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Abstract—This paper presents a novel approach to fast
motion detection in H.264/MPEG-4 Advanced Video Coding
(AVC) compressed video streams for IP video surveillance
systems. The goal is to develop algorithms which may be useful
in a real-life industrial perspective by facilitating the processing
of large numbers of video streams on a single server. The focus
of the work is on using the information in coded video streams
to reduce the computational complexity and memory require-
ments, which translates into reduced hardware requirements
and costs. The devised algorithm detects and segments activity
based on motion vectors embedded in the video stream without
requiring a full decoding and reconstruction of video frames. To
improve the robustness to noise, a confidence measure based
on temporal and spatial clues is introduced to increase the
probability of correct detection. The algorithm was tested on
indoor surveillance H.264 sequences.

I. INTRODUCTION

IP video surveillance systems are growing in size, com-
plexity and capacity. Introduction of advanced coding stan-
dards like the H.264/MPEG4-AVC [8] means that better
compression is achieved, but also that more resources have
to be allocated to decoding of the video. Higher resolution
images delivered by newer cameras require more processing
time for motion detection and segmentation algorithms based
on background subtraction or frame-to-frame-change detec-
tion. Performance of pixel based processing in large systems
may be challenged by the load of decoding multiple streams
and processing of vast amounts of video.

Motion detection is often the very first step of the analysis
of the video, used either for triggering alarms or to determine
which video sequences have to be stored. This task is
performed continuously on all video streams in the system.
In such a set-up, the motion detection and extraction must
be fast and accurate, to avoid omission of important parts
of the video, which may later be used in a legal case. The
accuracy and sensitivity must be good enough to detect the
events but not to trigger many false alarms.

A solution for reduction of the amount of computing
power required is to use the data from the compressed video.
MPEG-derived video coding standards exploit the temporal
correlation between frames. In simple terms, each block

has a motion vector (MV) attached to it, describing it’s
displacement from a reference frame to the current frame.
The MVs are roughly corresponding to the optical flow. It
must be stressed however, that some MVs may be placed
in the video because of coding gain, and not because they
reflect true motion. Therefore they MVs extracted should be
evaluated.

In this paper, we present a method for reliable motion
detection using the MVs from the coded video stream. A low
complexity evaluation of the extracted MVs is performed to
assign confidence in relation to true motion. Extraction and
manipulation of the MVs is itself a much easier task than
full reconstruction of each pixel of a video frame. The MVs
describe motion of group of pixels, called blocks, which
also contributes to reduction of computational complexity.
The goal is a fast algorithm for enabling processing of large
numbers of video streams on a single server.

This paper is organized in the following way. In Section II
related work on motion detection is discussed. The proposed
algorithm is presented in Section III. In Section IV the
test methodology is discussed, and results are presented in
Section V.

II. MOTION DETECTION IN SURVEILLANCE

The majority of work on change detection and motion de-
tection for surveillance has naturally been performed in the
pixel domain based on reconstructed images. Only a minor
part of the papers have been devoted to the possibilities of
doing this in a compressed domain.

A. Pixel domain approaches

A comprehensive survey of change detection algorithms
in pixel domain was provided by Radke [7]. This survey
presents a wide range of change detection algorithms along
with methods for pre-processing of input images and post-
processing of the resultant change masks. The survey covers
a wide area of applications of change detection, including
video surveillance. Another recent study of pixel domain
change detection is provided by Parks and Fels [6], where
the focus was on background subtraction algorithms.
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B. Compressed domain approaches

Compressed domain approaches are new and less explored
compared to pixel domain processing. An example of a
simple and fast algorithm for compressed domain change
detection is presented by Bracamonte [3]. Their algorithm
works by comparing the phases of the DCT (Discrete Cosine
Transform) coefficients in a series of images. The presented
results are good, however this algorithm only works for
MJPEG and key frames in MPEG derived video coding
standards.

