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Abstract

Accurate landmark localisation is an essential precursor to many 3D face processing

algorithms but, as yet, there is a lack of convincing solutions that work well over a wide

range of head poses.

In this thesis, an investigation to localise facial landmarks from 3D images is presented,

without using any assumption concerning facial pose. In particular, this research devises

new surface descriptors, which are derived from either unstructured face data, or a radial

basis function (RBF) model of the facial surface.

A ground–truth of eleven facial landmarks is collected over well–registered facial im-

ages in the Face Recognition Grand Challenge (FRGC) database. Then, a range of feature

descriptors of varying complexity are investigated to illustrate repeatability and accuracy

when computed for the full set of eleven facial landmarks. At this stage, the nose–tip and

two inner–eye corners are observed as the most distinctive facial landmarks as a trade–

off among repeatability, accuracy, and complexity. Thus, this investigation focuses on the

localisation of these three facial landmarks, which is the minimum number of landmarks

necessary for pose normalisation.

Two new families of descriptors are introduced, namely point–pair and point–triplet

descriptors, which require two and three vertices respectively for their computation. Also,

two facial landmark localisation methods are investigated; in the first, a binary decision tree

is used to implement a cascade filter, in the second, graph matching is implemented via

relaxation by elimination. Then, using all of these descriptors and algorithms, a number of

systems are designed to localise the nose–tip and two inner–eye corners. Above all, 99.92%

of nose–tip landmarks within an accuracy of 12 mm is the best localisation performance,

which is achieved by one cascade filter system.

Finally, landmark localisation performance is reported by using a novel cumulative er-

ror curve. Localisation results are gathered by computing errors of estimated landmark

locations against respective ground–truth data.
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Chapter 1

Introduction

Technological advances in the early years of the 21st century are making our lifestyles ever

more interactive. The Internet has become the most common means of communication,

making possible numerous on-line operations, e.g. banking, shopping, education, govern-

ment and social services. As a result, virtual interaction is becoming more common. In a

lifestyle with such a high level of on–line interaction, it is essential to verify people’s iden-

tity in order to avoid giving access to intruders with malicious intentions. Unfortunately,

traditional techniques based on passwords and identification cards have proved vulnerable,

as they can be stolen and used by criminals. Therefore, sophisticated techniques to try to

guarantee accurate identification are urgently needed.

Furthermore, national security is becoming more important. In this situation, it is not

only necessary to verify a person’s identity, but also to recognise people in order to avoid

catastrophic events; for example, those associated with terrorism. Recent terrorist attempts

have lead to a demand for accurate recognition of people to try to guarantee national security.

Biometric technology is the automated use of any physical or behavioural characteris-

tics to determine and verify an individual’s identity, e.g. DNA, fingerprints, iris, voice, gait

or face. All of these biometrics possess specific recognition performance and processing

times, which make them suitable for particular applications. Interest in face recognition

is based on three main characteristics. Firstly, people naturally recognise each other by

their faces, which implies that an automatic use of this modality may be socially accept-

able. Secondly, everyone has a unique face, even identical twins (Bronstein et al., 2005).

Thirdly, face recognition is considered non–intrusive, in the sense that an image of the face

can be collected at a distance, even without the user noticing, which is important for high

throughput security and surveillance applications.

In the narrowest sense, face recognition means recognition of facial identification. In
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a broad sense, face recognition implies face detection, feature extraction and recognition

of facial identification. Zhao and Chellappa (2005) refer to this generalisation as face pro-

cessing. Therefore, it follows that face detection and feature extraction are primary tasks

when performing face recognition. Years of research have provided 3D face processing ap-

plications with satisfactory performances, but only in controlled scenarios. Unfortunately,

this performance dramatically decreases when such applications are confronted with uncon-

strained situations, such as facial expressions or variations in pose and illumination (Zhou

et al., 2006).

There appears to be a lack of standard terminology in the related literature. For instance,

in everyday English, the word feature often refers to any part of the human face, such as the

nose, chin, mouth or eyes; whereas, in the field of computer vision, a feature typically refers

to any distinctive part of an image. To avoid confusion, some researchers (e.g. Hallinan et al.

1999) have used the term facial feature to refer to any characteristic part of the human face,

which leaves the term feature for general use in the field of computer vision. This is an

appropriate solution, and it is followed in this thesis.

It is important to observe that a facial feature refers to a region on the human facial

surface. To define boundaries for these regions in face processing applications, most re-

searchers have followed a point–based approach. Unfortunately, a variety of terminology is

observed in the literature:

a) Anchor point: Colbry and Stockman (2007), Colbry et al. (2005)

b) Keypoint: Mian et al. (2008)

c) Facial landmark: Gizatdinova and Surakka (2007), Mutsvangwa and Douglas (2007),

Whitmarsh et al. (2006), Gizatdinova and Surakka (2006)

d) Fiducial point: Arca et al. (2006), Wiskott et al. (1997), Bronstein et al. (2005)

e) Feature point: Xiaoguang et al. (2006), Hallinan et al. (1999)

This variety might be because in essence those names refer to different sets of points.

Focusing on the definition of facial landmark from anthropometrics studies of the human

face and head (Farkas, 1994), a number of differences can be observed. For instance,

Wiskott et al. (1997) use the term ‘fiducial point’ to refer to facial features. Arca et al.

(2006) detected a set of ‘facial landmarks’ which were used to calculate other interesting

points, which could be why they prefer to use the term ‘fiducial point’. Mian et al. (2008)

called the inner–eye cavity a ‘keypoint’, perhaps because it is not defined as an anthropo-

metric landmark. Other researchers, e.g. Mutsvangwa and Douglas (2007), used the term
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‘facial landmark’ in their investigation. An extended list of terminology for a landmark is

found in Dryden and Mardia (1999). Although, this discussion clarifies that a variety of

terms are used, anthropometric investigations are relevant for this research; for this reason,

the term facial landmark (or landmark for short) is used in this investigation.

This terminology discussion closes with the term localisation, which for the purpose of

this thesis, implies to identify and locate a facial landmark within an image.

Automatic landmark localisation in 3D face data is investigated within this thesis, with

a view to use in applications in biometrics security, such as 3D face recognition and verifi-

cation. Accurate landmark localisation is an essential precursor to many 3D face processing

algorithms. However, convincing solutions for a wide range of head poses are still needed.

In this thesis, an investigation to localise facial landmarks from 3D data without using

any assumptions concerning facial pose is presented. In particular, this research devises new

surface descriptors, which are derived from either unstructured face data, or a radial basis

function (RBF) model of the facial surface.

Key contributions from this thesis (Romero and Pears, 2008, 2009a,b; Pears et al., 2010)

are as follows:

Based on relevant literature, eleven facial landmarks from the most distinctive facial fea-

tures are prescribed for this investigation. Thus, a ground–truth of eleven facial landmarks

is collected over well–registered facial images in the Face Recognition Grand Challenge

(FRGC) database (Phillips et al., 2005). This research is particularly interested in state–of–

the–art pose invariant feature descriptors. Therefore, distance to local plane (DLP), spin

images (Johnson and Hebert, 1999), and SSR features (Pears et al., 2010) are selected for

use in this thesis. Thus, these feature descriptors, of varying complexity, are investigated

to illustrate repeatability and accuracy when computed for the full set of eleven facial land-

marks.

Taking into consideration the minimum number of landmarks necessary for normali-

sation, this investigation focuses on the localisation of three distinctive facial landmarks,

the nose–tip and two inner–eye corners. With this motivation, the thesis introduces two

families of descriptors, namely point–pair and point–triplet, which require two and three

vertices respectively for their computation. Additionally, two methods for landmark local-

isation are investigated. The first method is a cascade filter, which is constructed using a

binary decision tree. In the second method, graph matching is implemented via relaxation

by elimination. Consequently, all of these feature descriptors and algorithms are used to

design a number of systems to localise the nose–tip and two inner–eye corners.

The final contribution reported in this thesis, is a novel cumulative error curve, which is

a useful way to illustrate landmark localisation performance.
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As mentioned above, this research is carried out with a view to automatic 3D face recog-

nition. Thus, the rest of this chapter introduces the field, as follows: Section 1.1 defines 2D

and 3D images; Section 1.2 describes application scenarios; Section 1.3 overviews evalua-

tion programs for face recognition; finally, Section 1.4 gives the thesis structure.

1.1 2D and 3D Images

In essence, there are two data representations in related research, namely two–dimensional

(2D) and three–dimensional (3D). This categorisation relates to the number of coordinate

values provided. Two dimensional data provide two coordinates which can be used to visu-

alise width and height (Gonzalez et al., 2003). Three dimensional data, on the other hand,

provide three coordinate values to visualise width, height and depth. Naturally, an image is

called after the data representation it contains, e.g. 2D or 3D image.

Exploring 2D and 3D images, when visualised, is similar to appreciating paintings and

sculptures. A 2D image is flat because only the horizontal and vertical axes are used.

Whereas, the third axis used in a 3D image produces a depth effect and allows ‘out of

plane’ rotations. As can be observed, the viewpoint is relevantly important for image anal-

ysis. By definition, 2D data only allows one view, whereas 3D data can be rendered from

several viewpoints. In cases where a single viewpoint is used to capture a 3D image, i.e.

only one depth value is provided, this image is generally referred to as a 2.5D image.

A face recognition system is classified according to the data representation it uses. The

literature refers to three different cases:

a) Two–dimensional (2D) systems, if only 2D data is required for recognition.

b) Three–dimensional (3D) systems, if the system only uses 3D data.

c) Multimodal (2D–3D) systems, if both 2D and 3D data are used in the system.

1.2 Application Scenarios

As reported by Zhou et al. (2006), ‘face recognition’ generally involves three tasks: ‘verifi-

cation’, ‘identification’, and ‘watch list’. In each scenario, face images of known persons are

initially entered into the system, this set of images is generally referred to as the ‘gallery’.

Then, later images of these or other persons are used as ‘probes’ to match against images in

the gallery (Phillips et al., 2003).
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1.2.1 Verification scenario

The verification, or authentication, scenario is formulated with the question: ‘Is it you who

you claim to be?’, where a person’s biometric and a claimed identity are presented to the

face recognition system. The system then compares the presented biometric with a stored

biometric of the claimed identity. Based on the results of comparing the new and the stored

biometric, the system either accepts or rejects the claim. This is a one–to–one matching

scenario, in the sense that the probe is matched against the gallery entry for a claimed

identity, and the claimed identity is taken to be authenticated if the quality of the match

exceeds some threshold.

1.2.2 Identification scenario

An identification scenario is stated with the question: ‘Who are you?’. In this scenarion, an

unknown person’s image is presented to the system. The system then compares the unknown

face to the database of known people and gives the closest match. This is a one–to–many

matching scenario, in the sense that a probe is matched against every gallery face to find

the best match above some threshold. If this threshold is not reached, then the system may

conjecture that the probe identity is not contained within the gallery.

1.2.3 Watch list scenario

There is a third face recognition application in the related literature, referred to as ‘watch

list’, which can be described with the question: ‘Are you on a list of high priority iden-

tities?’. Here, prior to recognition, the face recognition system firstly detects whether an

individual is or is not in a specific set of people called a ‘watch list’. If the individual is in

the watch list, the system could verify such identity and activates an alarm. This is a special

case of an identification scenario.

1.2.4 Performance analysis

Relevant concepts for biometric performance in the verification context are false rejection

(type–1 error) and false acceptance (type–2 error) metrics (Phillips et al., 2000). False

rejections refer to the likelihood of an authorised user being wrongly rejected by the system.

False acceptances refer to the likelihood of an impostor being wrongly accepted by the

system. The acceptance/rejection terminology is typically used to describe the outcome of

a verification decision (see Table 1.1). There is a trade–off between the two types of errors.

The majority of biometric devices incorporate a sliding threshold adjustment mechanism
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Table 1.1: Decision table for impostor and genuine claims in a biometric scenario.

Rejected Accepted

Impostor claim True Rejection False Acceptance
(Correct decision) (Type–2 Error)

Genuine Claim False Rejection True Acceptance
(Type–1 Error) (Correct decision)

that allows researchers to tighten or relax the matching criteria. Thus, the frequency of

false acceptances can be reduced at the cost of increasing the frequency of false rejections,

or vice–versa. Related terminology is used in the context of a watch list scenario. A true

positive occurs if the system reports a match to someone on the watch list that is correctly

identified. A false positive occurs if the person is not actually someone on the watch list. A

true negative occurs if the system does not report a match to the watch list, and the subject

is not on the watch list. A false negative occurs if the system does not report a match when

it should have reported one.

The receiver operating characteristic (ROC) curve is a tool for summarising the space of

possible operating points for a verification system; that is, the space of actually achievable

tradeoffs in the frequencies of the two types of errors. The ROC curve can be defined in

different but equivalent ways. In a ROC curve, the false rejection rate (FRR) is on the Y–

axis and the false acceptance rate (FAR) on the X–axis, as shown in Figure 1.1. The equal

error rate (EER) is the point at which the FAR and the FRR are equal. The ideal operating

point would be (0,0), meaning no false acceptances and no false rejections. Generally, one

system performs better than another, if its ROC curve lies closer to the ideal point than the

other system’s ROC curve. In a verification scenario the performance is reported by using a

ROC curve.

The cumulative match characteristic (CMC) curve is a tool for summarising the cumu-

lative percentage of correct recognition. In a CMC curve, the vertical axis shows the ranks,

where rank refers to an ordinal position (from 1 to the size of a given testing set), and the

horizontal axis accumulates the fraction of testing images that yield a correct match at every

rank, i.e. true acceptance rate. In an identification scenario, the performance is reported

by using a CMC curve, where the system with the highest recognition rate in the first rank

could be considered the best. Figure 1.2 shows an example of the CMC curve.

An objective comparison in biometrics should be performed within the same experi-

mental framework with the same benchmark data. It is unwise to compare CMC and ROC

curves from different experimentation, as differences in data and thresholds would affect

any experimental results.
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Figure 1.1: The ROC curve is defined by plotting the FAR (x–axis) against the FRR (y–axis), the
EER (the point where the FAR and the FRR are equal) is the value considered to compare a system
in a verification scenario.

1.3 Evaluation Programs for Face Recognition

Automatic face recognition has become an active research field in recent decades. As a

result, successful implementations are in action, numerous publications can be observed

in conferences and journals and commercial interest has been attracted. To mediate re-

search in the field, different benchmark assessments have been created, namely: The Facial

Recognition Technology (FERET), (Phillips et al., 2000); The Face Recognition Vendor

Test (FRVT), (Phillips et al., 2010); and the Face Recognition Grand Challenge (FRGC),

(Phillips et al., 2005).

1.3.1 The Facial Recognition Technology (FERET)

The FERET programme ran from 1993 to 1997, sponsored by the Department of Defense’s

Counterdrug Technology Development. Its primary mission was to develop automatic face

recognition capabilities that could be employed to assist security, intelligence and law en-

forcement personnel in the performance of their duties. This programme provided the

FERET face image database and established the FERET test (Phillips et al., 2000), be-

cause those two protocols are the critical requirements needed to support the production of

reliable face recognition systems.
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Figure 1.2: The CMC curve shows the cumulative percentage of correct recognition (y–axis) per
rank (x–axis), the recognition in the first rank is the value considered to compare a system in a
recognition scenario.

Three tests were carried out in this programme: August 1994, March 1995, and Septem-

ber 1996. The first test (August 1994) established for the first time a performance base for

face recognition algorithms. This test was designed to measure performance on algorithms

that could automatically locate, normalise, and identify faces from a database. The second

test (March 1995) measured progress after August 1994 and evaluated algorithms on larger

galleries. This test emphasised probe sets that contain duplicate probes, in comparison to

the first evaluation which consisted of a single test with a gallery of 817 known individuals.

The third test (September 1996) had three primary objectives: a) assess the state of the art;

b) identify future areas of research; and c) measure the algorithm’s performance.

1.3.2 The Face Recognition Vendor Test (FRVT)

The Face Recognition Vendor Tests (FRVT) provided independent government evaluations

of commercially available and prototype face recognition technologies (Phillips et al., 2010).

Through these evaluations the U.S. Government and law enforcement agencies were pro-

vided with information to assist them in determining where and how facial recognition tech-

nology can best be deployed. Additionally, FRVT results helped to identify future research

directions for the face recognition community.

Three evaluations were administered in this programme: 2000, 2002 and 2006. By
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2000, face recognition technology had matured from prototype systems to commercial sys-

tems. The FRVT 2000 test measured the capabilities of these systems and their technical

progress since the last FERET evaluation. The FRVT 2002 test was designed to measure

technical progress since 2000, to evaluate performance on real–life large–scale databases,

and to introduce new experiments to help understand face recognition performance better.

At that time, public interest in face recognition technology had risen significantly, as re-

search developed new face recognition technologies promising considerable improvement,

e.g. The Face Recognition Grand Challenge (FRGC) which was organised to develop new

face recognition technologies, such technologies included high resolution still images, three

dimensional face scans, and multiple still images. The last evaluation in this programme,

FRVT 2006, determined: a) whether the FRGC goals had been met; b) if there had been

progress in face recognition since FRVT 2002; and c) measured the effectiveness of new

face recognition technologies being developed.

1.3.3 Face Recognition Grand Challenge (FRGC)

After FRVT 2002, a number of new face recognition techniques were proposed. These new

techniques included recognition from 3D scans, recognition from high resolution still im-

ages, recognition from multiple still images, multi–modal face recognition, multi–algorithm,

and pre–processing algorithms to correct for illumination and pose variations. These tech-

niques held the potential to improve performance of automatic face recognition by an order

of magnitude over FRVT 2002.

The FRGC was designed to achieve this increase in performance by pursuing develop-

ment of algorithms for all of the above proposed methods (Phillips et al., 2005). Determin-

ing the merit of these techniques requires three components: sufficient data; a challenge

problem that is capable of measuring an order of magnitude improvement in performance;

and the infrastructure that supports an objective comparison among different approaches.

