression variations. The
inter-landmark distances are compressed through Principal
Component Analysis and Linear Discriminant Analysis is
then applied on the reduced features to maximize the sep-
aration between face classes. The classification of a probe
face is based on a nearest mean classifier after transforming
the probe onto the subspace. We analyze the performance of
different landmark combinations (signatures) to determine
a signature that is robust to expressions. The selected signa-
ture is then used to train a Point Distribution Model for the
automatic localization of the landmarks, without any prior
knowledge of scale, pose, orientation or texture. We evalu-
ate the proposed approach on a challenging publicly avail-
able facial expression database (BU-3DFE) and achieve
96.5% recognition rate using the automatically localized
signature. Moreover, because of its compactness the face
signature can be stored on 2D barcodes and used for radio-
frequency identification.

1. Introduction

Among the biggest challenges posed by the use of 3D ge-
ometrical information for face recognition are its sensitivity
to changes in expression and the amount of data required
to represent a face. The extraction of an appropriate set
of anthropometric landmarks that is robust to variations in
expressions, can aid in overcoming these limitations. How-
ever, automatic detection of landmarks is usually limited by
prior knowledge of orientation and pose of the faces, and
also by the availability of a texture map.

In this paper, we propose a compact face signature for 3D

face recognition that is extracted without prior knowledge
of scale, pose, orientation or texture. The automatic extrac-
tion of the face signature is based on the fitting of a trained
Point Distribution Model (PDM) [12]. The recognition al-
gorithm first represents the geometry of the face by a set
of Inter-Landmark Distances (ILDs) between the selected
landmarks. These distances are then compressed using
Principal Component Analysis (PCA) and projected onto
the classification space using Linear Discriminant Analysis
(LDA). The classification of a probe face is finally achieved
by projecting the probe onto the LDA-subspace and using
the nearest mean classifier.

The paper is organized as follows: Section 2 discusses
prior work in 3D face recognition. Section 3 describes the
proposed approach for face recognition and finding the most
robust face signature. Section 4 focuses on experimental
results and the validation of the algorithm. Finally, in Sec.
5 we draw the conclusions.

2. Prior work

Algorithms for 3D face recognition can be grouped in
three main classes of methods, based on: (i) direct compar-
ison of selected regions or of the whole surface [9, 3, 10];
(ii) projecting the faces onto appropriate spaces [2, 1]; and
(iii) comparison of features such as landmarks and con-
tours [11, 7]. A common approach to directly compare sur-
faces is through a rigid registration via the Iterated Closest
Point (ICP) algorithm [9, 3, 10]. The main limitation of ICP
for face recognition is that the performance of the registra-
tion degrades in the presence of deformations due to expres-
sions and outliers in the scans. For the ICP algorithm to con-
verge to the global minimum in terms of mean-square-error
(MSE), the surfaces must first be roughly aligned. This re-
quires prior knowledge of face orientation and the localiza-
tion of specific landmarks on the face [9]. An attempt to
overcome the limitation of facial expressions is presented
in [3] and [10] through the matching fusion of multiple face
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regions. Region detection is obtained with constraints on
orientation and thresholds for curvature features.

Statistical classifiers, such as Eigenfaces and Fisher-
faces [4], have been extensively used for 2D face recog-
nition due to their efficiency and speed. Chang et al. [2]
extended the EigenFace approach for use with 3D face
meshes. However, this method is highly sensitive to expres-
sions as the whole face surface is projected onto the eigen-
face space. Bronstien et al. [1] modeled faces as isome-
tries of facial surfaces and the face representation is in the
form of bending invariant canonicals. This canonization is
done on a geodesic mask, and the accuracy of the algorithm
highly depends on the accurate detection of the nose tip and
other landmarks used in the embedding. Kakadiaris et al.
[8] performed face recognition with an annotated model that
is non-rigidly registered to face meshes through a combina-
tion of ICP, simulated annealing and elastically adapted de-
formable model fitting. A limitation of this approach is the
imposed constraints on the initial orientation of the face.