Another approach to compressed domain information is
to rely on the motion vectors (MVs) in the code stream.
Babu [2] presented an algorithm for extraction of indepen-
dently moving objects, using MVs from an MPEG-4 video
stream. Their focus was on object segmentation rather than
speed, and they interpolated a dense motion field as part
of the processing. Similar work was done by Zeng [12],
where they presented a robust method for moving object
segmentation from H.264/AVC coded video streams aiming
at real time applications. They presented very good results
on object segmentation, however the speed reported, ranging
from 300-800 ms per frame (CIF resolution), is not high
enough for our objective of a large video surveillance system
working with a large number of cameras (tens per standard
PC class server). Their algorithm, using Markov Random
Fields, employs iterative processing. Another recent work
[11] both addressed localization and action recognition. The
method is fast but still slower than our goal and the test
sequences were persons on simple backgrounds. In an earlier
paper [10] a simpler approach to compressed domain motion
extraction and detection was presented, however the results
provided are preliminary in nature.

C. Comparison of compressed domain and pixel domain
approaches

Both approaches to video processing have their advan-
tages and disadvantages. Change detection or motion de-
tection on reconstructed images is conceptually appealing
and in simple implementations can be fast, usually at some
cost of reliability. The methods most commonly applied
in video surveillance systems seem to be the background
subtraction methods based on various statistical background
models. The work by Hampapur [1] is an example of
activities in searching surveillance video using background
subtraction. Pixel domain approaches are independent of the
video coding standard used and there is a great potential
for very reliable detection using advanced pre- and post-
processing. Although this method can be made reliable it
has a serious disadvantage in a video surveillance system
where all the video is stored and transmitted in a compressed
format, and where video reconstruction might handicap the
system performance. Reconstruction of the necessary video
might be a daunting task, especially in case where all
video streams are checked for motion. Compressed domain

Figure 1. Block diagram of compressed domain motion detection.

processing avoids the full decoding and reconstruction of the
video, which provides a potential for real time processing
of multiple video streams on one server. Compressed do-
main processing also has the advantage of extracting video
stream data, which has been generated using the original
non-compressed data, which will not be available when
processing a decoded stream. Thus the lossy video coding
introduces a noise component, that will have to be dealt
with.

III. FAST COMPRESSED DOMAIN PROCESSING

The general approach of the proposed motion detection
method is to extract and analyze the motion vectors of the
video stream. The overview is presented in Figure 1. The
first step is parsing the video stream to extract the MVs for
each frame. The MVs are then pre-processed before applying
temporal and spatial analysis. The goal of the analysis is to
find the motion vectors which reflect real motion. On the
basis of this analysis the detection of motion is performed.

Intuitively, it may seem that (code stream) MVs instantly
provide perfect description of ongoing motion. This, is un-
fortunately not the case, because the MVs in MPEG-derived
video coding standards, as H.264, are used to improve
compression, rather than to provide motion description. MVs
not related to motion can occur due to wrong match of
regularly textured areas, noise, low-light conditions etc.

Another problem is that there are intra coded blocks (I-
blocks), which do not have motion vectors, as opposed to
inter coded blocks (P-blocks). The I-blocks are often inserted
when a new object enters a frame and at occlusions. In
general the coder will select intra coding if this yields less
bits (relative to the distortion) than coding a P-block with
a motion vector. A detailed discussion of these issues is
complex, but the important thing to note is that there may
be I-blocks without motion vectors among P-blocks.

A. Parsing

Parsing is the process of extraction of the MVs (and
position of I-blocks) from the coded video stream. The pars-
ing process requires entropy decoding and reconstruction of
MVs, but this process is a minor effort compared to complete
decoding and reconstruction. The H.264 coding standard
allows for the use of tree structured motion compensation
[8], i.e. the 16× 16 macro blocks (MB) may be partitioned
into smaller blocks having side lengths of 4 and 8 pixels
as well as 16. We simplify the handling of block sizes by
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Figure 2. Interpolation of MVs for I blocks

mapping the extracted vectors to a single block size - 4×4,
in all cases. In case the partition is bigger than 4×4, all 4×4
blocks within the partition are assigned the same MV. The
MVs lengths are processed at quarter-pixel accuracy, since
H.264 allows for quarter pixel precision motion estimation.