The FRGC’s primary goal was to promote and advance face recognition technology

designed to support existing face recognition efforts by the U.S. Government. Its primary

objective was to develop still and 3D algorithms to improve performance, by an order of

magnitude over FRVT 2002 (verification rate of 80%, error rate of 20%, at a false acceptance

rate (FAR) of 0.1%). An order of magnitude increase in performance is a verification rate

of 98% (2% error rate) at the same fixed FAR of 0.1%. This programme was open to

face recognition researchers and developers in industry, academia, and research institutions.

FRGC ran from May 2004 to March 2006, although the data collection started in January

2003.
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The FRGC programme was sponsored by several US government agencies interested in

improving the capabilities of face recognition technology. The National Institute of Stan-

dards and Technology (NIST) directed and managed the FRGC.

The FRGC was structured around two challenge problems or versions. Version 1 was

designed to introduce participants to the FRGC problem format and its supporting infras-

tructure. Version 2 was designed to challenge researchers to meet the FRGC performance

goal.

These programmes introduced three new aspects to the face recognition community: a)

the size of the FRGC in terms of data, FRGC version 2 contains 50,000 recordings; b) the

complexity of the FRGC, three modes were provided by this programme: high resolution

still images, 3D images, and multi–images of a person (previous face recognition data sets

had been restricted to still images); and c) the infrastructure, the FRGC provided by the

Biometric Experimentation Environment (BEE), and XML based framework for describing

and documenting computational experiments (this is the first time that a computational–

experimental environment has supported a challenge problem in face recognition or bio-

metrics).

1.4 Thesis Structure

This thesis is divided into six chapters and one Appendix. In Chapter 2, the relevant liter-

ature is reviewed. In Chapter 3, experimental settings for this investigation are introduced,

and a set of facial landmarks is analysed. In Chapter 4, state–of–the–art feature descriptors

are investigated. In Chapter 5, two facial landmark localisation methods are studied. In

Chapter 6, conclusions and future work are discussed. Finally, in Appendix A, the terminol-

ogy used in this thesis is presented. The detailed contents of every chapter are as follows.

Chapter 2 – Literature Review

In this Chapter, the relevant literature for the investigation is reviewed. Section 2.1 contains

a general assessment of automatic pattern recognition using biometrics, in Section 2.2 face

recognition is the focus. Following on, key subjects are documented: radial basis functions

(RBF) modelling (Section 2.3), local surface descriptors (Section 2.4), facial landmark lo-

calisation (Section 2.5), and relaxation labelling techniques (Section 2.6). Finally, Section

2.7, states the research problem for this thesis.
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Chapter 3 – Facial Landmark Analysis

In this chapter, the experimental settings for this research are introduced, and a facial land-

mark analysis is presented. Section 3.1, introduces the experimental database and the

ground–truth data used throughout this investigation. Then, in Section 3.2, the experimen-

tal settings for the investigation are presented. Finally, in Section 3.3, a prescribed set of

eleven facial landmarks is analysed, illustrating retrieval, accuracy, repeatability and speci-

ficity metrics.

Chapter 4 – Feature Descriptors and Analysis

This chapter is divided into three main sections. Firstly, in Section 4.1, the experimen-

tal pose–invariant feature descriptors: DLP, spin images and SSR features are further in-

vestigated. The feature descriptors are analysed in terms of repeatability, accuracy, and

complexity. For this purpose, an experimental methodology is defined and performance

figures shown. Secondly, in Section 4.2, the point–pair descriptors: point–pair spin images

and cylindrically sampled RBF (CSR) histograms are introduced. As part of this section,

their applicability to localise pairs of pronasale and endocanthion landmarks is also shown.

Thirdly, in Section 4.3, the point–triplet descriptors are introduced, showing their usability

to localise triplets of pronasale and endocanthion landmarks as a first application.

Chapter 5 – Landmark Localisation Methods

In this chapter, two facial landmark localisation methods are studied. In Section 5.1, with

the aim to localise the pronasale landmark, a cascade filter is implemented using a binary

decision tree. Then, in Section 5.2, graph matching via relaxation by elimination to localise

the endocanthions and pronasale landmarks simultaneously is implemented.

Chapter 6 – Conclusions and Future Work

This chapter, presents the final conclusions and future work according to the research find-

ings. In Section 6.1, the conclusions in accordance with the research aims and main con-

tributions of this thesis are discussed. In Section 6.2, possible avenues for future work are

suggested.

Appendix A – Terminology

Appendix A lists and discusses essential terminology used within this thesis.
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Literature Review

In this Chapter, the relevant literature for this investigation is reviewed. The motivation

for this literature review is to provide enough support for the research problem statement,

which is discussed in Section 2.7. Thus, in Section 2.1, literature for automatic recognition

using biometrics is reviewed. In Section 2.2, 2D and 3D face recognition is discussed. In

Section 2.3, radial basis functions (RBF) modelling is revised. In Section 2.4, local surface

descriptors are defined. In Section 2.5, facial landmark localisation is further discussed.

In Section 2.6, relaxation labelling techniques are discussed. In Section 2.7, the problem

statement for this thesis is presented. Finally, Section 2.8 summarises this chapter.

2.1 Automatic Recognition Using Biometrics

In this subject two related avenues come together. On one side, automatic recognition is

located in the field of computer vision and pattern recognition. Here, pattern recognition

classification is based on particular attributes. Such attributes are processed to produce a

pattern which is fed into a classifier for categorisation. On the other side, biometrics is the

use of physical or behavioural characteristics to recognise or verify people’s identity; for

this purpose, such characteristics are fed into a classifier. Therefore, simply put, biometrics

can be thought of as pattern recognition applied to people’s characteristics.

Biometrics has become a very active research field during the last decade. Motivated

by the high accuracy of using human patterns to recognise/verify identities, the research

community is exploring and attempting to overcome this challenging task. There are several

applications for this area, starting with simple control access interfaces, to surveillance and

high security control points.

Several biometrics are available to perform automatic recognition. Thus, systems using

28



Chapter 2. Literature Review

a single human characteristic or a combination of them can be observed; the latter is gen-

erally referred to as multi–biometrics application, see Phillips et al. (2010), for an example.

It is beyond the scope of this thesis to provide a detailed discussion about each biometric.

Instead, recent research in the automatic biometrics literature, including: fingerprints, ear,

gait, iris, and face recognition are outlined in Table 2.1.

A further discussion about recent biometrics research (see Table 2.1) is as follows. Re-

garding biometrics using fingerprints, Zhou et al. (2009) proposed a novel algorithm for

singular points detection from fingerprint images. Cappelli and Maltoni (2009) studied

the spatial distributions of singularity locations in nature, and derived probability density

functions of the four main fingerprint classes. Moving to the ear recognition field, Yan and

Bowyer (2007) presented a complete ear recognition system; their work included automated

segmentation of the ear in a profile view image and 3D shape matching for recognition. An

early human recognition system using 3D ear biometrics was proposed by Chen and Bhanu

(2007), their system performs detection, identification and verification of 3D ear images.

State of the art in gait recognition is found in Bissacco and Soatto (2009), they proposed a

hybrid dynamical model of human motion and developed a classification algorithm for the

purpose of analysis and recognition. Motivated by the successes of the two–dimensional

LDA, Tao et al. (2007), developed a general tensor discriminant analysis (GTDA) as a pre-

processing step for LDA and used human gait recognition to validate their proposed GTDA.

In the recent iris recognition literature, Hollingsworth et al. (2009) compared different

regions of the iris to evaluate their relative consistency and found that the middle bands

of the iris are more consistent than the inner bands. Daugman (2001) reported a relevant

survey including 2.3 million comparisons among eye images acquired in trials in Britain,

the USA, and Japan. Talking about face recognition, Castillo and Jacobs (2009) proposed

stereo matching to judge similarity between two 2D face images seen from different poses.

Mian et al. (2007) presented a fully automatic multimodal face recognition algorithm, which

performs hybrid (feature based and holistic) matching in order to achieve efficiency and

robustness against facial expressions. Queirolo et al. (2010) presented a novel automatic

framework for 3D face recognition, they proposed a modified simulated annealing–based

approach, taking advantage of invariant face regions to better handle facial expressions.

Kakadiaris et al. (2007) presented their 3D face recognition system which used a deformable

model framework to deal with facial expressions.

This investigation is closely related to the main problem of automatic face recognition

in both 2D and 3D modalities, although this research has been carried out with application

to 3D, mostly. The following sections focus on the literature review of the main area of

work.
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Table 2.1: Recent relevant research in automatic biometrics literature.

Fingerprints Zhou et al. (2009), Cappelli and Maltoni (2009)
Ear Yan and Bowyer (2007), Chen and Bhanu (2007)
Gait Bissacco and Soatto (2009), Tao et al. (2007)
Iris Hollingsworth et al. (2009), Daugman (2001)
2D Face Castillo and Jacobs (2009)
2D/3D Face Mian et al. (2007)
3D Face Queirolo et al. (2010), Kakadiaris et al. (2007)

2.2 Face Recognition

Face recognition, as one of the most successful applications of pattern recognition, and

image analysis and understanding, has received significant attention during the last decade.

This is evident as several international conferences and journal papers are now found in the

literature. This section reviews the outline history of automatic face recognition (Zhao et al.,

2003).

Initially, the face recognition problem was formulated as recognising 3D objects from

2D images, although there are a few exceptions that use range data (Gordon 1991). There-

fore, earlier approaches treated this as a 2D pattern recognition problem. During the 1970s,

Bledsoe (1966), Kanade (1977) and Kelly (1970) used typical pattern classification tech-

niques. Such techniques use measured attributes of features, e.g. distances between impor-

tant points in faces or facial profiles, and this work remained largely dominant during the

1980s.

Research interest in face recognition technology has grown significantly since the early

1990s. Some reasons for this phenomenon are: an increased interest in commercial opportu-

nities; the availability of real–time hardware; and the increasing importance of surveillance–

related applications. Therefore, research interests were motivated to make fully automatic

face recognition systems, overcoming problems like face localisation from different sources

and extraction of facial features, such as eyes, mouth, and nose. During the same pe-

riod, significant advances were made in the design of face recognition classifiers. Among

appearance–based holistic approaches Eigenfaces (Kirby and Sirovich, 1990; Turk and

Pentland, 1991) and Fisherfaces (Belhumeur et al., 1997) have proved to be effective in

experiments with large databases. On the other hand, feature–based graph matching ap-

proaches (Wiskott et al., 1997) have also been successful. Compared to holistic approaches,

feature–based methods have proved less sensitive to variations in illumination, viewpoint

and to inaccuracy in face localisation. However, hollistic approaches employ all of the in-
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formation for classification.

Some researchers concentrated on video–based face recognition from the late 1990s,

motivated by several inherent advantages and disadvantages from the still image problem

(Zhao et al., 2003). Due to the controlled nature of the image acquisition process in some

applications, for drivers’ licences, the segmentation problem is rather easy. However, if

only a static picture of an airport scene is available, segmentation of a moving person can be

more easily accomplished using motion as a cue. But the small size and low image quality

of faces captured from video can significantly increase difficulties in recognition.

From the late 1990s, a renewed interest in 3D face recognition was observed, motivated

in some part by advances in technology, which not only improve capture sensors, but also

reduce computation times, making 3D face processing for real applications possible. By this

time, its 2D counterpart had already reached maturity and several limitations had become

clear. The 2D face avenue encounters difficulties when dealing with variations in pose and

illumination in the presentation of facial expressions. All of these reasons make it clear that

it is necessary to explore the face in its natural 3D dimension.

At the beginning of the 21st century, with 2D and 3D face data available, the research

community started to provide possible solutions to the face recognition problem from these

two different perspectives. Naturally, though, a third solution emerged, suggesting a combi-

nation of both modalities; this is referred to as multimodal face recognition. This modality

has the nice property of combining the main advantages of both modalities, improving the

recognition rate.

For obvious reasons, the literature appears split on whether using a single 3D image

outperforms using a single 2D image (Bowyer et al., 2006). Some researchers have found

that it does (Chang et al., 2003; Maurer et al., 2005), while others have found the opposite

(Tsalakanidou et al., 2004; Husken et al., 2005). In the meantime a final decision is made,

multimodal face recognition has been shown to outperform both modalities on their own

(Bowyer et al., 2006). The 3D face recognition community has been actively investigat-

ing in recent years, and it is expected to outperform in uncontrolled pose and illumination

conditions (Scheenstra et al., 2005).

2.2.1 Three Dimensional Face Recognition

It is said that 3D models hold more explicit information than 2D models, e.g. surface

information, which can be used for face recognition or subject discrimination. This is one

of several motivations for 3D face recognition investigations.

During recent years, considerable progress in the field of 3D face recognition has been
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observed, with several applications for real scenarios now available. Since the FRGC pro-

gram was started, 3D face processing techniques are approaching certain levels of maturity

but some challenges still need to be resolved. These challenges include the need for bet-

ter sensors, improved recognition algorithms and more rigorous experimental methodology

(Bowyer et al., 2006). Humans are naturally identified by their face, which is socially ac-

ceptable because it is not intrusive, in the sense that no physical contact is required to collect

a face image. These facts originally motivated computer vision researchers in using the face

for biometrics. The research community has been challenged by the relative easiness of

this task for humans. After years of research, 3D face recognition has reached a satisfac-

tory performance level. Unfortunately, this performance is constrained by controlled poses

and expressions, for instance, the face is still being processed as a rigid surface which is

not ideal for dealing with facial expressions as the face is anything but rigid. Nevertheless,

this progress is enough for specific applications and provides a satisfactory background to

develop face recognition methods without constraints.

Excellent surveys about 3D face recognition have been provided by Scheenstra et al.

(2005) and Bowyer et al. (2006). This research shows that during the 1990s, early 3D

face recognition algorithms were tested on small datasets and reported performances of

100% (Gordon, 1992; Nagamine et al., 1992; Achermann et al., 1997; Tanaka et al., 1998).

Research at the beginning of this century still reported 100% performance with a limited

number of faces, until Medioni and Waupotitsch (2003), where a database of 700 images

from 100 people was evaluated and a performance of 98% was reported. As a result of the

FRGC program, an early investigation using the FRGC database version 1 was reported by

Russ et al. (2005), using 468 images from 200 people. Bronstein et al. (2005) presented a

‘canonical form’ approach which is believed to be robust in the presence of facial expres-

sions, and they reported a performance of 100% with a limited database (220 images from

30 people), including identical twins. Chang et al. (2006), investigated version 2 of the re-

cently launched FRGC database for the first time; they proposed a multi–region analysis of

the face to deal with facial expressions, reporting a performance of 92%. Following Chang

et al. (2006), the state–of–the–art in face recognition is generally reported using the FRGC

benchmark.

Mian et al. (2007) presented a fully automatic face recognition algorithm and demon-

strated their performance on the FRGC v2.0 database. This is a multimodal (2D and 3D)

algorithm, which performs hybrid (feature based and holistic) matching to achieve efficiency

and robustness in the presence of facial expressions. The 3D face pose is corrected along

with is texture automatically based on a single automatically detected point and Hotelling

transform. A rejection classifier based on their 3D Spherical Face Representation (SFR) and
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Scale–Invariant Feature Transform (SIFT) is introduced, which quickly eliminates a large

number of candidate faces at an early stage. The remaining faces are then verified using

a region–based matching approach, which automatically segments the eyes–forehead and

nose regions and matches them separately using a variation of the Iterative Closest Point

(ICP) algorithm. Results of these matching engines are fused at a metric level. This algo-

rithm achieved 99.74% and 98.31% verification rates at 0.001 FAR and identification rates

of 99.02% and 95.37% for probes with neutral and non–neutral expressions.

Kakadiaris et al. (2007) presented an automatic 3D face recognition system invariant

to 3D capture devices, which uses multistage alignment algorithms and resilience facial

expressions through a deformable model. This approach achieves scalability in time and

space by compacting 3D facial scans into metadata. A verification rate of 97.0% at 0.001

FAR is reported on the FRGC version 2 database.

Faltemier et al. (2008) introduced a 3D face recognition system based on fusion of

results from 38 independently matched regions. Their experimental results demonstrated

that using 28 small regions on the face scores the highest level in recognition. Score–based

fusion is performed on the individual region match scores using Borda and consensus voting

methods. They report 97.2% recognition rate and 93.2% verification rate at 0.001 FAR.

Queirolo et al. (2010) presented an automatic 3D face recognition framework. This

method matches two face range images using a Simulated Annealing–based approach (SA)

for registration and Surface Interpenetration Measure (SIM) as a similarity measure. This is

a front pose dependent method, in which the authentication score is obtained by combining

the SIM values to the matching of four different face regions: circular and elliptical areas

around the nose, forehead, and the entire facial region. By using all the images in the FRGC

database, this method achieved a verification rate of 96.5% at a 0.001 FAR and a rank–one

accuracy of 98.4% in the identification scenario.

2.2.1.1 3D Facial expression database

A different but related contribution is processing facial expressions in 3D data. With the

ultimate goal of fostering the research on affective computing and increasing the general

understanding of facial behaviour and the fine 3D structure inherent in human facial expres-

sions, Yin et al. (2006) developed the first 3D facial expression database, which includes

prototypical 3D facial expressions shapes and 2D facial textures of 2,500 models from 100

subjects. Continuing with this work, Yin et al. (2008) created a high–resolution 3D dy-

namic (called 4D) facial expression database. In this database, 101 subjects from different

racial backgrounds were captured in 606 3D facial expression sequences. This data was
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validated through a facial expression recognition experiment using a Hidden Markov Model

(HMM) 3D spatio–temporal facial descriptor. The goal of this project is scrutinizing facial

behaviour at a higher level of detail in a real 3D spatio–temporal domain.