Face recognition through the use of specific anthropo-
metric landmarks can aid in overcoming the limitations
due to expressions mentioned above. Facial features such
as landmarks, regions and contours are generally localized
based on the surface curvature. Moreno et al. [11] proposed
an approach based on the extraction of an 86-D feature
vector composed of landmarks and regions. The features
are evaluated for their discriminatory power and results are
demonstrated on different combinations of these features.
The main limitation of such approaches lies in the localiza-
tion of these facial features, which is highly dependent on
the prior knowledge of feature map thresholds, face orien-
tation and pose. Gupta et al. [7] presented a recognition
approach using facial proportions extracted from key land-
marks. The selection of the key landmarks is done manu-
ally and is based on literature about anthropometric facial
proportions. However, automatic localization of these key
landmarks (especially around the mouth region) is difficult.

3. Proposed approach

We aim to extract a compact landmark-based signature
of a 3D face that is robust to changes in facial expressions.
To this end, we first select a robust facial representation
based on testing extensive sets of manually selected land-
marks. Next, we train a Point Distribution Model (PDM) to
identify the selected set of landmarks.

3.1. Landmark-based face recognition

Given a set S = {ω1, ω2, ..., ωN} of N 3D landmarks
on a face mesh Ψ, where ωi = (xi, yi, zi) represents the
ith landmark, we extract geometrical information describ-
ing the face morphology. To this end, we compute the inter-
landmark distances (ILDs), dij , between pairs of landmarks

and generate a feature vector, ∆, of dimension N(N-1)/2,
represented as

∆ =
(
d1,2, d1,3, ..., d1,N , d2,3, ..., d2,N , ..., d(N−1),N

)
,
(1)

where di,j = ||ωi−ωj ||. We choose the Euclidean distance
for its simplicity of computation and robust representation
of face geometry than, for example, geodesic distances. In
fact, geodesic distances are highly sensitive to expressions,
noise and the resolution of the face meshes. Moreover, the
use of the Euclidean distance allows us to obtain a more
concise signature as only N landmarks need to be stored,
whereas the N(N-1)/2 ILDs can be calculated at the recog-
nition stage.

The feature vector ∆ is normalized with respect to the
size of the face to make it scale invariant, thus generating

∆̃ =
∆
dS
, (2)

where the scaling factor dS is the distance between two pre-
defined landmarks.

To reduce the dimensionality of the feature space we ap-
ply Subspace Linear Discriminant Analysis (SLDA) [17].
SLDA is the projection of the data onto a LDA space af-
ter applying PCA. The use of LDA as a feature space is
suited for the task of face recognition, especially when suf-
ficient samples per class are available for training. LDA is
a supervised learning algorithm that targets data classifica-
tion more than feature extraction and finds the classification
hyperplane that maximizes the ratio of the between-class
variance to the within-class variance, thereby guaranteeing
maximal separability. The initial PCA projection allows us
to reduce the dimensionality of the data while retaining its
discriminative power, which LDA further improves upon by
maximizing the class separation.

Let M be the number of faces in the training database
and ∆̃ = (∆̃1, ∆̃2, . . . , ∆̃M ) represent the normalized
feature vectors for all the training faces. The initial PCA
projection, Λ, is defined as

Λ = AT ∆̃, (3)

where A is the transformation matrix whose columns are
the eigenvectors obtained from the covariance matrix, Z∆,
of the data. The LDA projection, Γ, is defined as

Γ = BT Λ, (4)

where the matrix B holds the eigenvectors ofZ−1
w Zb. Here

Zw is the within-class covariance matrix and Zb is the
between-class covariance matrix (see [17] for details).