B. Pre-processing

To remedy the problem of missing MVs at I-blocks, the
extracted motion field is pre-processed prior to analysis. The
basic assumption is that motion of the real moving objects
of interest should be smooth and of relatively uniform speed
in surveillance applications. The missing MVs in a current
frame are interpolated from MVs from the previous and
the next frame as illustrated in Figure 2. The dashed line
represents inversion of an MV in order to point to the next
frame, instead of the previous one. The MV for the I-block
is interpolated as an average of the MV from the past frame
and an MV from the next frame pointing to this I-block. The
interpolated motion vector is incorporated into the motion
field, thus providing a complete set of MVs over the 4 × 4
blocks. In the rest of the paper MV refers to values from
this complete set.

C. Confidence measure

The complete set of motion vectors can be further ana-
lyzed to estimate which MVs represent real motion. Real
motion of interest should be smooth and continuous in time
and space in surveillance applications. The determination of
which MVs correspond to true motion is based on spatial
and temporal clues. An overview block diagram is presented
in Figure 1.

Each MV resulting from the pre-processing is checked
if it represents real motion. A measure, of how likely a
motion vector is to represent a real motion, is introduced
and called the confidence. The confidence can be thought
of as a (Bayesian) probability that a given MV is related to
a real moving object and is a number in the range (0, 1).
It is calculated based on temporal and spatial relations of
MVs. A similar confidence measure was introduced in the
paper by Wang [10]. It is reasonable to assume that all

physical moving objects have certain inertia and are not
able to abruptly change direction of motion or velocity,
therefore MVs corresponding to abrupt change of motion
are assigned lower confidence. True motion will produce
MVs which are consistent over time. The confidence is
calculated for all non-zero MVs in the frame and saved in
an array corresponding to the number of 4 × 4 blocks in
the frames. This associates a confidence with each block,
but also with the motion vector of the block. Therefore,
the terms ”confidence of motion vector” and ”confidence
of block” are used interchangeably and they refer to the
same variable. The confidence will by definition only be
nonzero for blocks with nonzero length of MV. Thus the
array with confidence values describes the likelihood of
having a moving object in a given part of the frame.

D. Confidence calculation

The confidence is evaluated both temporally and spatially.
Temporal confidence is based on correlation of temporally
adjacent MVs and spatial confidence is based on spatial clus-
tering of (high) confidence motion vectors. The confidence
measures from temporal and spatial aspects are averaged to
give the final confidence number as detailed below.

1) Temporal confidence: For the temporal confidence
process we first define a reference MV) (RMV) for each
MV in the currently processed frame. The RMV is assigned
the value of the motion vector of the 4×4 block containing
the center of the area pointed to by the MV of the current
block. The block from which the MV was taken is called
the reference block. To access the temporal confidence,
we calculate the following values: The length of an MV
(LMV ), the difference of lengths between the current MV
and RMV (DLMV ), and the difference in angle between
the current MV and (RMV), (DAMV ). To evaluate we also
consider the type of the reference block (RT ), i.e. is it intra
or non-intra. Further let CR denote the confidence value of
an RMV and CMV denote the temporal confidence of the
motion vector in the current frame. All of these variables
are defined at block level. The notation will both be used to
refer to the full array for a frame and the individual value
of a given block. The variables are initially compared to the
following thresholds,

1) TLMV - lower threshold for LMV
2) TDMV - upper threshold for DLMV
3) TDAMV - upper threshold for DAMV

which provides the basic part of the temporal confidence
algorithm as shown in Algorithm 1. The algorithm calculates
a confidence value CMV for the MV of each 4 × 4 block
in a frame based on the RMV and their corresponding
confidence, CR.

2) Spatial confidence: The temporal confidence values,
CMV , for the current frame are saved in an array and
processed spatially using two subsequent morphological
operations - closing and opening. Use of morphological
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Algorithm 1 Temporal confidence estimation in a single
frame.

Input: MV , RMV , CR
Parameters: TLMV , TDLMV , TDAMV

Initialize first frame with CR = 0
for all 4 × 4 blocks do

Calculate LMV,DLMV,DAMV,CR
if RT �= intrablock then

if LMV > TLMV and DLMV < TDLMV and
DAMV < TDAMV then

CMV = 0.5 + CR × 0.5
else

if MV = (0, 0) then
CMV = 0

else
CMV = CR × 0.5

end if
end if

else
CMV = 0.5

end if
end for
return CMV

closing and opening for postprocessing of motion masks is
also described e.g. in [7]. The goal of the morphological
processing is to increase the uniformity of the confidence
map. Values of the spatial confidence obtained from the
morphological filtering are averaged with the values from
the temporal confidence process defining a spatio-temporal
confidence measure. This reduces the confidence of elements
removed by the spatial filtering, however it still leaves a trace
of them.