2.2.1.2 Occlusion in 3D data

Occlusion in 3D face data has also been studied. Alyuz et al. (2008) proposed a 3D face

registration and recognition method based on local facial regions which are believed to be

robust in the presence of expression variations and facial occlusions. This method uses

average regional models (ARMs) for alignment and local correspondence is inferred by

the Iterative Closest Point (ICP) algorithm. This method was evaluated on the Bosphorus

3D face database, which contains a significant amount of models with different expression

types and realistic facial occlusion. Two identification rates were reported: 95.87% in the

presence of facial expressions and 94.12% when facial occlusion is presented.

Colombo et al. (2009) proposed a system to automatically detect, normalise and recog-

nise faces occluded by extraneous objects. Their face detector uses curvature analysis,

ICP surface registration and Gappy PCA classification. After the face is detected and nor-

malised, face images are restored using an occlusion detection algorithm and Gappy PCA re-

construction. To test this system, artificially occluded data was created using the University

of Notre Dame (UND) database, feature extraction and matching were performed through

the Fisherfaces approach. They reported 83.8% occluded faces detected and a 14.7% EER

using their restoration strategy before recognition.

2.2.1.3 Summary

As observed, the face recognition community has been actively engaged in 3D face process-

ing. Although considerable progress has been made, there are still several problems which

need to be solved before computer vision applications can approach the human vision per-

formance. Other relevant topics related to the investigation are discussed below.

2.3 RBF Surface Modelling

Radial basis functions (RBF) have been proved useful to interpolate scattered data. In this

research, novel feature descriptors are investigated based on RBF models originally pro-

posed by Pears et al. (2010). Hence, in this section an overview of this 3D surface modelling

approach is presented.
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Table 2.2: RBF applications in the literature.

Carr et al. (1997) Cranioplastic skull model repair
Rohling et al. (1999) Surface reconstruction in ultrasound data
Turk and O’Brien (1999) 3D shape transformation
Carr et al. (2001) Automatic mesh repair in range–scanned graphical models
Chen and Prakash (2005) Animated face modelling
Hou and Bai (2005) Ridge lines detection on 3D facial surfaces
Pears et al. (2010) Pronasale landmark localisation

Early work in this area is found in Franke (1982), with a large number of applications

listed by Hardy (1990). More recently, the benefits of modelling surfaces with RBFs were

supported by Savchenko et al. (1995), Carr et al. (1997), and Turk and O’Brien (1999)

(Carr et al., 2001). Applications for RBF modelling have been widespread, as summarised

in Table 2.2, where an RBF is used to transform corresponding 3D feature points between a

template face and a face scan (Pears et al., 2010).

As observed in Table 2.2, 3D face feature extraction using RBF models is currently

sparse, with the exception of Hou and Bai (2005) and Pears et al. (2010), possibly because

RBF fitting and evaluation are believed to be computationally expensive. In fact, to interpo-

late N data points using conventional RBF methods requires O(N3) arithmetic operations

and O(N2) storage, whereas an improved solution is the fast multi–pole method developed

by Greengard and Rokhlin (1987) and used by Carr et al. (2001), which needs O(NlogN)
operations andO(N) storage. In this method, approximations are allowed in both the fitting

and evaluation of the RBF. For example, the centres are clustered into ‘near’ and ‘far’ fields

for RBF evaluation at a particular point. The contribution of only those centres ‘near’ to the

evaluation point are directly evaluated, whereas those ‘far’ from the evaluation point are ap-

proximated. This allows a globally supported RBF to evaluate quickly, with some accuracy,

according to what has been prescribed.

This research closely follows the approach and notation of Carr et al. (2001). In their

work, a radial function has a value at some point x, in its n–dimensional space, that only

depends on its 2–norm relative to another point called a ‘centre’. Thus, a surface is implicitly

modelled by an RBF function, which uses a weighted sum of basis function radial in form,

Gaussian or cubic spline for example. Hence, the general form for an RBF function s is:

s(x) = p(x) +
N∑
i=1

λiΦ(x− xi) (2.1)

where, p is a low degree polynomial, typically linear or quadratic; λi are RBF coeficients;
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Positive distance to surface

Negative distance to surface

Figure 2.1: Adaptive generation of ‘off–surface’ points along the surface normal directions of a nose
profile. The point marked in solid green has been adapted and brought nearer to the facial surface.
Every point over the surface (red spots) produces a positive distance to surface (DTS) value, whereas
a negative DTS is produced using points below (blue spots) the surface.

Φ is a real valued function, called the basis function; and xi are the N RBF centres.

Within this approach, a zero isosurface of the RBF is defined by choosing s(x) = 0.

This condition forms a surface that smoothly interpolates the data points xi that actually

needs constraints where s(x) is non–zero to avoid a trivial solution. This is possible by

choosing S to approximate a signed distance to surface (DTS) function, generating ‘off–

surface points’ from the surface’s normals. Regions with high local curvature should be

carefully analysed, where inconsistent DTS data can be produced, unless such distance to

the surface is reduced (Carr et al., 2001). To deal with this problem, Carr et al. (2001)

validate an off–surface sample point, checking that its nearest surface point is the point, p,

from which it was projected. If this is not the case, the projection distance is progressively

reduced to the nearest point p. Figure 2.1 shows off–surface points generation with known

(signed) DTS values along a cross–section of a nose. As observed, in regions with high

local curvature, distance to the surface has to be reduced on the concave side of the surface

to avoid inconsistent DTS data.

Biharmonic spline was used by Carr et al. (2001) as the RBF basis function, as this

is believed to be the smoothest interpolant, because it minimises certain functional energy

associated with the fit, which produces an implicit surface with minimal curvature. Thus,

3D object surfaces are well suited (Carr et al., 2001). In this definition, points on the facial

surface are zero, points below the object’s surface are negative and those above the object’s

surface are positive.
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2.4 Local Surface Descriptors

This investigation uses novel 3D surface descriptors for landmark localisation. Thus, previ-

ous work related to local 3D surface descriptors used for facial landmark localisation with

particular emphasis on the work applied to 3D facial surfaces is now examined. To begin, a

general overview about surface descriptors is given, followed by a description of the set of

novel feature descriptors used throughout this investigation, namely: distance to local plane,

spin-images and spherically sampled RBF features.

2.4.1 Overview

Historically, researchers have aimed to extract pose invariant 3D surface descriptors. Gaus-

sian curvature and mean curvature were used by Besl and Jain (1985) to classify surface

shape into eight distinctive categories. This features were developed by Dorai and Jain

(1997) creating two new features: ‘shape index’ and ‘curvedness’. Gordon (1992) devel-

oped curvature maps for feature recognition, which is an early local–invariant 3D surface

characterisation.

Three local 3D surface descriptors, introduced during the nineties, are well known in

the literature. These are discussed in the following sections.

Splash representation (Stein and Medioni, 1992)

In this feature, a local contour is extracted using a slightly fixed geodesic distance from

a vertex. Surface normals are generated at fixed angular displacements within the tangent

plane of that vertex. The angle of the surface normals along the geodesic contour are com-

puted and used as a mechanism for identifying a vertex. This representation uses a ‘struc-

tural indexing’, a hash table approach, for 3D object indexing and retrieval.

Point signature (Chua and Jarvis, 1997)

In this representation, a sphere is centred on a vertex to provide an intersecting curve, C,

with the object surface, which is some Euclidean distance from the vertex. Then, a least

square plane, P with normal Np, is fitted using points in C. A reference plane is generated

using Np and the points in C from which heights of each point in C are computed to give

a signed distance profile. A pair of signatures is compared by scanning the signed distance

values out from the maximum distance value.
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Figure 2.2: A plane π is interpolated using neighbouring points around p in a radius r, so d is
computed through the inner product of vectors ~nπ and (p− µ).

Spin–images (Johnson and Hebert, 1999)

In this representation, shape relative to a local tangent plane is cylindrically encoded. A

spin–image is constructed by measuring both radius and height of neighbouring vertices

relative to the local tangent plane, and results are binned into a histogram. Spin–images

have been broadly investigated by the research community, maybe because they are intu-

itive and simple to compute. Huber (1999) investigated resolution independent spin-images

using interpolated points between vertices. Dinh and Kropac (2006) sped up the spin–image

matching procedure using multiresolution pyramids. Assfalg et al. (2004) used spin–images

for global and local content–based retrieval of 3D objects. Conde et al. (2006) used spin-

images to localise 3D facial features. It is clear that any novel feature descriptors should

be compared against spin–images. This descriptor is used extensively in this thesis, and is

discussed in more detail below.

2.4.2 Distance to Local Plane

As its name suggests, a distance to local plane (DLP) feature is the signed distance from

a point p to its local plane, as illustrated in Figure 2.2. To compute this feature descriptor,

neighbouring points X = {x1, x2, . . . , xn} in a radius r to p are collected to interpolate

a local plane π. Thus, the signed distance d to π is calculated as the inner product of the

vectors (p− µ) and ~nπ:

d(π, p) = (p− µ) · ~nπ (2.2)

where µ is the mean vector of X .
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Equation 2.2 requires a normal, which in this case, is estimated using the eigenvector

with the smallest eigenvalue of the covariance matrix Σ = (X − µ)(X − µ)T . Using a

simple sign check, the normal ~nπ can be oriented toward the origin of the camera system,

thus d could indicate local convexity or local concavity.

As a final stage, a normalised DLP value can be produced dividing d by the radius r.

Such a normalised value is appropriate for defining general thresholds to classify convex

and concave regions over a surface.

2.4.3 Spin–Images

Spin–images are said to be useful representations for describing surface shape because they

are pose invariant, simple to compute, scalable from local to global representation, robust to

clutter and occlusion, impose minimal restrictions on surface shape, and are widely applica-

ble to problems in 3D computer vision. For these reasons, it was claimed that spin–images

are appropriate for object recognition (Johnson, 1997).

In this representation, each point belonging to a 3D surface S0 is linked to an oriented

point on the surface working as the origin (Johnson and Hebert, 1999). Here, there is a

dimension reduction, from 3D coordinates (x, y, z) to a 2D system (α, β) which represents

the relative distance between the oriented point p and the other points pi in the surface. This

dimension reduction is computed through Equation 2.3; as observed, α cannot be negative,

whereas β can be both positive and negative (see Figure 2.3).

S0 : R3 → R2

S0(x)→ (α, β) =
(√
‖x− p‖2 − (~n · (x− p))2, ~n · (x− p)

) (2.3)

A spin–image is produced by assigning the spin map coordinates (α, β) into the appro-

priate spin–image bins. The term spin–map comes from the cylindrical symmetry of the

oriented point basis. A consequence of the cylindrical symmetry is that points that lie on

a circle that is parallel to π and centred on p will have the same coordinates (α, β) with

respect to the basis.

The surface normal at each vertex is calculated by computing the eigenvector with the

smallest Eigenvalue of the inertia matrix of vertex and the other vertices directly connected

to it by the edges of the surface mesh (Johnson and Hebert, 1999). Since the sign of the

eigenvector is ambiguous, Johnson and Hebert proposed to orient every surface normal to

the outside of the object, corresponding every normal within its neighbourhood and with

respect to the object’s centroid.
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Figure 2.3: A three dimensional point with an associated direction is the fundamental shape element
used by Johnson and Hebert to perform object recognition.

Spin–Image Generation

In the simplest way, a 2D array representation of a spin–image is created as follows: first an

oriented point p on the surface of an object is selected; then, for each point x on the surface

of the object, the spin map coordinates with respect to p are computed (Equation 2.3); the bin

that the coordinates index is determined (Equation 2.4); and then the 2D array is updated by

incrementing the bin to which the point is spin mapped by one. However, in order to spread

the position of the point in the 2D array to account for noise in the data, the contribution of

the point could be bilinear interpolated to the four surrounding bins in the 2D array. This

bilinear interpolation of the contribution of a point will spread the location of the point in

the 2D array, making the array less sensitive to the position of the point.

Before a spin–image can be generated, two parameters must be determined: (1) the

size of the spin–image, and (2) the bin size. The size of the spin–image is defined by

the maximum sizes of the object in oriented point coordinates. The maximum α and β

encountered for all of the oriented point bases are the maximum sizes αmax, βmax of the

object in oriented point coordinates. By decreasing the maximum sizes the effects of clutter

and occlusion are limited.

The bin size bs determines the storage size of the spin–image and has an effect on the

descriptiveness of the spin–images. To reduce the effects of object scale and resolution, bs
is defined as a multiple of the resolution of the surface mesh. Johnson (1997) defined mesh

resolution as the average of the edge lengths in the mesh. They found that setting bs to be

two to four times the mesh resolution sufficiently blurs the position of individual points in

the spin–images, while still adequately describing global shape.
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Defining the bin size bs, and the maximum sizes αmax and βmax of the object in oriented

point coordinates, the size of the spin–image (imax, jmax) are:

imax = 2βmax

bs
+ 1 jmax = αmax

bs
+ 1 (2.4)

In Equation 2.4, the size of the spin–image in the β direction is twice βmax because the

distance to the tangent plane of an oriented point can be both positive and negative. Finally,

Equation 2.5 relates spin map coordinates and spin–image bin(i, j), where bfc is the floor

operator which rounds f down to the nearest integer.

i =
⌊
βmax−β

bs

⌋
and

⌊
j = α

bs

⌋
(2.5)

Comparing spin–images

Two spin–images can be compared using linear correlation or principal component analysis

(PCA) based matching (Johnson and Hebert, 1999).

A standard way of comparing images that exhibit a linear relationship between corre-

sponding pixels is the correlation coefficient. The linear correlation coefficient provides

a simple way to compare two spin–images that can be expected to be similar across the

entire image. Since the linear correlation coefficient is a function of the number of pixels

used to compute it, the amount of overlap between spin–images will have an effect on the

correlation coefficients obtained.

PCA is a common technique in image compression and object recognition. Because

spin–images are a highly redundant representation of surface shape, PCA was used to com-

press spin–images, which in this case, is useful to reduce the storage and speed up the

matching of spin–images (Johnson, 1997).

2.4.4 SSR features

A spherically sampled RBF (SSR) descriptor is a novel surface representation originally

proposed by Pears et al. (2010). The central goal, is to sample a surface RBF model using a

set of n points, evenly distributed across a sphere. As recommended by Pears, this sample

sphere can be defined using the octahedron subdivision method, which for k–iterations,

generates n = αβk points. SSR features not only have the desirable property of reducing

negative effect caused by noise and variations in mesh resolution by using an RBF model,

but also this RBF model can be evaluated everywhere in the 3D space. From this definition,

Pears et al. (2010) introduced two particular feature descriptors: SSR histograms and SSR
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values, both of them described in detail below.

SSR Histograms

An SSR histogram, or ‘balloon image’, is a pose invariant feature descriptor which effec-

tively encodes 3D shape data into a 2D array. An SSR shape histogram is generated as

follows. Firstly, n sample points evenly distributed across a unit sphere and centred at the

origin are computed. As mentioned before, this is done through the octahedron subdivision

method, which for k = 3 iteration and [α, β] = [8, 4] gives n = 512 sample points. Then,

q radii (ri) are used to scale the sphere, giving q concentric spheres. Next, these sample

spheres are translated such that a surface point is their common centre. Note that this sur-

face point can be a raw vertex or anywhere between vertices on the RBF zero isosurface

(Pears et al., 2010).

By locating a sample sphere of radius ri at some object surface point, a maximum dis-

tance ri from any point within this sphere to the object surface would be expected. This

implies that typical maximum and minimum distance values for a flat object surface RBF

model are +ri and −ri. Thus, a reasable normalisation of RBF values is to divide by ri to

give a typical range of [−1, 1] for normalised RBF distance to surface (DTS) values. By do-

ing this normalisation, RBF values distributed over a wide range of radii can be accumulated

into the same local shape histogram.

Then, the RBF model s is evaluated at the N = nq sample points on the concentric

spheres, and these DTS values are normalised by dividing by the appropriate sphere radius,

ri. A (p × q) histogram is constructed by binning these normalised RBF values (sn = s
ri

)

over p bins. This histogram can be rendered as a ‘balloon image’, for visualisation, where

this balloon analogy comes from incrementally inflating a sphere through the 3D domain of

the RBF model. Pears et al. (2010) investigated 8 radii, from 10 mm to 45 mm in steps of

5 mm. Normalised DTS values were accumulated using 23 bins, from −1.1 to 1.1 in steps

of 0.1, which ensure that all RBF values are accumulated. Figure 2.4 illustrates an SSR

histogram computed at the pronasale landmark, using these parameters.

SSR Values

An SSR value is inspired by the relationship between the brightness distribution in an SSR

histogram and the convexity of the local surface shape around an evaluation point. This

relationship was analysed by Pears et al. (2010) as a volumetric intersection between a

sample sphere and an RBF face model at the pronasale landmark (see Figure 2.5). To

do this, a metric that is a relative measure of the sphere that is above the object surface
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Figure 2.4: Spherically sampled RBF (SSR) histogram generated over 8 radii and 23 normalised
SSR bins at the pronasale landmark.

compared with the volume of the sphere below the object surface is proposed. Then, an

SSR convexity value Cp for a point p is defined as:

Cp =
k

n
vT [n+ − n−] (2.6)

where k = 4π
3 is a constant related to the volume of a sphere, n is the total number of sample

points on the sphere, vT is a vector containing q volumetric weights (one per radius), n+

and n− are vectors in which each element is the count of the total number of sample points

on a given sphere where s(x) > 0 and s(x) < 0 respectively.

As observed in Equation 2.6, a zero vector on the right of the equation is expected where

elements in n+ and n− will be similar. In this way, a flat area will have a value close to zero,

whereas, highly convex and highly concave shapes will have values approaching to 1.0 and

−1.0 respectively.

Pears et al. (2010) noted that in a very simple form, an SSR value can be computed

using a single sphere, making redundant the constant k and the volumetric weighting vector

v in Equation 2.6. In this way, an SSR value can be computed by averaging the signs of n

RBF evaluations over a sphere.