For classification, we project the probe onto the created
LDA-subspace and use the nearest mean classifier. Given a
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(a)

(b)
Figure 1. Sample subject scans from the BU-3DFE database: (a)
7 expressions (Neutral, Anger, Disgust, Fear, Happiness, Sadness,
Surprised), (b) 4 intensity levels of the Surprise expression

 

 
 
 
 
 Figure 2. Sample face scan showing the annotated landmarks and

the scaling distance dS (dotted line) used in the tests

probe face Ψp and its landmarks (ωp
1 , ω

p
2 , ..., ω

p
N ), we com-

pute the feature vector ∆̃p of normalized ILDs (Eq. 2). ∆̃p

is then projected onto the LDA-subspace using Eq. 3 and
Eq. 4. The identity ∆∗p is then chosen according to

∆∗p = arg min
j

∣∣∣∣∣∣Γp − Γj
∣∣∣∣∣∣ , (5)

where ||.|| is the Euclidean distance, Γj is the mean for class
j and Γp is the projected probe face.

We evaluated extensively the proposed recognition al-
gorithm on the BU-3DFE database [16], which includes a
challenging range of expressions and 83 manually anno-
tated landmarks for each face. The database contains 25
face meshes per person with four degrees (intensities) of ex-
pressions for each of the six available expressions, namely
anger, disgust, fear, happiness, sadness and surprise, in ad-
dition to one neutral expression. A sample subject showing
the range of expressions and intensities is shown in Fig. 1
while the annotated landmarks are shown in Fig. 2. We eval-
uated various subsets (regions) of the 83 ground-truth land-
marks on 100 individuals (56 females and 44 males). The
regions included the left and right eyes and eyebrows, the
nose, the mouth and the boundary of the face. The scaling
distance dS used for feature normalization is the distance
between the two outer eye points, as shown in Fig. 2. An

exhaustive combination of landmarks from the five regions
results in 31 different models (25 − 1), ranging from single
regions to all the regions. As expected, the single region
that led to the worst recognition results is the mouth region,
as it is most affected by variations in expressions. The most
compact representation that led to the best result is the com-
bination of the eyes, eyebrows and nose regions (48 land-
marks). We refer to this model as ”EY2N”. This result is in
line with recent literature [3, 7, 10, 13] showing robustness
of the eyes and nose regions to expressions. This combina-
tion has the same recognition results as the full model and
was therefore chosen for its compactness.

To automatically detect the EY2N landmarks, we gener-
ate a Point Distribution Model (PDM) [12] that includes sta-
tistical information of the shape variation of the landmarks
over a training set, and then fit it to each probe and training
mesh.

3.2. Model fitting for pose and scale invariant face
recognition

To represent the 48 EY2N landmarks, we build a param-
eterized model Ω = Υ(b), where Ω = {ω1, ω2, ..., ωN},
with N = 49. The extra landmark (nose tip) was included
to facilitate the model fitting process that will be described
later. The vector b holds the parameters that can be used
to vary the shape and Υ defines the function over the pa-
rameters. To obtain the model, a training set of manually
localized landmarks from L face meshes is used. Training
shapes are aligned and scaled to the same co-ordinate frame
to eliminate global transformations using Procrustes analy-
sis [5]. PCA is then applied to capture the variations of the
shape cloud formed by the training shapes in the (3× 49)
- dimensional space, along the principal axes of the point
cloud. The principal axes and corresponding variations are
represented by the eigenvectors and eigenvalues obtained
from the covariance matrix, ZΩ, of the data.

Let φ contain the t eigenvectors corresponding to the
largest eigenvalues. Then any shape, Ω, similar to those
in the training set can be approximated as

Ω ≈ Ω + φb, (6)

where Ω is the mean shape, φ = (φ1|φ2| . . . |φt) and b =
φT (Ω − Ω) is a t dimensional vector. The value of t is
chosen such that the model represents 98% of the shape
variance, ignoring the rest as noise [5]. The mean shape
is obtained when all parameters are set to zero.