3) Final motion detection: The final step is creating a
binary motion mask to extract the detected motion based on
the spatio-temporal confidence array. A confidence threshold
value TC is selected, and 4× 4 blocks with spatio-temporal
confidence above TC are marked as detected motion blocks.
The number of these blocks in each frame is found and used
to detect motion at the frame level. In our set-up, motion is
detected when at least one block is above TC .

4) Settings adjustability to noise: The thresholds used in
the algorithm can be adjusted to tune the algorithm towards
noise resistance or greater sensitivity. Increasing the thresh-
old for minimal MV length and final confidence threshold
increases the noise robustness, but increases chances for
omission of little or irregular motion. The parameters in
Algorithm 1 may be adjusted accordingly. In the test we
select TDLMV = 7.5 pixels and TDAMV = 90. To adjust
sensitivity we select TLMV = 0.75 pixels and TC = 0.5
for good light conditions and TLMV = 1.5 pixels and
TC = 0.85 for robustness in low light conditions. The
settings may potentially be adjusted based on meta-data,

Table I
VIDEO TEST SEQUENCE SETTINGS

Resolution 704 × 576 320 × 240
Frame rate 25fps 25fps
GOP length 25 25
Rate control constant &

variable
constant

Range of bit rates 287-2158
kbps

260-1632
kbps

Light conditions varied varied

application specific or by automatic noise level estimation,
eg. based on DCT-coefficients of the I-frames.

IV. TESTS

Indoor sequences were recorded using an IP based surveil-
lance system to test the algorithms. The sequences were
recorded with H.264 capable cameras from two different
vendors, Sony (320×240 pixels) and Axis Communications
(704 × 576 pixels). A wide range of settings of video
encoding was used to test how the algorithm works in
various scenarios. Special attention was paid to use a wide
range of bitrate settings, as the bitrate setting is crucial for
encoder decisions.

A. Test data set

All 23 sequences were recorded in H.264 Baseline profile,
without B-frames, a GOP (Group of Picture) length of 25
frames and one reference frame only. The range of settings
is presented in Table I. The sequences were 500-800 frames
long. The frame rate was targeted at 25 fps, however in
video sequences recorded with rate control it varied slightly.
Sequences were recorded indoor with artificial light and low
ambient light, as a first setting, and low ambient light only
as a second setting of light to stress the algorithm. Likewise
test sequences with a small object (distant person) moving
in a corridor behind a glass window was also included.

B. Effects of level of light

The reduced level of light, in the low light sequences,
triggered the camera sensors to increase sensitivity. This
gave a higher noise level in the video, resulting in turn in a
larger number of ”noisy” MVs in the coded video. These
sequences would also be challenging to a pixel domain
algorithm, because the noise is originally induced in the
pixel domain.

C. Test methodology

Evaluation of the motion detection algorithm can be done
visually or qualitatively by comparison with a ground truth
set. Visual evaluation is easy only in principle, because
it requires many observers to get a conclusive result and
it is time consuming. Ground truth is also challenging,
because coming up with a good ground truth is difficult.
This problem is well explained in a paper by Hu [5].
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Figure 3. Motion masks, big moving object in the scene

Figure 4. Motion masks, distant object moving in corridor behind window
glass.

The motion was evaluated at frame level. This means
that if a frame contained any activity it was marked as a
frame with motion and vice versa. The ground truth for
motion detection was labelled with three levels - no motion,
ambiguous motion and certain motion. The label ambiguous
motion was introduced to account for the beginning or end
of motion, objects partially hidden etc. Detection of motion
in a frame while the frame was marked in the ground truth
as having motion was evaluated as a true positive. Detection
of motion in a frame, while the frame was marked in ground
truth as not having motion was evaluated as false positive.
The percentage of true positives (TP ) over a video stream
is calculated as

TP = Ntp/Nm

where Ntp is the number of true positive frames and Nm

denotes the number of frames labelled as motion in the
ground truth. The percentage of false positives (FP ) over a
video stream is calculated as

FP = Nfp/Nnm

where Nfp is the number of false positive frames and Nnm

is the amount of frames without motion in the ground truth.
The false negatives are 100% minus the percentage of true

positives. By analogy the true negative are 100% minus the
percentage of false positives.