Cp =
1
n

n∑
i=1

sign(si) (2.7)

To illustrate the potential use of this feature descriptor, a single sampling sphere of ra-
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Figure 2.5: An SSR value is related to the volumetric intersection of the object (head) and a sample
sphere (ri) centred on an evaluation point p, the pronasale landmark. As observed in this cross–
section of a nose, a minimum volumetric intersection exists at the pronasale landmark between a
sample sphere and the face surface.

dius 20 mm and 128 sample points is used to compute SSR value features on every point on

a facial surface, see Figure 2.6. Figure 2.6a shows RBF distance to surface values of this fa-

cial surface using colour mapping, along with a sampling sphere (magenta) at the pronasale

landmark. Figure 2.6b and Figure 2.6c show SSR value maps from different views, note

that a surface is rendered for visualisation, where lighter areas have a convexity value near

to +1 and darker areas (concave) are close to −1. From Figure 2.6c, is it visually clear that

the pronasale and endocanthion landmarks are distinctive using this feature descriptor.

2.5 Facial Landmark Localisation

This section reviews the facial landmark localisation literature; Section 2.5.1 introduces the

subject of cranio–facial anthropometric landmarks; and Sections 2.5.2 and 2.5.3 reviews the

state of the art in anthropometric landmark localisation and facial landmark localisation for

biometrics, respectively.

2.5.1 Cranio–Facial Anthropometric Landmarks

An anthropometric landmark is an anatomical point used as a reference to take measure-

ments from the human body. These measurements assist in understanding human physical

variations and aid anthropological classification (Farkas, 1994; Kolar and Salter, 1997).
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Figure 2.6: (a) Spherical sample points over an RBF grid eval; (b)–(c) SSR value map from different
views, where a surface is rendered to aid visualisation. It is clear from (c), that SSR value features
make distinctive the pronasale and endocanthions landmarks.

A brief historical background is provided by Kolar and Salter (1997), showing how

anthropometry has moved from its early artistic perspective into science. The 17th century

German anatomist Johann Sigismund Elsholtz, defined anthropometry as the measurement

of living subjects. Since then, the term anthropometry has been used in its modern sense.

Currently, Farkas (1994) and Kolar and Salter (1997) are state–of–the–art anthropo-

metric landmarks for the head and face. A comparison of both landmark approaches is
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presented in Table 2.3, where (F) stands for Farkas (1994) and (K&S) for Kolar and Salter

(1997). In total, 47 and 44 landmarks have been proposed by Farkas (1994) and Kolar and

Salter (1997), respectively. Despite the difference in number, it seems as if both authors

propose similar landmarks. However, reviewing definitions in detail, a different location

for the frontotemporale and the orbitale superius is observed. The sellion (or subnasion) is

referenced by a different symbol. Frontozygomaticus, ophiron, and nasal midline are not

included in Farkas (1994), whereas, the pupil’s centre, alare’, subnasale’, nostril axis, and

the ears medial longitudinal axes are not included by Kolar and Salter (1997).

Traditional anthropometric data collection is discussed in depth in Farkas (1994) and

Kolar and Salter (1997). Clearly, traditional anthropometric data collection is a meticulous

process which not only requires proper facilities: lighting, physical requirements, training

and practice, but also the subject’s cooperation to mark every landmark over his/her skin

before any anthropometric measurement is taken.

2.5.2 Anthropometric Landmark Localisation

Anthropometric landmarks have been located using computer–based systems, Enciso et al.

(2004), Deng and Neumann (2008) and Godil (2009) are some examples.

Enciso et al. (2004) validated a light–based imagining system with a 3D digitiser using

a plastic mannequin head, pre–labelled with a subset of Farkas’s anthropometric landmarks.

They evaluated 22 anthropometric measurements with these landmarks. Two operators im-

aged the mannequin head in two sessions to obtain two 3D models of the head per session.

Then, each operator interactively marked the landmark’s positions in each scan twice to test

for marking error. Using this design, they computed the precision of the imaging device, re-

peatability and the validation of the imaging device versus the digitizer. Significance can be

attached to the fact that they found no significant variance due to scan or landmark marking.

However, they observed some significant variations at the operator and session levels.

In their computer facial animation survey, Deng and Neumann (2008:chapter 1), doc-

umented an early approach (DeCarlo et al., 1998) which constructed various facial models

based purely on anthropometry without image processing assistance. Here, a variety of

constraints were imposed to create a smooth and fair surface while minimizing the devia-

tion from specific rest shape, subject to constraints (anthropometric measurements from 13

facial landmarks). Although anthropometry has the potential for rapidly generating plausi-

ble facial geometric variations, the approach does not model realistic variations in colour,

wrinkling, expressions, or hair.

Godil (2009) reported the Civilian American and European Surface Anthropometry Re-
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Table 2.3: Anthropometric landmarks of the head and face.

Feature Landmark Symbol F K&S Comments

Head Vertex v x x
Glabella g x x
Opisthocranion op x x
Eurion eu x x
Frontotemporale ft x x Different location
Trichion tr x x
Frontozygomaticus fz x
Ophyron on x

Face Zygion zy x x
Gonion go x x
Sublabiale sl x x
Pogonion pg x x
Gnathion (or Menton) gn x x
Condylion laterale cdl x x

Orbits Endocanthion en x x
Exocanthion ex x x
Centre point of the pupil p x
Orbitale or x x
Palpebrale superius ps x x
Palpebrale inferius Pi x x
Orbitale superius os x x Bony VS soft
Superciliare sci x x

Nose Nasion n x x
Sellion (subnasion) se (s) x x Different symbol
Maxillofrontale mf x x
Alare al x x
Pronasale prn x x
Subnasale sn x x
Subalare sbal x x
Alar curvature point ac x x
Columella apex c’ x x
Alare’ al’ x
Subnasale’ sn’ x
Nostril axis x
Nasal midline m’ x

Orolabial Crista philtre landmark cph x x
Labiale superius ls x x
Labiale superius laterales ls’ x x
Labiale inferius li x x
Stomion sto x x
Cheilion ch x x

Ears Superaurale sa x x
Subaurale sba x x
Preaurale pra x x
Postaurale pa x x
Otobasion superius obs x x
Otobasion inferius obi x x
Porion (soft) po x x
Tragion t x x
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source (CAESAR), which is a commercial project developed for industrial applications that

collects 3D scans, seventy–three anthropometry landmarks, and traditional measurements

data for each of the 5,000 subjects. This project employs both 3D scanning and traditional

tools for body measurements for people aged 18–65. The seventy–three landmark points are

pre–marked by pasting small stickers on to the body and are automatically extracted using a

landmark software detector. In total, they considered eight landmarks on the head and face.

2.5.3 Facial Landmark Localisation for Biometrics

In this section previous research dedicated to investigation of the landmark localisation task

is reviewed. For this purpose, recent literature with a particular emphasis on 3D face pro-

cessing applications was selected.

The discussion proceeds along four main avenues. First, an analysis of the way the 3D

face data is processed, treating the 3D face data as a depth image (DI) or processing the

cloud of 3D point sets (PS). Secondly, it was verified whether or not a coarse face detection

(generally pose dependant) prior to landmark localisation is applied; which could be seen as

a face constrained (F.C.). Thirdly, according to the landmark localisation procedure, it was

judged if the approach could be considered pose independent (P.I.) in the 3D space. Lastly,

because the main objective is to detect the face within a 3D face image, this localisation

could be done by using facial landmark or a facial model, in such a case any landmark in-

volved is listed: zygomatic–exocanthion corner (zx), eye–cavities (ec), sellion (s), pronasale

(prn), alare (al), or subalare (sbal). The findings are summarised in Table 2.4, previous to a

brief description about each of these approaches.

Chua et al. (2000) used point signature into an early 3D face recongition system, robust

to facial expressions, as they treated the human face as a non–rigid object. They extracted

the rigid parts of the face from range data and created a model library for efficient indexing.

Three points were used to extract the rigid facial area, although it did not mention the precise

names, it can be inferred that the pronasale and the endocantions are involved. Limited range

data, coming from six human subjects, were investigated.

Wang et al. (2002) used point signature features to localise four facial landmarks within

their 2D–3D face recognition system. Using range data, the sellion, the pronasale and a par-

ticular landmark located around the zygomatic–exocation corner, although no localisation

performance was reported. A data set from 50 people was used with 6 scans per person.

Colbry et al. (2005) shaped index and curvedness to localise what they called ‘anchor

points’, which are effectively distinctive facial landmarks: the eye corners, the pronasale,

the mouth line and the chin. Range images were used in this investigation and a promising
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localisation performance was reported.

Bronstein et al. (2005) detected the nose tip, nose apex and the eye corners using mean

and Gaussian curvature. The face is first cropped using a histogram of depth coordinates.

These landmarks are specified based on curvature properties, e.g. candidate nose locations

are points for which both the mean and Gaussian curvature obtain a local maximum. Geo-

metric relations are then used to best choose the set of candidate landmarks. They reported

a landmark detector failure below 1%. This landmark localisation was used to produce a

geodesic mask which is believed to be robust for facial expression variations.

Xiaoguang et al. (2006) used local shape index to detect the eye inside corners and the

nose tip to align the 2.5D scan with a 3D model. They then included the eye outside corners

to align a grid of control points which are used in a fine alignment step. They chose these

landmarks because they were considered to be accurately detected in both front–pose and

profile facial images.

Conde et al. (2006) automatically extracted the inner eye corners and the nose tip from

3D face images. First, mean curvature was used to collect candidate landmark points; a

candidate point was then selected from each area using a priori knowledge of the face. They

did this by classifying spin–images through a support vector machine (SVM).

Chang et al. (2006) detected the nose tip, eye cavities and the nose bridge within their

multiple nose region matching approach for face recognition. These landmarks were sys-

tematically detected using mean and Gaussian curvature values. Basically, a nearly front

pose was assumed and the facial surface was extracted using a depth histogram (3D data) or

using a skin detector (2D data).

Some approaches to 3D facial landmark localisation have adopted rules based on local

surface descriptors and their distribution. For example, Xu et al. (2006) select nose candi-

date vertices as those points that have maximal height in their local frame. Many of these

are eliminated, based on the mean and variance of neighbouring points projected in the

direction of the vertex’s normal. Final selection of the nose tip was based on the densest

collection of nose tip candidates.

An alternative approach to matching local surface descriptors in order to localise 3D

surface landmarks, is to use a 3D model, marked up with the relevant landmarks, and then

globally align the manually annotated model to the data. The landmarks can then be mapped

directly from the model into the data, for example, as closest vertices. This approach was

applied to 3D faces by Whitmarsh et al. (2006). The key step was the registration process,

which used ICP for a rigid transformation (rotation and translation) and a scaling step, to

independently match the height, width and depth of the model to that of the data. This

approach appeared promising, due to its efficiency in localising multiple landmarks simul-
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taneously. However, the method relies on ICP convergence, which is difficult to guarantee

in uncropped, arbitrary pose data. Using the same approach, Kakadiaris et al. (2007) pro-

posed a deformable model technique in their automatic 3D face recognition system, which

is said to be a complete pose–invariance application. This model is derived from metadata

and is used for alignment, which consists of three algorithmic steps: spin–images, iterative

closest point (ICP), and simulated annealing on Z–buffers.

Mian et al. (2007) detected the nose tip using a horizontal slicing technique and a ge-

ometrical analysis based on inscribed triangles within circles centred at candidate nose tip

points. Outliers are removed by interpolating continuous lines of candidate points using

Random Sample Consensus (RANSAC). Once the nose tip is detected, the facial surface is

cropped by using a sphere (radius 80 mm). After that, the facial surface is interpolated and

aligned. This pre–processed face is used to extract ‘points of inflection’ (nose corners, nasal

and maybe the nose bridge) around the nose. By using these points of inflection two robust

regions (eyes–forehead and nose) against facial expressions are cropped and used for recog-

nition, although it is not clear how these points of inflection are detected. This algorithm

accurately detected the nose tip in 98.3% (85 failures out of 4950).

Faltemier et al. (2008) located the nose tip using curvature and shape index within their

region ensemble method for 3D face recognition. A frontal view of the face is required

for this algorithm to operate automatically. In this research, possible nose candidates are

computed using curvature and shape index features. Then, an ICP alignment step is applied

and the nose tip is selected as the highest Z value in the image. If necessary, a refinement

process is applied to better locate the nose tip. Using a visual analysis, in 3935 face images

from 4007 (FRGC database) the nose tip was found less than 10mm away from manually

collected ground–truth (98.20%).

Pears et al. (2010) localised the nose tip using novel SSR feature descriptors embedded

into a binary decision tree classifier. First, potential candidate points were collected by

computing DLP and SSR value features. The nose tip is not expected to be isolated but it

would be of a local maximum SSR value. Finally, SSR histograms were used to select the

best nose tip landmark. Localisation errors were computed to compare estimated locations

against a manually collected ground truth over all well–registered FRGC data, and 99.9%

successful localisation performance was reported.

Queirolo et al. (2010) used six facial landmarks: eye and nose corners, nose tip and nose

base within their automatic 3D face recognition system. Their landmark localisation process

is documented in Segundo et al. (2007). Here, the face region was firstly extracted using a

K–mean algorithm and assuming that the face is ellipse shape. Then, facial landmarks were

located by combining 2D facial feature detection techniques with surface curvature. This
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front pose dependant landmark technique performed well within the FRGC 2.0 database

localising more than 99% of these landmarks accurately. Segundo et al. (2007) developed

a heuristic technique for nose tip localisation, using empirically derived rules applied to

projections of depth and curvature.

2.6 Relaxation Labelling Techniques

Relaxation labelling is a family of methods which belongs to the continuous optimisation

category within inexact graph matching algorithms (Conte et al., 2004). The literature traced

back early work in graph labelling to Rosa (1967) (Gallian, 2009) and the pioneering work

of Fischler and Elschlager (1973). Rosenfeld et al. (1976) is a seminal work, which was first

exploited by Faugeras and Price (1981) in the graph matching domain (Wilson and Hancock,

1997). Price (1986) reported an extension of earlier Faugeras and Price (1981) relaxation–

based symbolic matching efforts. He discussed the use of multiple level descriptions of the

scene in the matching process and how the hierarchical description can be used to reduce

matching errors. Recently, Xu et al. (2006) and Pears et al. (2010) have investigated similar

approaches to this early hierarchical matching process.

As documented by Conte et al. (2004), Fischler and Elschlager (1973) proposed that

each node of one of the graphs could be assigned one label out of a discrete set of possible

labels. This label worked as an identifier that determines a node correspondance on the other

graph. Each node has a vector of probabilities for each candidate label during the match-

ing process. These probabilities were initially computed based on node attributes, node

connectivity and possibly other available information, but they were modified in successive

iterations by taking into account the label probabilities of the neighbouring nodes. This

process continues until either a fixed point or a maximum number of iterations is reached.

The label with the maximum probability was then chosen for each node.

Important remarks about the Fischler and Elschlager (1973) approach are: (a) node–

edge attributes were used only in the initialisation of the matching process, and (b) there is a

lack of theoretical foundation for the iteration scheme (Conte et al., 2004). These problems

were addressed in further research. Kittler and Hancock (1989) provided a probabilistic

framework for relaxation labelling, and Christmas et al. (1995) developed this approach to

take into account node–edge attributes during the iteration process. The latter is a proba-

bilistic relaxation scheme which represents a significant enhancement of the ideas originally

pioneered by Rosenfeld et al. (1976). Turner and Austin (1998) developed the Christmas

et al. (1995) approach into a relaxation by elimination method which reduces the chances of

throwing away the correct correspondence by mistake, as long as only the least–supported
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correspondences are eliminated. This technique is detailed in the following section.

2.6.1 Relaxation by Elimination

Relaxation by elimination (RBE) is an alternative relaxation method introduced by Turner

and Austin (1998). This technique depends on Bayesian probability theory and adopts an

alternative matching strategy. It was hypothesised that it is usually much easier to identify

unlikely matching candidates. With this simple observation they believed that the best match

may not be the correct match at the onset of processing, especially when dealing with a

local context, or in the presence of measurement ambiguity and error. Hence, they altered

the formulation of the matching problem, identifying and eliminating highly implausible

matching candidates. In other words, all possible solutions are held, realising optimisation

indirectly through the iterative elimination of all implausible solutions.

The result is a relaxation by elimination algorithm which is believed more robust to

measurement errors and noise, because decision–making about what constitutes the correct

match is delayed, especially in regions of uncertainty. By adopting this relaxation by elim-

ination strategy, an algorithm neural by nature is obtained which under certain modelling

conditions could be implemented through binary operations on binary arrays in a fast and

efficient manner.

This technique uses a posteriori probability under Bayesian principles, and it is devel-

oped from Christmas et al. (1995). Two measurements are defined here: unary measure-

ment, measurement associated with individual nodes; and binary measurement, measure-

ment associated with individual edges. Assuming that (a) unary measurements are condi-

tionally independent of the binary measurements when the labels are to hand, and (b) all

measurements within the unary or binary sets are independent of one another when condi-

tioned upon the labels.

Thus, considering a uniform distribution and a tolerance, e1, a unary measurement is

defined by:

p(ai|θi = α) =


1 if ‖ai − aα‖ ≤ e1 and α 6= φ

0 if ‖ai − aα‖ > e1 and α 6= φ

q otherwise

(2.8)

where q is a positive constant. In a similar way, a binary measurements is defined by:
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p(bij |θi = α, θi = β) =


1 if ‖bij − bαβ‖ ≤ e2 and α 6= φ, β 6= φ

0 if ‖bij − bαβ‖ > e2 and α 6= φ, β 6= φ

q otherwise

(2.9)

Given the models for unary and binary measurements (Equation 2.8 and Equation 2.9

respectively) along with an apropriate threshold strategy, the neural relaxation algorithm is

a straightforward implementation as illustrated in Algorithm 2.1 (Turner and Austin, 1998).