The PDM Ω is fitted onto a probe mesh Ψp through sim-
ilarity transformations of the model, estimated using three
control points of the mean shape Ω. These control points
are the inner eye points (ωr and ωl) and the nose tip (ωn),
with {ωr, ωl, ωn} ∈ Ω [12]. The inner eye and nose tip
areas on a face are normally unique based on local curva-
ture and can be robustly isolated. In order to character-
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(a) (b)

(c) (d)
Figure 3. Feature maps used to isolate candidate vertices: (a) shape
index, (b) curvedness index. Candidate vertices (regions in green
are candidate nose tip vetices and regions in red are candidate eye
tip vertices): (c) without decimation and without averaging, (d)
with decimation and averaging

ize the curvature property of each vertex (vi) on the face
mesh, two features maps are computed, namely the shape
index, ρ(.), and the curvedness index, σ(.) [6]. The shape
index describes shape variations from concave to convex,
whereas the curvedness index indicates the scale of curva-
ture present at each vertex. These feature maps are com-
puted after Laplacian smoothing to reduce the outliers aris-
ing from the scanning process. Figure 3(a-b) shows the two
feature maps obtained on a sample face after the smoothing
process. Moreover, to reduce the computational overhead,
the original mesh is first decimated and then the features are
averaged across vertex neighbors according to

ρ̃(vi) =
1
P

∑
p∈P(vi)

ρ(vp), σ̃(vi) =
1
P

∑
p∈P(vi)

σ(vp), (7)

where P(vi) is the set of P neighboring vertices of vi. If
σ̃(.) > σs, then vi is in a salient high-curvature region.
The condition ρ̃(.) < ρe identifies concave regions; while
ρ̃(.) > ρn identifies convex regions. We can therefore re-
lax thresholds to segregate candidate inner eye vertices from
the nose tip ones. The thresholds σs = 0.1, ρe = 0.3 and
ρn = 0.7 were found to be adequate for the entire database.
Figure 3(c-d) shows a comparison of the isolated candidate
inner eye vertices (red) and nose tip vertices (green) ob-
tained with and without the mesh decimation and feature
averaging steps.

A further reduction in outlier candidate combinations is
performed by checking the triangle formed by each com-

Figure 4. Examples of scale and pose invariant model fitting on
faces with different expressions (top), and faces with different pose
and scale (bottom)

bination of two candidate inner eye points (αr, αl) and a
nose tip point (αn). A plausible eyes-nose triangle should
be acute angled with d2

rl + d2
rn > d2

ln

d2
rl + d2

ln > d2
rn

d2
rn + d2

ln > d2
rl

where drl, drn and dln are the lengths of the sides of the
triangle. Plausible combinations of the candidate inner eye
vertices and candidate nose tip vertices on Ψp are used as
target points to transform the model. Next, the remaining
points of Ω are moved to the closest vertices on Ψp. Ω is
then projected back onto the model space and the parame-
ters of the model, b, are updated. Based on this selective
search over the isolated candidate vertices, the transforma-
tion exhibiting the minimum deviation from the mean shape
is chosen as the fit for the model. Sample face meshes with
the fit model are shown in Fig. 4.

4. Experiments and discussions
We evaluate here the performance of the proposed face

recognition algorithm and compare it with the 3D eigenface
approach. Moreover, we discuss the influence of the expres-
sion intensities in the training and the memory requirements
of the automatically detected EY2N signature based on 49
landmarks. The proposed PDM discussed in this section is
trained with manually annotated landmarks from 100 (out
of the total 2500) face meshes. The landmarks of the probe
and training faces are detected automatically.

Figure 5 shows a comparison of the recognition rates ob-
tained with different training and probe combinations to an-
alyze the influence of the expression intensities used in the
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Figure 5. Comparison of recognition results using different combinations of probe and training sets. The training set was varied to include
(red) and exclude (blue): (a) neutral, (b) intensity-1 (lowest intensity), (c) intensity-2, (d) intensity-3, and (e) intensity-4 (highest intensity)

SLDA training. Note that the neutral intensity has the least
influence on training (Fig. 5(a)), while the inclusion of the
remaining intensities have a larger effect (Fig. 5(b-e)), be-
cause neutral samples are fewer than the other intensities (1
neutral and 6 each of intensity 1-4 per person). Higher accu-
racy is achieved when more samples having a wide expres-
sion range are used in the training. More accurate recog-
nition is obtained when the neutral and intensity-1 samples
are used as probe, while intensity-4 provides the least accu-
rate results. The best result (96.5% recognition accuracy) is
achieved using intensity-1 as probe and the remaining sam-
ples in the training. The reduced recognition accuracy for
the highly expressive samples is to be attributed to the re-
duced accuracy in the PDM fitting.