It must be stressed, that for event detection it is not neces-
sary to detect all the individual frames which have motion,
because of temporal continuity of events in surveillance
video.

V. TEST RESULTS

The test set-up reflects typical video surveillance for in-
door monitoring. Results on the test sequences showed good
performance in terms of motion detection and reliability. All
motion events in the 23 test video streams were detected.
The extracted masks of the moving object did vary with
settings of the algorithm parameters. The results on the test
sequences showed robustness towards the variety of scene

settings, sizes of moving object, and object distances. An
example of detection of a big object is presented in Figure
3. Smaller objects were also detected, as shown in Figure 4.
The masks of the moving objects are however affected by
the noise robustness settings as also illustrated by Figures 3
and 4. The high noise robustness setting worked well with
noisy sequences recorded in dark rooms, but the motion
masks produced were less consistent. If needed, the quality
of the motion masks can be improved by morphological
operations or clustering. The main focus in our work was on
motion detection, whereas improving the motion mask was
less important.

It was observed that there was a dependency on bitrate
for the amount of false positive detections in noisy video
sequences with rate control. The higher the bitrate, the more
false positives there were. This is however not a problem
in video sequences recorded at normal light conditions. It
was observed that image resolution did not seem to have
impact on detection performance. (The moving objects were
larger than the 2-4 macro blocks which would seem to be the
limit of the current version.) The most influential parameter
was the light intensity. Low light intensity means poorer
signal-to-noise-ratio in the camera CCD sensor, because shot
noise and dark current noise become significant in relation
to signal power. The noise sources in CCD cameras are
discussed in [4] and in [9], which discusses the statistical
calibration of CCD imaging. Low-light intensity resulted in
significant camera noise and produced a significant number
of noisy MVs.

A. Noise robustness

Table II
AVERAGE PERCENTAGE OF FALSE AND TRUE POSITIVES FRAMES IN THE

TEST VIDEO SEQUENCES.

False pos-
itives

False
positives,
high noise
robustness

True posi-
tives

True posi-
tives, high
noise ro-
bustness

Normal
light

1.4 0.0 98.3 86.2

Low
light

57.2 2.3 99.9 98.2

Thorough testing and comparison against ground truth
was conducted on the 23 sequences. Of these there were
3 noisy and 3 non-noisy sequences at 320 × 240 and 5
noisy and 12 non-noisy sequences at 704 × 576. Table II
presents the average test results for both high and low noise
robustness settings, with distinction for sequences recorded
in normal and low light intensity. The results show that
for the low noise robustness setting and low light intensity
there is a large percentage of false positives. The problem is
remedied by the high noise robustness setting. Detection at
frame level of motion in normal light intensity was reduced
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by the high noise robustness settings. However no motion
event was missed in this setting.

B. Comments on algorithm

Based on the prototype implementation, we assess that
an efficient implementation of the algorithms should facil-
itate running the motion detection on tens of H.264 video
streams on a single server. The algorithms were implemented
and tested with H.264/MPEG AVC streams, but they can
be ported to other hybrid video coding standards, which
use block-based motion compensation. Support for multiple
reference frames in H.264 streams could also be supported,
using scaling of the MVs according to the temporal distance
they span.

VI. CONCLUSIONS

The presented compressed domain method provides a
simple and fast solution to motion detection in video
surveillance systems. A major advantage of the algorithm
is that it does not require full reconstruction of the video,
which reduces the amounts of data being processed and
the overall processing time. By parsing the coded stream,
motion vectors and position of intra blocks are extracted.
The motion vectors are processed and analyzed using fast
non-iterative techniques. Incorporating a confidence measure
and adjustability of the algorithm helps adaption to various
(indoors) environments. Tests on indoor (H.264 coded) test
sequences showed that the motion events were detected, as
well as the majority number of individual frames within the
motion events.
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