Algorithm 2.1 A relaxation by elimination approach
Require: Node and edge models, i.e. Equation 2.8 & Equation 2.9 with thresholds {e1,

e2}
Ensure: A neural relaxation

1: Iteration← 0, Initialise the list of candidate correspondences at each data node using
the unary measurements (Equation 2.8).

2: Iteration← Iteration+ 1
3: Compute contextual support, for each candidate in each list, by counting how many

neighbours are consistent with it and according to Equation 2.9.
4: Delete candidates with the lowest supports.
5: End if a stopping condition is met, e.g. all lists have a single entry, otherwise go to step

2.

2.7 Problem Statement

The human face is a huge source of information, and it plays an essential role in social in-

teractions. Physically speaking, the face is a natural human way of identification, conveying

race, age and gender; and for the people who frequently interact with each person (such as

colleagues, friends, and family), the person’s face is closely associated with all that he/she

is. Behaviourally speaking, the face is a primary actor within interpersonal communication,

essentially, because it is the means of expressing emotions (Darwin, 1872; Ekman, 2006).

Furthermore, according to Mehrabian (1968), the effectiveness when a message is transmit-

ted is 7% from spoken words, 38% from voice intonation, and 55% from facial expressions,

which implies that facial expressions are the main modality in human communications (Pan-

tic and Rothkrantz, 2000). These are some facts, that motivate the research community to

study the human face from different perspectives, as previously discussed in Section 2.2.

From the computer vision area, some face processing applications are: face animation,

face registration, face alignment, face recognition and verification. For many face process-
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ing algorithms, accurate facial landmark localisation is an essential precursor. For instance,

it is well known that even holistic matching methods, such as Eigenfaces (Turk and Pent-

land, 1991) and Fisherfaces (Belhumeur et al., 1997), need accurate locations of key facial

features for face pose normalisation; where noticeable degradation in recognition perfor-

mance is observed without accurate facial feature locations. It is generally believed that,

an improved landmark localisation will increase the effectiveness of many face processing

applications (Zhao et al., 2003; Martı́nez, 2002). After several years of research, face pro-

cessing is now possible in real life applications. However, convincing solutions for 3D data

that work well over a wide range of head poses are still needed.

An investigation to localise facial landmarks within 3D face data, without any assump-

tions concerning facial pose, is proposed in this thesis.

It is clear from the literature review undertaken in this chapter, that this is a challenging

problem. Therefore, for the purpose of this research, a sensible experimental framework

needs to be defined, including reasonable research aims and a clear scope. These are the

objectives of the following subsections.

2.7.1 Research Motivation

This subsection discusses motivation for the research, which is essentially based on a set of

facial landmarks, pose–invariant feature descriptors, and potential localisation algorithms.

Related literature (see Section 2.5) indicates that facial landmarks of interest are defined

according to specific research objectives and applications. Thus, this research is motivated

to investigate a prescribed set of facial landmarks around the most distinctive facial features.

This correspondences with face processing researchers who have concentrated attention on

facial landmarks around characteristic facial features (see Table 2.4), for which, anthropo-

metric facial landmarks are set (see Table 2.3). For the purpose of this thesis, a minimum

number of facial landmarks to robustly identify a facial feature is desired. Considering face

variations in pose and expressions, a practical approach is to concentrate on the eyes, the

nose, the mouth and the chin within a face; because their location and shape are essential to

localise and scale a human face.

To make any facial landmark distinctive within a 3D image, it is necessary to com-

pute a feature descriptor. For the purpose of this investigation, this research is interested

in pose–invariant feature descriptors (Section 2.4). As mentioned in Section 2.4.3, spin–

images (Johnson and Hebert, 1999) are the state–of–the–art within 3D shape retrieval lit-

erature, and they have been proved effective in several applications. However, corrupted

spin–images are obtained when computed from low quality data, e.g. data with 3D errors or
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variations in mesh resolution. This problem is generally attacked by using interpolated data,

unfortunately, this is a costly way to compute spin–images. In respect to data interpolation,

a radial basis function (RBF) is a viable approach to interpolate scattered data, as discussed

in Section 2.3. Considering RBFs potential advantages, Pears et al. (2010) introduced two

novel pose–invariant feature descriptors, both of them derived from an RBF surface model,

namely spherically sampled RBF (SSR) features (see Section 2.4.4). Contrarily to spin–

images, SSR features are not affected by low quality data, moreover, an SSR feature can be

computed everywhere in the 3D space because of the continuity of the RBF model. Thus,

for their novelty and advantages, SSR features are taken as part of this investigation. Ad-

ditionally, equivalent feature descriptors which are derived from unstructured 3D data are

also included, namely, distance to local plane (DLP) and spin–images.

Finally, several algorithms related to the research interest of this thesis are observed

in the literature. Particularly, as suggested by Pears et al. (2010), a binary decision tree

can be used to implemented a cascade filter; also, graph matching can be implemented via

relaxation by elimination, as described in Section 2.6. Both, are potential algorithms to

investigate the sets of facial landmarks and feature descriptors adopted in this research.

Specific research aims are defined in the next subsection.

2.7.2 Research Aims

From the research motivation discussed in the previous subsection, particular research aims

for this thesis are defined as follows:

i) Define an experimental framework for this facial landmark investigation.

ii) Investigate state–of–the–art pose invariant feature descriptors and extend their appli-

cability.

iii) Investigate practical approaches to localise facial landmarks based on related state–of–

the–art algorithms.

iv) Design and evaluate landmark localisation systems taking advantage of novel feature

descriptors and algorithms.

2.8 Summary

This Chapter, reviewed relevant literature related to this investigation. It began with a gen-

eral discussion about automatic recognition using biometrics. Then, showed state of the
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art in 2D and 3D face recognition; following that, RBF surface modelling and relevant lo-

cal surface descriptors were discussed. After that, facial landmark localisation, including

anthropometric facial landmarks and localisation approaches within anthropometrics and

biometrics fields were further discussed. Next, theory in relaxation labelling techniques

was reviewed. Finally, the research problem for this thesis was discussed.
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Facial Landmark Analysis

In this Chapter, a set of eleven facial landmarks is analysed. In Section 3.1, the experimental

database for this thesis is introduced, along with its ground–truth data. In Section 3.2, ex-

perimental settings for the complete investigation are presented. In Section 3.3, a prescribed

set of eleven facial landmarks is analysed. Finally, in Section 3.4, a summary of this chapter

is presented.

3.1 Experimental Data Corpus

As published in Romero and Pears (2008), in this Section, the benchmark database se-

lected for this thesis is introduced (Subsection 3.1.1). Subsection 3.1.2 describes how data

with poor 2D–3D registration is filtered. Subsection 3.1.3 explains the experimental data

preparation. Finally, subsection 3.1.4, presents ground–truth data, collected for localisation

performance evaluation.

3.1.1 Benchmark Database

The Face Recognition Grand Challenge (FRGC) database (Phillips et al., 2005) is the largest

3D face dataset that is widely available to the research community. It contains 4,950 shape

images and each of these has an associated intensity image. The files are divided into three

subsets, named after their collection period: Spring–2003; Fall–2003; and Spring–2004.

The Spring–2003 subset was collected under controlled illumination. Participants dur-

ing this term, were positioned at various depths from the camera. As a consequence, several

images include not only the face but also the upper part of the body, i.e. shoulders and chest.

Generally, all images present an unoccluded near–frontal pose with a neutral expression.
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Table 3.1: Original 3D FRGC database population.

Imgs/person Spring–2003 Fall–2003 Spring–2004

1 77 47 43
2 32 31 24
3 47 42 22
4 33 47 30
5 28 45 28
6 30 38 33
7 15 29 35
8 13 30 32
9 77 36 29
10 32 25 32
11 – – 27
12 – – 10

#files 943 1893 2114
#people 275 370 345

Fall–2003 and Spring–2004 subsets were collected under uncontrolled illumination and

with varying facial expressions. In contrast to the Spring–2003 subset, in most of the images

only the participant’s face was captured. Again, there were no extreme pose variations and

a near–frontal pose was used. Table 3.1 shows how the FRGC database is populated.

Although this benchmark database does not contain extreme pose variations, a random

variety of mesh resolution can be observed.

3.1.2 Filtering Data with Poor 2D–3D Registration

The 3D sensor used to collect the FRGC data acquires the texture image just after the shape

image acquisition. Thus, subject motion can cause poor registration between the intensity

and its shape counterpart (Phillips et al., 2005). For an objective performance evaluation,

those files with a visually poor 2D–3D correspondence were manually eliminated from the

FRGC database. Note that the 2D image was used to mark up ground–truth landmarks and

the associated 2D–3D correspondence was used to map the ground–truth into the 3D data,

hence accurate 2D–3D registration was required.

Correspondence between 2D and 3D data was visually verified using a composed image

which is an orthographic projection of the 3D data into 2D (the z dimension is discarded).

Figure 3.1 shows an example where the 3D projection is visually observed as a blue translu-

cent film layer over the intensity image. Poor registration is visually identified if there is a

mismatch between this projection and the intensity image.

Table 3.2 shows a summary of files with correspondence between their shape and inten-

sity images. Note that records with extreme lighting variations are difficult to verify using
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(a) Good registration (b) Poor registration

Figure 3.1: Two examples of 2D–3D correspondence verification within the FRGC database.

Table 3.2: FRGC files with 2D–3D correspondence.

Imgs/person Spring–2003 Fall–2003 Spring–2004

1 85 63 49
2 46 40 27
3 39 52 31
4 35 51 43
5 21 44 32
6 21 34 33
7 4 24 30
8 2 23 37
9 – 22 25
10 – 3 20
11 – – 12
12 – – 2

#files 709 1507 1813
#people 253 356 341

this technique and so those files are not considered in the experimentation.

3.1.3 Data Pre–processing

The FRGC database was collected using a resolution of 640 by 480; which is standard for

intensity images, but rather a high resolution for 3D processing. Firstly data was down–

sampled by a factor of four. A typical batch processing job on a FRGC 3D dataset, using

MATLAB, was generally achievable in an overnight processing session. A down–sample

factor of four was chosen as the preferred trade–off between 3D shape resolution and pro-

cessing time. Even under controlled illumination for a given sensor, it is common for 3D

errors to occur in and around the facial regions, for example due to the poor reflectivity of

60



Chapter 3. Facial Landmark Analysis

Landmark Name

1 Right exocanthion

2 Right endocanthion

3 Subnasion

4 Left endocanthion

5 Left exocanthion

6 Pronasale

7 Right cheilion

8 Labiale superius

9 Left cheilion

10 Labiale inferius

11 Chin’s centre

Figure 3.2: Ground truth data for eleven facial landmarks was meticulously collected by manually
clicking on enlarged intensity images and then relating to respective 3D vertex.

hair (Bowyer et al., 2006). These errors consist of spikes, pits (negative spikes) and holes

(data absence). To overcome these problems, a basic data filtering step was used as a pre–

process on the training data. This consisted of initial spike/pit elimination (thus creating

extra holes), followed by a weighted bilinear interpolation over all holes.

3.1.4 Ground–truth Data Collection

For an objective performance evaluation, it is necessary to have a good ground–truth to es-

timate the error in feature localisation. However, the FRGC database is only provided with

limited ground–truth data (4 landmarks). It was felt that a ground–truth with more land-

marks was needed, and that this data needed to be more meticulously populated. Therefore,

11 landmarks were marked up.

It is conjectured that distinctive facial features of the face may include the eyes, the

nose and the mouth, for this reason, more attention is focused on those facial features. The

anatomy of the face, specifically its bone structure, divides the face in two parts: rigid

(largely) and non–rigid. A complete approach needs to consider both areas and their fea-

tures. Thus, 11 facial landmarks are prescribed as illustrated in Figure 3.2.

Ground–truth data for this research was collected by taking advantage of both intensity

and shape images. Eleven facial landmarks were collected, by very carefully manually

clicking on enlarged intensity images, and then computing the corresponding 3D point,

using the registered 3D shape information. A dual (2D and 3D) view to verify 2D–3D
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landmark correspondence was used.

3.2 Experimental Settings

In this section, experimental settings used throughout the thesis are presented. Subsection

3.2.1 defines training and testing datasets. Subsection 3.2.2 introduces a novel localisation

performance evaluation approach. Subsection 3.2.3 summarises investigation settings. Fi-

nally, subsection 3.2.4 closes this section with a basic analysis of pose variations within the

FRGC database.

3.2.1 Training and Testing Sets

Files with good 2D/3D correspondence (see Table 3.2) are used to define different training

and testing sets for this research.

3.2.1.1 Training Sets

From the Spring–2003 subset, the first 200 subjects which have more than one image in

this specific data subset were selected. Then, for each person, a capture was randomly

selected to give 200 training shape images from different people. Each training feature was

computed from this training dataset, however, for practical reasons, an alternate number of

training faces was used. Indeed, two training sets were defined:

a) TrainingSet–1, contains the first 100 shape images.

b) TrainingSet–2, consists of the 200 shape images.

Specific training sets were defined for this investigation. For each of the training faces,

training features were gathered using respective pre–processed data, as described in Sec-

tion 3.1.3.

3.2.1.2 Testing Sets

Two testing scenarios for localisation evaluation were defined (see Table 3.3), which include

variations in depth and facial expressions. The FRGC database was already divided in this

way and the same structure was adopted. Naturally, there were variations in illumination

and small variations in pose.

Some experiments would be computationally expensive. Therefore, to make a practical

experimentation, an alternate testing set was defined, testingSet–1, which gathered the first

100 shape images from the testing scenario #1 in Table 3.3.

62



Chapter 3. Facial Landmark Analysis

Table 3.3: Testing sets for performance evaluation.

Scenario Subset Size

1. Depth variations, neutral expressions. Spring2003 509
2. Facial expression variations and few depth variations. Fall2003 1,507

Spring2004 1,764

It is relevantly important to observe that no pre–processing was done over these testing

images, apart from down–sampling them at rate four (raw down–sampled data).

3.2.2 Localisation Performance Evaluation

In this subsection, a novel approach for localisation performance evaluation is introduced.

This approach is used to assess every facial landmark localisation system within this thesis.

Localisation results are gathered by computing the error from automatically estimated

landmarks, with respect to ground–truth landmarks manually labelled. Note that localisation

is done at the 3D vertex level, and a down–sampled factor of four on the FRGC dataset is

used throughout this research, which gives a typical distance between vertices of around

3–5 mm. This has implications in relation to the achievable localisation accuracy.

Within this evaluation approach, a distance threshold (specified in millimetres) is set. If

the localisation error is below this threshold, the localisation result is labelled as successful.

This allows the presentation of a performance curve indicating the percentage of successful

feature localisations against the error threshold used to indicate a successful localisation.

These results have the desirable property that they are not dependent on a single threshold,

and in general, these performance curves show two distinct phases: (i) a rising phase where

an increasing error threshold masks more and more small localisation errors; and (ii) a

plateau in the success rate, where an increasing error threshold does not give a significant

increase in the success rate of localisation. If the plateau does not have a 100% success

rate, this indicates the presence of some gross errors in landmark localisation. It is useful

to choose some error threshold values and quote performance figures. A sensible place to

choose for the threshold is close to where the graph switches from the rising region to the

plateau region.

This novel localisation performance plot is referred to as cumulative error curve. As

observed in Figure 3.3, a cumulative error curve is very practical when reading repeatability

ratios (vertical axis) for a specific accuracy (horizontal axis).

In addition to this novel cumulative error curve, it is convenient to define fixed thresh-

olds to categorise a landmark localisation as successful, poor or failure. In this thesis, the
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Figure 3.3: A cumulative error curve does not depend on a single threshold, and it allows to read
succesful localisation (repeatability) at a given accuracy.

Table 3.4: Thresholds to evaluate located landmarks.

Success Error ≤ 12 mm

Poor 12 mm < Error ≤ 20 mm

Failure Error > 20 mm

decision was made considering the use of down–sampled data at rate four, showing an aver-

age distance between vertices of 4 mm. Therefore, a tolerance of 3 vertices from respective

ground–truth was established to label an estimated landmark localisation as successful. Fol-

lowing this idea, the thresholds to label localisation results for this thesis are defined (see

Table 3.4).

3.2.3 RBF Facial Models

As reported by Carr et al. (2001), radial basis functions (RBF) are popular for interpolat-

ing scattered data. However, their widespread adoption has been delayed because of their

apparent extreme computational cost, O(N3). Nevertheless, Carr et al. stated that recent

algorithm advances involving hierarchical and fast multipole methods reduce the computa-

tional cost to O(NLogN).

The FastRBF Toolbox (FarField, 2004) is a library that takes advantage of this func-

tionality, and makes RBFs a practical method for N data points as large as 1, 000, 000, on

a desk–top PC. This toolbox, offers a number of techniques for fitting radial basis functions

to measured data including error–bar fitting, spline smoothing and linear filtering.

Motivated by this outstanding progress in RBF methods, in this thesis the FastRBF
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Toolbox was used to fit and evaluate scattered facial data in a Matlab interface. Therefore,

RBF facial models were fitted to preprocessed unstructured data (Section 3.1.3). Note that

the FastRBF Toolbox offers this functionality, however, it was found necessary to assist

this step by providing normals for the scattered data, because variations in mesh resolution

within experimental data (FRGC database) make it difficult to chose unique parameters for

the complete set.