The use of PCA before applying LDA allows us to con-
siderably reduce the dimensions of the feature space while
retaining the most relevant information. To analyze the in-
fluence of the number of dimensions in the identification
accuracy, Figure 6 shows the rank-1 recognition results ob-
tained when varying the amount of feature energy retained
by the eigenmodes after PCA. The number of dimensions
that lead to the highest accuracy was 115, which corre-
sponds to 10.20% of the original size of the feature vector
(1128), using the manual landmarks. In the case of auto-
matic landmarks, the maximum accuracy was obtained with
22.53% (265 modes) of the feature vector. This is due to the
fact that as automatic landmarks contain a larger amount of
noise as compared to the manual landmarks, they require
more information to represent a face. These reduced di-
mensions correspond to 99.97% and 99.57% of the signal
energy for automatic and manual landmarks, respectively.

Figure 7 shows the Receiver Operating Characteristics
(ROC) curves that compares the proposed approach with a
3D eigenface method replicating [15], where depth-maps of
entire face meshes were used in the PCA projection. The 3D
eigenface method has lower accuracy results, with 60.48%
rank-1 recognition rate, as it cannot properly handle large
expression changes. The 3D eigen-face approach is also
presented in [14] and [2] with multimodal data and with

3D modality only, with recognition rates of 85% and 88.9%
respectively, being reported.

To quantify the decrease in recognition accuracy when
reducing the precision of the proposed facial signature, Fig-
ure 7 compares results obtained with automatic landmarks
of the probe using 32-bit floating point and 16-bit inte-
ger representation, where the landmark coordinates were
rounded to the nearest integer. While the storage of the sig-
nature with floating point representation requires 588 bytes
only, with an integer representation we achieve a further
50% reduction in the storage requirements. This would al-
low the 3D face signature to be stored not only on devices
such as RFIDs, but also in 2D barcodes. The rank-1 identi-
fication rate is 96.5% with the floating point representation
and 92.64% with integer representation. In summary, with
a significant decrease in the signature size (50%) using the
integer representation, there was only a 3.86% decrease in
rank-1 recognition.

5. Conclusions

We proposed a novel approach to scale and pose invari-
ant 3D face recognition with the use of a facial signature
and Subspace Linear Discriminant Analysis (SLDA). The
signature is a concise representation of a face that is robust
to facial expressions. The approach first extracts geometric
features of the face in the form of inter-landmark distances
(ILDs) within a set of regions of interest. Dimensionality
reduction is applied through Principal Component Analy-
sis (PCA) to compress the data, and Linear Discriminant
Analysis (LDA) is used on the reduced features to maxi-
mize the separation between the classes. The classification
of a probe face is based on the nearest mean classifier after
transforming its signature onto the SLDA space. We deter-
mined the most robust model to expressions using a large
set of candidate landmarks and demonstrated the improved
accuracy of using the sub-space LDA transformation com-
pared to PCA or LDA alone. The automatic extraction of
landmarks is based on the training and fitting of a point dis-
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Figure 6. Comparison of rank-1 recognition accuracies of manu-
ally and automatically localized signatures on varying the amount
of feature energy retained by the PCA eigenmodes. The inset is a
comparison of the signature accuracy against the number of eigen-
modes for the highlighted region
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Figure 7. Comparison of results using signatures with 32-bit float
and 16-bit integer representations, and the baseline 3D eigen-face
approach

tribution model that eliminates the need for prior knowledge
of orientation, pose or texture information.

Current work includes the validation of the proposed ap-
proach on additional datasets (such as FRGC and 3D RMA)
and on improving the fitting with local neighborhood con-
straints and global optimization strategies.
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