3.2.4 Investigation Settings

In summary, experimental settings used throughout this thesis are as follows:

a) According to the objective for each experiment, either trainingSet–1 or trainingSet–2

can be used. Both training sets are described in Section 3.2.1.

b) Training data are collected from pre–processed data as described in Section 3.1.3. Simi-

larly, RBF models are fitted to these pre–processed unstructured data using the fastRBF

Toolbox (FarField, 2004) within a Matlab interface. Every RBF feature within this the-

sis is then computed from these RBF models.

c) Experiments use either the testing sets in Table 3.3 or testingSet–1, depending on the

purpose.

d) Localisation performance is reported as percentages by truncating in the second decimal

digit. This accuracy is based on the error given the size of the testing sets used within

this thesis.

e) Each testing set, i.e. testing scenarios (Table 3.3) and testingSet–1, consists of raw

down–sampled data at rate four (i.e. no pre–processing is applied). Note that these

testing data have a typical distance between vertices of about 3–5 mm, which has con-

sequences within the localisation performance evaluation.

f) When appropriate, principal component analysis (PCA) is used to reduce the feature

space dimension for comparison. The number of principal components is selected (in

powers of 2) in a way that more than 90% of the variability from the original feature

space is considered.

g) There is no explicit mesh between vertices in the FRGC database, therefore, every ex-

perimentation is performed using unstructured data.
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(b) Fall–2003 high resolution data
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(c) Spring–2003 low resolution data
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(d) Fall–2003 low resolution data

Figure 3.4: Pronasale landmark estimated as the closest point to the camera using high resolution
data 640 × 480 (top row) and down–sampled data at rate 4 (bottom row) within the Spring–2003
(left) and Fall–2003 (right) subsets of the FRGC database, respectively.

h) As appropriate, localisation performance is presented using cumulative error curves

(as described in Section 3.2.2) and/or localisation graph bar plots using thresholds in

Table 3.4.

3.2.5 Pose Variations Overview within the FRGC Database

To conclude this section, a basic experiment with the FRGC database to investigate any

possible pose variation is presented. To do this, the Spring–2003 and Fall–2003 subsets from

Table 3.3 are used, containing 509 and 1507 shape images repectively. Two resolutions:

high (640 × 480) and low (down–sampled data at rate four) were considered, giving four

testing sets in total. For each testing image, the closest point to the camera’s viewpoint was

taken as the estimated pronasale landmark (nose–tip). Localisation errors between estimated

location and respective pronasale ground–truth were then computed. In order to check the

level of noise present around the pronasale landmark, this approach was done using raw

down–sampled and pre–processed (see Section 3.1.3) data.
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Figure 3.4a and Figure 3.4b indicate that Spring–2003 data contains more 3D errors than

the Fall–2003 data in high resolution, giving a poor identification performance. Figure 3.4c

and Figure 3.4d suggest two important facts: a) the nose area within the Spring–2003 face

data, could easily be cleaned, as long as a simple down–sample operation dramatically

increases the pronasale landmark identification performance, b) the previous statement is

supported by the fact that applying a basic clean–up process to both datasets (Spring–2003

and Fall–2003), 90% of the pronasale landmarks can be identified within an error lower than

7 mm, approximately. This is a clear indication that the FRGC data are mostly near–frontal

pose captures, where the pronasale landmark is one of the closest point to the camera.

3.3 Analysis of Facial Landmarks

As discussed in Section 2.7, every facial landmark has particular shape characteristics that

make it a suitable option for face processing applications. In Section 3.1, a set of facial

landmarks was prescribed and ground–truth data was collected for the purpose of this thesis

(see Section 3.1.4). In this Section, the prescribed set of facial landmarks is analysed to

identify distinctiveness. To do this, facial landmark metrics for this analysis along with an

experimental methodology are first defined. Training data for this analysis is then reviewed.

Finally, distinctiveness for the eleven facial landmarks are reported.

3.3.1 Facial Landmark Metrics

The facial landmark analysis is taken to define distinctiveness among the eleven prescribed

facial landmarks. Common metrics in the literature (Section 2.5) to asses a facial land-

mark localisation are repeatability and accuracy. However, this facial landmark analysis

is constrained to the FRGC database and the recently collected ground–truth, making this

experiment unique. Therefore, it is considered appropriate to adapt a binary classification

approach for this analysis. Thus, for every facial landmark, simple features are computed to

generate candidate lists; this provides information to analyse each landmark in terms of the

following metrics (Fawcett, 2004):

a) Retrieval: a metric that determines the number of landmark candidates with respect to

the total number of vertices within an image:

Retrieval =
Number of candidates

Number of vertices
(3.1)
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A low retrieval rate indicates a reduced number of candidates for a specific facial land-

mark. Knowing this metric, processing time could be saved in further investigation.

b) Accuracy: a degree of veracity, is a measurement of how well the binary classification

test correctly identifies or excludes a facial landmark:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

c) Repeatability: a degree of reproducibility, is an indicator about how robustly a facial

landmark can be identified:

Repeatability =
TP

TP + FP
(3.3)

Hallinan et al. (1999) considered that repeatability should be consistent for the same

face over reasonable variations in view position, expression, age, weight, etc.

d) Specificity: a degree of speciality, which rates how negative facial landmarks are cor-

rectly identified.

Specificity =
TN

TN + FP
(3.4)

Where, true positive (TP), false positive (FP), true negative (TN), and false negative

(FN) landmark candidates in Equations 3.2 to 3.4, are obtained from a binary classifica-

tion scheme (see Table 3.6).

3.3.2 Testing Procedure

The testing procedure to analyse the eleven facial landmarks (Figure 3.2) is as follows:

1. As described in Section 3.2.1, separate training and testing sets are defined. Specifi-

cally, in this experiment trainingSet–2 and testingSet–1 are used, which account 200

and 100 shape images, respectively.

2. This experiment is to analyse eleven facial landmarks from a local to a global per-

spective. For simplicity, distance to local plane (DLP) features are used, because

they can be computed by defining a single radius. Hence, in this experiment five radii

are investigated (i.e. a multi–scale analysis), as shown in Table 3.5.
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3. For each of the eleven facial landmarks, DLP training data are computed at ground–

truth level, using five radii (Table 3.5). A discussion about this training data is pro-

vided in Section 3.3.3.

4. One–hundred different shape images are used for testing (testingSet–1). For each of

these, DLP features (using five radii, Table 3.5) are computed for every vertex.

5. Every vertex with DLP value within three standard deviations to the mean of respec-

tive training data is labelled as a candidate landmark. To do this, a Mahalanobis

distance (Duda et al., 2001) is calculated.

6. For every facial landmark, a set of potential true positive (PTP ) landmarks is defined,

by collecting every vertex within a radius of 12 mm at ground–truth level.

7. A binary classification scheme (Table 1.1) is applied to every testing image, assessing

eleven facial landmarks. This task is basically defined by PTP and candidate sets, as

illustrated in Table 3.6.

8. Retrieval, accuracy, repeatability and specificity metrics for every testing image per

facial landmark are computed. To do this, the binary classification scheme shown in

Table 3.6 is used.

9. Final figures for every metric are plotted by averaging one–hundred outcomes for

every facial landmark.

3.3.3 Training Data Discussion

This discussion is based on box plots, from the training data, shown in Figure 3.5 to Fig-

ure 3.9. This exercise is helpful in understanding how these eleven facial landmarks are

distinctive when computed from different radii. As observed in Figure 3.5, a radius of

10 mm is too small to make any facial landmark distinctive. However, the pronasale land-

mark started to become identifiable from other landmarks when a radius of 20 mm was used

(Figure 3.6), and it is completely distinctive within a radius of 40 mm (Figure 3.7). The

distinctiveness is decreased with larger radii, such as 60 mm and 80 mm, as shown in Fig-

ure 3.8 and Figure 3.9. Note the trade–off between the radius value and distinctiveness

Table 3.5: Set of radius to compute DLP features to analyse a set of eleven facial landmarks.

DLP radius [mm]
10 20 40 60 80

69



Chapter 3. Facial Landmark Analysis

Table 3.6: Binary classification approach to analyse a set of eleven facial landmarks.

True positive TP Candidates within PTP

False positive FP Candidates which are not in PTP

True negative TN Vertices not selected as candidates which are not in PTP

False negative FN Vertices in PTP not selected as candidates

among facial landmarks. A small radius (10 mm) does not provide maximum distinctive-

ness for any facial landmark. Larger radii, which are useful to globally explore the surface

shape, promote only distinctiveness for the pronasale landmark. However, this facial land-

mark would be less distinctive when detected from data with extreme pose variations, such

as pure profiles. An interesting radii–interval to make the pronasale landmark distinctive

can be observed from 10–40 mm. In particular, a radius of 40 mm looks to be ideal to make

this facial landmark distinctive. However, this radius has a poor small–scale shape analysis,

and small facial features are hard to detect. This is not surprising, as the pronasale landmark

is located on a visually salient part of the human face, which additionally is mostly rigid

and is larger in comparison to other facial features, e.g. the eyes.

It is noted, in passing, that larger scale features take significantly longer to compute, as

on average, the number of vertices to process is proportional to the square of the radius of

the local region. This is exacerbated by the computational complexity of the DLP extrac-

tion algorithm, which in this research, uses Singular Value Decomposition (SVD) on the

local point cloud within a constant radius (O(1)). A definition of DLP features is found in

Section 2.4.2.

3.3.4 Distinctiveness

In this section, the results for the eleven facial landmarks analysis are reported. Respective

retrieval, accuracy, repeatability, and specificity metrics per facial landmark are shown in

Table 3.7 to Table 3.10, and in Figure 3.10 to Figure 3.13.

Figure 3.10 shows the retrieval rate (Equation 3.1) for the eleven facial landmarks using

five radii (Table 3.5). This figure shows the power of discrimination for every facial land-

mark in terms of the number of retrieved vertices. Ratios in Table 3.7 indicate that overall,

the pronasale landmark can be most easily discriminated from the other ten landmarks. The

endocanthions are in second place, and in this case, the lowest percentage of vertices are

retrieved when a radius of 20 mm is used. In general, it is observed that landmarks over

flatter facial features (labiale superius, labiale inferius and the chin centre) retrieve a low

percentage of vertices when a larger radius is used.
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Figure 3.5: Box plots from DLP training data for eleven landmarks (Figure 3.2) using a radius of
10 mm.
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Figure 3.6: Box plots from DLP training data for eleven landmarks (Figure 3.2) using a radius of
20 mm.
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Figure 3.7: Box plots from DLP training data for eleven landmarks (Figure 3.2) using a radius of
40 mm.
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Figure 3.8: Box plots from DLP training data for eleven landmarks (Figure 3.2) using a radius of
60 mm.
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Figure 3.9: Box plots from DLP training data for eleven landmarks (Figure 3.2) using a radius of
80 mm.

Table 3.7: Retrieval rates (Equation 3.1) for eleven facial landmarks using DLP features with five
different radii.

Landmark 10 mm 20 mm 40 mm 60 mm 80 mm

Right exocanthion 99.50% 62.78% 68.04% 65.00% 67.27%
Right endocanthion 99.19% 10.53% 15.93% 36.47% 47.45%
Subnasion 99.51% 80.99% 86.02% 74.19% 54.81%
Left endocanthion 99.29% 15.22% 25.08% 47.67% 56.04%
Left exocanthion 99.51% 74.04% 67.48% 62.57% 59.25%
Pronasale 0.68% 14.05% 1.29% 3.08% 5.33%
Right cheilion 99.51% 93.63% 88.19% 76.75% 59.42%
Labiale superius 99.51% 77.19% 38.78% 22.78% 17.38%
Left cheilion 99.51% 88.20% 89.07% 81.10% 61.23%
Labiale inferius 99.51% 99.20% 81.99% 39.71% 23.06%
Chin’s centre 99.49% 39.35% 16.22% 11.32% 9.19%
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Table 3.8: Accuracy rates (Equation 3.2) for eleven facial landmarks using DLP features with five
different radii.

Landmark 10 mm 20 mm 40 mm 60 mm 80 mm

Right exocanthion 1.11% 37.66% 32.51% 35.60% 33.34%
Right endocanthion 1.48% 89.91% 84.59% 64.08% 53.14%
Subnasion 1.25% 19.61% 14.66% 26.51% 45.90%
Left endocanthion 1.35% 85.18% 75.38% 52.82% 44.47%
Left exocanthion 1.16% 26.50% 33.09% 38.06% 41.39%
Pronasale 98.63% 86.66% 99.33% 97.58% 95.36%
Right cheilion 1.25% 7.12% 12.56% 24.01% 41.33%
Labiale superius 1.32% 23.54% 62.01% 78.01% 83.42%
Left cheilion 1.24% 12.50% 11.66% 19.64% 39.51%
Labiale inferius 1.32% 1.63% 18.84% 61.12% 77.76%
Chin’s centre 1.38% 61.28% 84.50% 89.51% 91.65%

Table 3.9: Repeatability rates (Equation 3.3) for eleven facial landmarks using DLP features with
five different radii.

Landmark 10 mm 20 mm 40 mm 60 mm 80 mm

Right exocanthion 0.62% 0.87% 0.89% 0.98% 0.96%
Right endocanthion 0.68% 5.84% 4.38% 2.02% 1.52%
Subnasion 0.76% 0.84% 0.84% 0.97% 1.31%
Left endocanthion 0.64% 3.71% 2.45% 1.35% 1.09%
Left exocanthion 0.67% 0.83% 0.95% 1.08% 1.16%
Pronasale 1.07% 5.08% 59.20% 25.80% 14.20%
Right cheilion 0.76% 0.81% 0.86% 0.99% 1.26%
Labiale superius 0.83% 1.00% 2.07% 3.65% 4.89%
Left cheilion 0.75% 0.82% 0.83% 0.92% 1.20%
Labiale inferius 0.83% 0.84% 1.01% 2.08% 3.68%
Chin’s centre 0.87% 1.88% 4.96% 7.81% 9.75%
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Table 3.10: Specificity rates (Equation 3.4) for eleven facial landmarks using DLP features with five
different radii.

Landmark 10 mm 20 mm 40 mm 60 mm 80 mm

Right exocanthion 0.50% 37.37% 32.13% 35.22% 32.94%
Right endocanthion 0.81% 89.96% 84.57% 63.92% 52.89%
Subnasion 0.50% 19.07% 14.05% 25.97% 45.49%
Left endocanthion 0.72% 85.21% 75.32% 52.61% 44.19%
Left exocanthion 0.50% 26.08% 32.70% 37.67% 41.02%
Pronasale 99.32% 86.56% 99.37% 97.59% 95.34%
Right cheilion 0.50% 6.41% 11.90% 23.42% 40.87%
Labiale superius 0.50% 22.95% 61.70% 77.83% 83.28%
Left cheilion 0.50% 11.87% 11.01% 19.04% 39.04%
Labiale inferius 0.50% 0.81% 18.16% 60.77% 77.56%
Chin’s centre 0.51% 61.05% 84.43% 89.43% 91.59%
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Figure 3.10: Retrieval rates per facial landmark. As observed, only the pronasale landmark is able
to achieve a low retrieval rate, indicating distinctiveness for this facial landmark. Additionally, when
computing DLP features with a radius of 20 mm, two endocanthion landmarks are also distinctive.
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Figure 3.11: Accuracy rates per facial landmark. As observed in this figure, the pronasale land-
mark is accurately located computing DLP features. In particular, the two endocanthion landmarks
achieved their highest accuracy rate with a radius of 20 mm, whereas, the center of the chin increases
its accuracy with a larger radius.

Accuracy ratios (Equation 3.2), shown in Table 3.8 and illustrated in Figure 3.11, con-

firm the pronasale and endocanthions as the most distinctive facial landmarks. Overall, the

pronasale landmark is the one that could be detected most accurately and, according to the

results in this experiment, a radius of 20 mm is ideal to detect the pronasale and endocan-

thion landmarks, where the latter achieved its maximum accuracy. The pronasale landmark

achieves the best accuracy ratio with a radius of 40 mm and a decrease in performance is

observed with larger radii.

Repeatability ratios (Equation 3.3) presented in Table 3.9 and Figure 3.12 indicate a sim-

ilar performance for the pronasale and endocanthions landmarks. As expected, the pronasale

landmark shows the best performance within a radius of 40 mm, and that performance is de-

creased at the same time as the radius is increased. Again, endocanthion landmarks are in

second place and they not only get their best score in a radius of 20 mm, but they are also as

repeatable as the pronasale landmark.

Table 3.10 and Figure 3.13 show specificity ratios (Equation 3.4) for the eleven land-

marks with a similar performance to previous metrics. As observed, the pronasale and

endocanthion landmarks present the best performance in a radius of 20 mm. This metric
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Figure 3.12: Repeatability rates per facial landmark. This figure shows clearly how repeatable
would be the pronasale landmark localisation. In here, a radius of 40 mm makes more repeatable
this facial landmark, and larger radii lead a decrease in performance.

suggests that these facial landmarks could produce a minimum number of false positives.

3.3.5 Discussion

In this chapter, eleven facial landmarks were analysed using an experimental methodology

created for this task. Results from the experimentation confirm the pronasale and endocan-

thions as the most distinctive facial landmarks in terms of retrieval, accuracy, repeatability

and specificity metrics.

The robustness shown by this triplet makes it an ideal solution for several applications.

However, the number of facial landmarks needed in face processing depends on the applica-

tion itself. For instance, a minimum of three non–colinear points are needed to consistently

orient a surface in the 3D space, where orientation is defined by three parameters: pitch, roll

and yaw. An alternate alignment option is the iterative closest point (ICP) algorithm which

can improve its performance, when at least one initial point correspondence is robustly pro-

vided. Similarly, Pears et al. (2010) introduce a novel process to produce normalised depth

maps based only on the pronasale landmark. Hallinan et al. (1999), proposed a 3D align-

ment procedure using the symmetry plane and a perpendicular plane which separates the

face from the head at the most planar lateral parts of the face, either at the temples or the
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Figure 3.13: As observed, specificity and accuracy ratios are related one another, as long as speci-
ficity indicates the number of false positives.

base of the ears. They used four facial landmarks for this task: the nasion, the base of the

nose, and the inner–eye cavities.

From this analysis, the pronasale and endocanthions are confirmed as the most dis-

tinctive facial landmarks; it is posited that by using these distinctive facial landmarks, less

distinctive facial landmarks can be identified, e.g. taking advantage of contextual informa-

tion. This statement can be illustrated using facial features, for example, the nose is the most

prominent part of the human face, so that it can be defined that a nose candidate must be

salient to be consistent with its shape. However, this property alone is not enough, because

false positives can easily appear (Adam’s apple, collars, or even hair styles). Therefore, a

nose candidate must also be distinctive within its neighbourhood, which means that other

facial features should be found (eyes, cheeks, mouth, etc.) before a salient shape can be

confirmed as a nose. It follows that mutual support among all involved facial landmarks

should assist their localisation.

The results in this facial landmark analysis are limited in many ways. First of all,

testingSet–1 is nearly all front pose with neutral expressions. Secondly, to make any fa-

cial landmark distinctive a feature descriptor needs to be computed. This experimentation

was done using simple DLP features, and therefore results in this chapter are only related to

this descriptor. Nevertheless, this facial landmark analysis is extended in the next chapter.

78



Chapter 3. Facial Landmark Analysis

3.4 Summary

In this chapter, a facial landmark analysis was presented and the experimental database

was introduced, along with the ground–truth data and experimental settings. Finally, the

prescribed set of eleven facial landmarks wree analysed to identify the most distinctive and

the findings were presented and discussed.
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Feature Descriptors and Analysis

In this Chapter, the experimental feature descriptors are further investigated. Section 4.1

analyses the feature descriptors in terms of repeatability, accuracy and complexity. For this

purpose, an experimental methodology is defined and performance figures are shown. In

Section 4.2, the point–pair descriptors are introduced. As part of this section, the perfor-

mance in localising pairs of pronasale and endocanthion landmarks is also investigated. In

Section 4.3 the point–triplet descriptors are introduced, showing their usability in localis-

ing triplets of pronasale and endocanthion landmarks as a first application. The chapter

discussion is presented in Section 4.4 and Section 4.5 summarises the chapter.

4.1 Feature Descriptors Analysis

As detailed in Section 2.7, the focus of this research is novel pose–invariant feature descrip-

tors. In particular, four state–of–the–art feature descriptors were selected, namely, distance

to local plane (DLP), spin images (Johnson and Hebert, 1999), and SSR features (Pears

et al., 2010). All of which were defined in Section 2.4. In this section, a testing proce-

dure is followed to analysis each of these feature descriptors when localising a prescribed

set of eleven facial landmarks (Figure 3.2). To do this, a simple process is followed. As

observed in Figure 4.1, every feature descriptor (FD) is computed from each vertex within

a testing face. Then, the vertex with the minimum Mahalanobis distance to the mean of

respective training data is taken as the best landmark estimation, which is stored for perfor-

mance evaluation. The outcomes of this experiment are then used to analyse properties for

every feature descriptor as discussed in the next subsection.
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Figure 4.1: Testing procedure to analyse feature descriptor’s properties when localising eleven facial
landmarks. First, every feature descriptor (FD) is computed for each vertex within a testing face
image. Then, the vertex with the minimum Mahalanobis distance to the mean of respective training
data is taken as the best estimation to a facial landmark, which is stored for performance evaluation.
Note that, DLP and SSR values are 1D features. Whereas, spin images and SSR histograms are
n–dimensional features, hence, their feature space is reduced for comparison.

4.1.1 Feature Descriptor Properties

For the purpose of this thesis, the experimental feature descriptors are analysed using three

properties: repeatability, accuracy and complexity, which are the most common attributes

found in related research (see Section 2.5).

a) Repeatability: will indicate how consistent a feature descriptor is when used to localise

a particular facial landmark.

b) Accuracy: will indicate how precisely localised a facial landmark is, using a specific

feature descriptor.

c) Complexity: will estimate the processing time expended to compute every feature de-

scriptor.

To assess repeatability and accuracy, results were gathered by computing localisation

errors between automatically localised landmarks and landmarks manually labelled in the

ground–truth data (Section 3.1.4), which makes it possible to plot cumulative error curves
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(Section 3.2.2). As illustrated in Figure 3.3, repeatability ratios (vertical axis) for a given

accuracy (horizontal axis) can be read from cumulative error curves.

The attribute of complexity for every feature descriptor is analysed using the big O

notation, which is useful to describes the worst–case scenario when computing a feature

descriptor. Additionally, experimental computing times for every feature descriptor are pro-

vided to assist this complexity analysis.

4.1.2 Testing Procedure

This analysis is done to investigate repeatability, accuracy, and complexity of the four fea-

ture descriptors. A basic system is then constructed for every feature descriptor, which is

referred to as a simple classifier system (SC–S). Giving four systems in total to localise

eleven facial landmarks as shown in Table 4.1. The testing procedure is as follows:

1. Separate training and testing sets are defined, as described in Section 3.2.1. Effec-

tively, in this experiment trainingSet–2 and testingSet–1 are used, which account for

200 and 100 shape images respectively.

2. For each of the eleven facial landmarks in Figure 3.2, training features are computed

at the ground–truth level (Section 3.1.4).

3. A radius of 20 mm is used to compute normalised DLP features. Whereas, normalised

SSR values are calculated using a radius of 20 mm and 128 sample points.

4. SSR histograms are constructed using 8 radii, from 10mm to 45mm in steps of

5mm, and 23 bins for normalised distance to surface (DTS) values. This gives SSR

shape histograms of dimension [8× 23].

5. Normalised spin images [8× 23] are computed using a maximum radius of 45mm, a

height of ±45mm, and a mesh resolution of 3mm.

6. Each feature descriptor is computed for every vertex within a testing file. Then, the

vertex with the minimum Mahalanobis distance to the mean of respective training

data (one per facial landmark) is considered the best estimation, and is stored for

performance evaluation.

7. Successful facial landmark localisation is analysed using reduced feature spaces for

spin images and SSR histograms, from 1 to 184 dimensions, using principal compo-

nent analysis (PCA).
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Table 4.1: Simple classifier systems to localise eleven facial landmarks.

System Description

SC–S1 Simple classifier based on DLP features
SC–S2 Simple classifier based on SSR values
SC–S3 Simple classifier based on spin images
SC–S4 Simple classifier based on SSR histograms

8. As detailed in Section 3.2.2, localisation errors from estimated facial landmarks to

the ground–truth within the FRGC database are computed. Then, cumulative error

curves are plotted, making it possible to read repeatability and accuracy properties.

9. The computational complexity for each feature descriptor is analysed using big O

notation.

4.1.3 Analysis of Repeatability & Accuracy

This subsection presents the individual performances for each feature descriptor when local-

ising eleven facial landmarks. Cumulative error curves per feature descriptor are displayed

in Figure 4.2 to Figure 4.5, from these curves, repeatability and accuracy per facial land-

mark for each feature descriptor are discussed generally. A summary of repeatability ratios

within an accuracy of 12 mm is provided at the end of this subsection (Table 4.2).

As illustrated in Figure 4.2, DLP features show their best performance when localising

the pronasale landmark (lndmrk6), followed by the endocanthions (lndmrk2 & lndmrk4),

the labiale superius (lndmrk8) and chin centre (lndmrk11) landmarks. Overall, this feature

descriptor has a poor performance, in which all facial landmarks have large errors and show

repeatability ratios lower than 50%. However, the good point with this feature descriptor is

that it makes the pronasale landmark distinctive within an accuracy of 15–20 mm .

SSR value features show a better performance compared to DLP features. As observed

in Figure 4.3, the pronasale landmark (lndmrk6) becomes more distinctive from the other

facial landmarks. In this case, 90% of pronasale landmarks can be localised within an

error lower than 12 mm. With respect to the other facial landmarks, the following was ob-

served: (in decreasing order) the endocanthions (lndmrk2 & lndmrk4), the labiale superius

(lndmrk8), the chin’s centre (lndmrk11) and the subnasion (lndmrk3). Despite this consid-

erable improvement, even with large errors, SSR value features do not achieve 100% of

repeatability for the pronasale landmark.

Figure 4.4 shows repeatability of successful localisation using spin-image features. As

observed, the dimension space reduction produces variation in localisation performance for
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Figure 4.2: Individual performance using DLP features when localising eleven facial landmarks.
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Figure 4.3: Individual performance using SSR value features when localising eleven facial land-
marks.
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(a) Successful localisation performance using 1 to 184 Eigenvectors.
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(b) Cumulative error curve using a feature space of 64 Eigenvectors.

Figure 4.4: Individual performance using Spin–Image features to localise eleven facial landmarks.
In (b), localisation performance using 64 dimensions is shown for comparison with SSR histograms
(see Figure 4.5).

each facial landmark, which is stable only for the pronasale landmark (lndmrk6) from 64

to 100 eigenvectors (see Figure 4.4a). Again, the most distinctive facial landmark with

this feature descriptor is the pronasale which achieves a repeatability ratio of 100%. In a

less stable manner, 100% of subnasion landmarks (lndmrk3) are also localised. The next

landmarks in performance are: labiale superius (lndmrk8), labiale inferius (lndmrk10), chin

centre (lndmrk11) and endocanthions (lndmrk2 & lndmrk4).
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Table 4.2: Summary: Repeatability ratios within an accuracy of 12 mm to localise eleven facial
landmarks using systems in Table 4.1 with embedded feature descriptors: DLP (SC–S1), SSR values
(SC–S2), spin images (SC–S3), and SSR histograms (SC–S4).

Landmark SC–S1 SC–S2 SC–S3 SC–S4

lndmrk1 Right exocanthion 2.00% 3.00% 38.00% 46.00%
lndmrk2 Right endocanthion 14.00% 14.00% 51.00% 68.00%
lndmrk3 Subnasion 1.00% 0.00% 99.00% 80.00%
lndmrk4 Left endocanthion 11.00% 9.00% 51.00% 30.00%
lndmrk5 Left exocanthion 3.00% 1.00% 50.00% 44.00%
lndmrk6 Pronasale 30.00% 91.00% 99.00% 100.00%
lndmrk7 Right cheilion 0.00% 0.00% 42.00% 23.00%
lndmrk8 Labiale superius 10.00% 3.00% 87.00% 92.00%
lndmrk9 Left cheilion 2.00% 1.00% 42.00% 47.00%
lndmrk10 Labiale inferius 0.00% 0.00% 84.00% 42.00%
lndmrk11 Chin’s centre 8.00% 7.00% 72.00% 61.00%

Localisation performance using SSR histograms is shown in Figure 4.5. As observed

from this figure, 100% of pronasale landmarks (lndmrk6) can be localised in a very stable

manner using 15 to 150 eigenvectors (see Figure 4.5a), whereas, the other facial landmarks

are shown as being unstable. Nonetheless, the next facial landmarks in performance are:

labiale superius (lndmrk8), subnasion (lndmrk3), chin centre (lndmrk11), and left endocan-

thion (lndmrk2). From these results it appears that that SSR histograms are more stable than

spin–images to localise the pronasale landmark.Unfortunately, their application for other fa-

cial landmarks cannot be observed in the same way.

4.1.3.1 Summary of Repeatability and Accuracy

To summarise this subsection, repeatability ratios within an accuracy of 12 mm (successul

localisation, Table 3.4), which is 3 times the average mesh resolution, were collected from

each feature descriptor. The localisation performance of spin–images and SSR histograms

were considered using a reduced feature space of 64 eigenvectors (see Figure 4.4b and Fig-

ure 4.5b), where both descriptors are stable . As observed in Table 4.2, the best repeatability

ratio (100%) is achieved by SSR histograms to localise the pronasale landmark. From the

same table, it is clear that spin–images and SSR histograms scored better repeatability ratios

than DLP and SSR values. This is logical, as long as the former feature descriptors encode

more surface information. It can also be observed that spin images achieve distinctive re-

peatability ratios for both, the pronasale and subnasion landmarks. In a lower repeatability

ratio, the labiale superius and labiale inferius landmarks are also robust using either spin

images or SSR histograms features.
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(a) Successful localisation performance using 1 to 184 Eigenvectors.
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(b) Cumulative error curve using a feature space of 64 Eigenvectors.

Figure 4.5: Individual performance using SSR histogram features to localise eleven facial land-
marks. As observed in (a), SSR histograms are able to achieve 100% successful localisation using
a feature space of 20 dimensions. However, (b) shows sucessful localisation performance using a
feature space of 64 dimensions for comparison with spin images. As observed in Figure 4.4, spin
images are stable (at least for a couple of landmarks) until 64 dimensions are used.
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4.1.4 Analysis of Complexity

An appropriate way to assess computational cost (complexity) is by using the big O nota-

tion, which is generally accepted as measuring the effort required to perform an algorithm.

The usual way to do this, is by counting the number of significant operations within an al-

gorithm, with the ultimate aim of describing the worst–case scenario (Biggs, 1989). With

this purpose, Algorithms 4.1 to 4.4 for DLP, SSR values, spin images, and SSR histograms

are implemented. These algorithms are based on Matlab code, therefore, they provide a

coarse estimation of complexity. Additionally, this analysis of complexity is supported by

experimental computing times.

4.1.4.1 Distance to Local Plane (DLP)

Observing Algorithm 4.1, it can be noted that DLP is a simple feature descriptor, where the

most significant operation is to estimate a normal vector. As mentioned in Section 2.4.2,

normals from points for DLP features are estimated using singular value decomposition

(SV D) of the covariance matrix Σ (Step 5). In this case, computational cost of Σ is inferred

by a neighborhood of constant radius r (Step 1). Generally, these neighbouring points are

separated at equivalent distance (resolution) within the same image. This implies that the

number of points used for SVD is bounded by this constant radius. However, to collect

neighbouring points, every vertex within the image needs to be evaluated. Nevertheless,

this evaluation is O(1) by using a vectorisation of the N data vertices, which is the case in

this thesis. Thus, computing DLP features for an instance with N vertices would be O(N).

Algorithm 4.1 Compute a DLP feature
Require: A radius ri and a point x ∈ R3

Ensure: A DLP feature
1: X ← neighbours(x, ri)
2: M ← mean(X)
3: Xzm ← (X −M)
4: Σ← XT

zmXzm

5: [U S V ]← svd(Σ)
6: ~n← sign(V (3)) ∗ V (3)
7: xzm ← (x−M)
8: DLP ← ~n ∗ xzm
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4.1.4.2 SSR Values

As observed in Algorithm 4.2, complexity for an SSR value feature is as follows: first,

an RBF model is generated (Step 1), which in the case of this thesis, is O(NlogN) (Carr

et al., 2001); a constant number of sample points n1 are then generated and evaluated in

the RBF model (Steps 2–5). By definition, see Section 2.4.4, n1 = 128 sample points are

recommended to compute SSR values. This implies, that n1 has an effect when computing

SSR values for an instance with N vertices, which would be O(n1 ∗N).

Algorithm 4.2 Compute an SSR value
Require: Surface S, radius r, point x ∈ R3

Ensure: An SSR value from point x
1: R← rbfModel(S)
2: s← rbfSamplePoints(r, k)
3: scale(s, r)
4: translate(s, x)
5: DTS ← R(s)
6: SSRvalue ← 1

n

∑n
i=1 sign(DTSi)

4.1.4.3 Spin–Images

As observed in Algorithm 4.3, complexity when computing a spin–image feature is as fol-

lows: by definition (see Section 2.4.3), a normal vector from the point of interest is needed.

This investigation follows the same approach as in DLP features; normal vectors are then

computed using SV D from a neighbourhood of points, and neighbouring points are col-

lected in a vectorised way O(1); finally, spin map coordinates are calculated and binned for

every vertex (Steps 3–5). To do this, every vertex in the surface image P is operated. Thus,

to compute spin–image features for an instance with N vertices would be O(N2).

Algorithm 4.3 Generate a [i× j] Spin–image features
Require: Surface points P , radius r, oriented point O ∈ R3

Ensure: [i× j] Spin image
1: ~n← normal(P,O, r)
2: for every point x in P do
3: [α β]← spinCoordinates(O,~n, x)
4: [i, j]← spinImageBin(α, β)
5: SI(i, j)← SI(i, j) + 1
6: end for
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4.1.4.4 SSR Histograms

Finally, Algorithm 4.4 is used to illustrate complexity when computing SSR histograms:

first, an RBF model is interpolated, which in the case of this thesis is O(NlogN) (Carr

et al., 2001); n2 sample points are then generated (Step 2). The n2 sample points are eval-

uated in the RBF model q times (Step 6), which is the number of radii. By definition, see

Section 2.4.4, n2 = 512 sample points are recommended to compute SSR histograms. This

implies, that n2 and the number of radii q have an effect when computing SSR histograms,

which for an instance with N vertices, would be O(q ∗ n2 ∗N).

Algorithm 4.4 Generate a [q × p] SSR histogram feature
Require: Surface points P , q radii set, p bins, point x ∈ R3

Ensure: [q × p] SSR histogram
1: R← rbfModel(S)
2: s← rbfSamplePoints(r, k)
3: for i = 1 to size(q) do
4: s← scale(s, qi)
5: translate(s, x)
6: DTS ← R(s)
7: DTS ← DTS/qi
8: SSR(i, :)← bin(DTS, p)
9: end for

4.1.4.5 Summary of complexity

To summarise this subsection, Table 4.3 shows both, theoretical and experimental costs

for the feature descriptors of interest, DLP, SSR values, spin images, and SSR histograms.

For the purpose of this analysis, an algorithm for each feature descriptor was implemented

(Algorithms 4.1 to 4.4) based on Matlab code. Thus, through these algorithms, this analysis

of complexity provides a coarse idea of the computing cost for each feature descriptor.

In addition to the theoretical analysis of complexity, experimental times are taken for

every feature descriptor using a 3D face image with 5897 vertices. Each feature descriptor

is then computed for every vertex within the testing image, registering the processing time.

This computation is performed on an AMD Athlon 64 Dual core 2.2 Ghz personal computer

with 4 Gb in RAM, running Windows XP as an operating system. The experimental times

are shown in Table 4.3.

Evidence on Table 4.3, about the four feature descriptors analysed in this section, indi-

cates that DLP is the simplest one; whereas, SSR histograms are the most computationally

expensive.
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Table 4.3: Computing times for four feature descriptors: Theoretical cost using big O notation, and
experimental time when every feature descriptor is computed for each vertex within a 3D face image
with 5897 vertices. In here, n1, n2, and q, are related to sampling an RBF model when computing
SSR features.

Descriptor Theoretical cost Experimental time [sec]

DLP O(N) 1.6547
SSR values O(n1 ∗N) 657.2729
Spin images O(N2) 1830.2125
SSR histograms O(q ∗ n2 ∗N) 5911.2363

Both the theoretical and experimental costs presented in this section are based on Algo-

rithms 4.1 to 4.4. Therefore, improved results are possible by using alternate implementa-

tions.

4.2 Point–pair Descriptors

This section introduces two variants of point–pair feature descriptors, which encode a 3D

shape between a pair of 3D points (candidate landmarks) in a pose invariant way (Romero

and Pears, 2009b).

The first is the point–pair spin image, which is related to the classical spin image of

Johnson and Hebert (1999), and the second which is derived from an implicit radial basis

function (RBF) model of the facial surface. This is called a cylindrically–sampled RBF

(CSR) histogram, which is related to previous work on spherically sampled RBF (SSR)

shape histograms (Pears et al., 2010). Both of these descriptors can effectively encode edges

in graph based representations of 3D shapes, and they are designed to be pose–invariant.

Thus, they are useful in a wide range of 3D graph–based retrieval applications, not just 3D

face recognition.

Here, however, as a first application of these descriptors, their ability to localise the

pronasale and endocanthion landmarks in a pose invariant way is evaluated. This is possible

by applying a two step process: firstly, a pair of candidate landmark lists were populated,

using simple descriptors that measure local convexity. These descriptors are the distance to

local plane and SSR convexity values, described previously in Section 2.4. Then, candidate

landmark pairs are created, based on their Euclidean distance. After that, point–pair descrip-

tors are created and compared against training data, in order to select the best combination

of landmark pair.

The next subsection formally introduces the point–pair descriptors, followed by their

application to localise pairs of pronasale and endocanthion landmarks (the most distinctive
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Figure 4.6: A point–pair spin-image uses a direction vector ~v to compute spin coordinates: α and β.

facial landmarks) is shown. For this purpose, the experimental methodology is presented

and performance figures discussed.

4.2.1 Point–pair Spin–Images

A point–pair spin-image is a modification of the Johnson and Hebert (1999) classical spin-

image, which cylindrically encodes a 3D shape around some specified surface point, relative

to the surface normal of that point. In the point–pair spin-image representation, a direction is

defined using a pair of 3D surface points, which are landmark candidates in our application,

(see Figure 4.6). Points lying within a 3D solid cylinder of some radius, and which have their

length and axis defined by the 3D point pair, are binned into a two–dimensional histogram.

One dimension of bins encodes a range of different radii from the 3D point–pair axis, and

the other dimension of bins encodes normalised distances along the axis (we refer to this

as a height), where the normalisation is achieved by dividing by the length of the cylinder

axis. Note that this descriptor is pose invariant, but is directed, in the sense that shape is

encoded in a consistent direction, from one 3D landmark to another. Different approaches

and applications can be envisaged in which the use of an undirected descriptor might be

desirable, in which case, the distance along the cylinder axis should be measured from the

centre and should be unsigned. Both approaches are considered in this investigation.

4.2.2 Cylindrically Sampled RBF (CSR) Histograms

CSR histograms are analogously derived from Pears’ SSR descriptors (Pears et al., 2010),

as point–pair spin images are derived from classical spin images.

To create a CSR shape histogram, a cylindrical 3D sampling pattern is produced by gen-
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(a) Cylindrical pattern. (b) Cylindrical pattern over a face surface.

Figure 4.7: A CSR histogram is produced by sampling a facial surface, represented by an RBF
model, using a cylindrical pattern. In this Figure, this pattern is shown positioned from the pronasale
to the left endocanthion landmarks, as occurs in both training and testing phases.

erating a set of n sample points around each of q concentric circles. This set of q concentric

circles is then repeated at regular intervals along the axis defined by the 3D point pair to

gives h sets of concentric circles (these different axial positions are referred to as variations

in heights along the sampling cylinders). This cylindrical sampling pattern, placed between

the pronasale and left endocanthion is shown in Figure 4.7. Thus, the RBF, s, is evaluated

at N = nqh sample points on a set of concentric cylinders, and these evaluations are nor-

malised by dividing by the associated cylinder radius, ri, giving a set of values that mostly

lie in the range −1 to 1. In these experiments h = q = 8, which means that there are

8 cylinders, with eight sampling planes at different heights on that cylinder. Binning the

normalised RBF evaluations sn = s
ri

over p bins, allows construction of a [q × p] CSR

shape histogram. Note that, in constructing such a histogram, it is possible to bin relative

to the 8 radii or the 8 normalised height values along the cylinder or all information could

be retained in a [q × p × h] histogram. These three approaches are all investigated in the

experimentation. CSR histograms binned against radii and against heights are shown in

Figure 4.8a and Figure 4.8b, respectively.

4.2.3 Landmark Localisation using Point–pair Descriptors

The point–pair feature descriptors are now applied to localise pairs of pronasale and en-

docanthion landmarks. To do this, six different systems are investigated, as described in

Table 4.4. The experimental framework (illustrated in Figure 4.9) is as follows: To extract

a point–pair descriptor, a set of candidate pairs needs to be created initially. To do this,
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(a) CSR histogram binned againts radii values. (b) CSR histogram binned againts height values.

Figure 4.8: CSR histograms describing 3D shape from the pronasale to the left endocanthion land-
marks: (a) Histogram has binned values with respect to radius, (b) Histogram has binned values with
respect to height along cylinder axis.

vertex–based feature descriptors (DLP and SSR values) were used, which encode shape in a

spherical neighbourhood of a single vertex, and which have proved to be robust in previous

experimentation (Pears et al., 2010; Romero and Pears, 2009a, 2008).

For a given set of 3D point clouds, DLP values are computed and only points within

three standard deviations from trained DLP data of the pronasale and endocanthion land-

marks are retained. Every DLP candidate point is now compared against trained SSR con-

vexity values, and only candidate points below SSR value thresholds are retained.

There are now two lists of candidate points which have been evaluated with local (spher-

ical neighbourhood) feature descriptors, and clusters of similar values around the pronasale

and endocanthion landmark regions have been observed. However, evaluating every pos-

sible combination is computationally expensive and it is desirable to further reduce the

number of candidates. To do this, only candidate vertices (within some predefined spherical

neighbourhood) with the minimum Mahalanobis distance to the mean of SSR value training

data are kept.

Pairs of candidates are then produced by exhaustive combination, and unlikely pairs are

eliminated by using trained Euclidean distance information between pronasale and endocan-

thion landmarks. Here, every pair of candidates, within three standard deviations of trained

Euclidean distance, is retained. Next, for every pair of candidates a point–pair descriptor

is computed and compared against trained point–pair data. Finally, the point–pair with the

minimum Mahalanobis distance to the mean of training features is stored for performance

evaluation.
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Figure 4.9: Experimental framework to localise the pronasale and endocanthion landmarks using
point–pair descriptors.

Table 4.4: Implementations using point–pair descriptors.

Method

PP–S1 [p× q] CSR histograms binned against radii, [23× 8]
PP–S2 [p× h] CSR histograms binned against height, [23× 8]
PP–S3 As system 2, but using a single cylinder, radius = 20mm
PP–S4 [p× q × h] CSR histograms, [23× 8× 8]
PP–S5 Directed point–pair spin images, [23× 8]
PP–S6 Undirected point–pair spin images, [23× 8]
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4.2.3.1 Testing Procedure

Six localisation systems for endocanthion and pronasale landmarks were created, each of

which uses the same training and testing 3D scans. However, they use different point–pair

descriptors as mentioned in Table 4.4. The experimental methodology is as follows:

1. As documented in Section 3.1.4, eleven facial landmarks for each record in the FRGC

database were collected by manually clicking on enlarged intensity images and then

computing the corresponding 3D point using the registered 3D shape information.

2. Separate training and testing sets are defined, as described in Section 3.2.1. Particu-

larly for this experiment trainingSet–2 is used, which accounts for 200 shape images

from different people.

3. For each of these 200 training 3D images, CSR shape histograms at the ground–truth

pronasale to endocanthion landmarks are constructed, using 8 height values and 8

radii of 10 mm to 45 mm in steps of 5 mm and 23 bins for normalised RBF values.

This gave CSR shape histograms of dimension [23× 8].

4. For the same training set as above, directed and undirected point–pair spin images

from the ground–truth pronasale to endocanthion landmarks are computed. In this

method, spin–coordinates are calculated using the direction vector from pronasale to

endocanthion landmarks (spinning from the centre of the cylinder). A [23 × 8] spin-

image is produced using appropriate α and β values to cover an equivalent volume to

the CSR histograms.

5. DLP and SSR values are computed, using a radius of 20 mm and 128 sample points

for SSR values.

6. The localisation systems are evaluated in two scenarios, considering variations in

depth and facial expressions (see Table 3.3). Naturally, there are variations in illumi-

nation and small variations in pose.

7. Principal component analysis (PCA) is applied to reduce the point–pair feature space

dimensionality to 64.

8. For all pair candidates on all test images, the pair of candidates with the minimum

Mahalanobis distance to the mean of point–pair training data is taken as pronasale

and endocanthion landmarks, and then stored for performance evaluation.
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Table 4.5: Summary: succesful landmark localisation using point–pair descriptors as defined in
Table 4.4.

Scenario #1 Scenario #2
Overall

Spring–2003 Fall-2003 Spring–2004

PP–S1 Eyes 91.94% 96.81% 96.54% 96.03%
Nose 99.60% 99.53% 99.77% 99.65%

PP–S2 Eyes 92.73% 94.29% 96.20% 94.97%
Nose 99.60% 99.20% 99.60% 99.44%

PP–S3 Eyes 90.17% 92.76% 93.31% 92.67%
Nose 99.01% 98.73% 99.37% 99.07%

PP–S4 Eyes 90.56% 89.38% 92.00% 90.76%
Nose 98.23% 97.54% 98.07% 97.88%

PP–S5 Eyes 75.83% 86.26% 85.88% 84.68%
Nose 95.28% 98.00% 98.52% 97.88%

PP–S6 Eyes 84.08% 92.16% 92.63% 91.29%
Nose 96.26% 98.87% 99.37% 98.75%

9. As described in Section 3.2.2, the localisation systems is assessed using cumulative

error curves. Additionally, the performance figures are quoted by using threshold

values in Table 3.4.

4.2.3.2 Localisation Performance

Figure 4.10 shows the overall performance to localise pairs of pronasale and endocan-

thion landmarks using the six localisation systems, Figure 4.10a for endocanthion and Fig-

ure 4.10b for pronasale landmarks. These results were generated by averaging the results

from the three data sets presented in Table 3.3. Table 4.5 summarises localisation perfor-

mance, where success is defined according to an error threshold of 12 mm (see Table 3.4).

These results indicate that the pronasale is a more distinctive landmark in 3D data, when

compared with the endocanthions using the point–pair descriptors. From Table 4.5, it can

be observed that a histogram which bins against radii (PP–S1) has produced a slightly bet-

ter result in comparison with our other three CSR histogram implementations. In this case,

99.65% and 96.03% of pronasale and endocanthion landmarks, respectively, have been suc-

cessfully localised. Undirected point–pair spin images (PP–S6) report a better performance

than the directed point–pair spin images (PP–S5), in the sense that 98.75% and 91.29% of

pronasale and endocanthion landmarks, respectively, were successfully localised.
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(a) Endocanthion landmark localisation performance.
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(b) Pronasale landmark localisation performance.

Figure 4.10: Successful performance using point–pair descriptors to localise pairs of pronasale and
endocanthion landmarks (systems in Table 4.5).

98



Chapter 4. Feature Descriptors and Analysis

4.3 Point–triplet Descriptors

This section introduces the point–triplet feature descriptors, which given a triplet of 3D

points, are able to encode a 3D shape contained in the triangular region defined by this

triplet into a surface signature.

It presents two variants of point–triplet descriptors. The first is related to the classical

depth map feature, this feature is referred to as weighted–interpolated depth map. The sec-

ond variant of descriptors are derived from an implicit radial basis function (RBF) model,

they are referred to as surface RBF signature (SRS) features, which are related to the pre-

vious work in sampling an RBF model (Pears et al., 2010). Both variants of descriptors are

a natural extension of the previous work in landmark localisation. They are able to encode

surface information within a triangular region defined by a point–triplet into a surface sig-

nature, which could be useful not only for 3D face processing but, also, within a number of

graph based retrieval applications.

However, this section evaluates their ability to identify point–triplets of facial land-

marks, endocanthions and pronasale landmarks, as a first application. To do this, first gen-

erate candidate landmark–triplets as follows: for every vertex, DLP and SSR value features

were computed, and only those within three standard deviations were retained. Then, us-

ing contextual support, a pair of candidate landmarks were created. As long as SSR value

features robustly detect the pronasale landmark, it was found that many candidate pairs of

endocanthions can be deleted, as no pronasale landmarks support them. After this, only

candidate landmarks with the minimum Mahalanobis distance to the mean of training SSR

value features, within a radius of 10 mm, are kept. This is found necessary to reduce the po-

tential number of candidate triplets. Unique combinations of endocanthions and pronasale

landmarks, with mutual contextual support, were then created, using a right-hand orien-

tation, from the left to the right endocanthion, and then to the pronasale landmark. Such

orientation was defined using the normal to the plane defined by each triplet, which was

oriented towards the camera’s viewpoint. At the end of this process, a practical number

of candidate point–triplets for every testing face was obtained, to which, the point–triplet

descriptors were applied.

In the following subsections the point–triplet feature descriptors are defined, followed

by the experimental evaluation used to identify triplets of facial landmarks, including method-

ology and performance figures.
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4.3.1 Weighted–interpolated depth map

A weighted–interpolated depth map is a point–triplet descriptor closely related to a classical

depth map feature. The idea here is to compute a depth map using a point–triplet which

effectively defines a triangular–plane within a surface as illustrated in Figure 4.11. Given a

triplet of 3D points {p1, p2, p3}, a weighted–interpolated depth map is computed as follows.

Firstly, the baricenter of the triangular–plane is computed, and this point is used as the

origin. From this origin, define a local right–hand basis for this triangular–plane, based on

the normal’s plane, which is oriented towards the camera’s viewpoint. Then, a [13 × 13]
regular grid is created, but only those points within the triangular region are used. To do

this, a binary mask is used, as shown in Figure 4.11. Then, for each sampling point within

this triangular mask, a depth is estimated by using inverse square weighted interpolation:

f(x, y) =

n∑
i=1

f(xi, yi)
R2
i

n∑
i=1

1
R2
i

(4.1)

where R2
i = (x − xi)2 + (y − yi)2. To do this, neighbouring points in a radius r =√

dw2 + dh2 are collected, where dw = width/12 and dh = height/12. In this definition,

width and height are the Euclidean distance from p1 to p2, and from the middle–point

of (p1, p2) to p3, respectively. Figure 4.12 shows two depth map samples: one from the

landmark–triplet: left endocanthion, right endocanthion, and pronasale; and another from

the landmark–triplet: right endocanthion, right exocanthion, and right cheilion.

4.3.2 Surface RBF Signature (SRS) Features

In this subsection four alternate features to analyse a 3D shape given a triplet of 3D points

are presented. All of them use a radial basis function (RBF) model to compute depths. Thus,

this family is referred to as surface RBF signature (SRS) features, namely: baricenter depth

map, 7–bins SRS vector, SRS depth map, and SRS histogram.

The goal here is to sample an RBF model by a set of n points which lie within the

triangular–plane defined by {p1, p2, p3}. There are several ways to generate such sets of

sampling points, beginning with the classical approach to computing a depth map using a

regular grid. However, the point of interest is the shape enclosed by this triplet of points,

only points within this triangle are considered here, this is done by using a binary mask (see

Figure 4.11).

A triplet of non–colinear points which define a triangle is expected. Taking advantage
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Figure 4.11: A triangular depth map is computed by generating a [13× 13] regular grid, then apply-
ing a binary mask. In this definition, a local basis (~a,~b, ~n) for the given point–triplet {p1, p2, p3} is
defined, where ~n is the plane’s normal vector, ~a is a directed vector from p1 to p2, and~b is a directed
vector from the middle point of (p1, p2) to p3.

2 4 6 8 10 12

2

4

6

8

10

12

(a)

2 4 6 8 10 12

2

4

6

8

10

12

(b)

Figure 4.12: Weighted–interpolated depth map samples: (a) from the landmark–triplet: left endo-
canthion, right endocanthion, and pronasale; and (b) from the landmark–triplet: right endocanthion,
right exocanthion, and right cheilion. Both landmark–triplets are from the same person.
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(d) Iteration 4

Figure 4.13: Sampling points computing baricenters from a triangular region in the 3D space, de-
fined by {p1, p2, p3}, from 1 to 4 iterations. Every iteration gives 7, 25, 121, 673 sampling points
respectively (Table 4.6). The main baricenter is marked with a green circle.

Table 4.6: Number of sampling points following a baricenter approach. A graphical illustration is
shown in Figure 4.13.

Iteration Sampling points
1 7
2 25
3 121
4 673

of their geometry, it is then straightforward to compute their baricenter. Furthermore, it is

easy to do this process iteratively. Figure 4.13 shows four iterations given a point–triplet

{p1, p2, p3}. Table 4.6 summarises the total number of points for each iteration.

This is referred to as a baricenter sampling points algorithm which motivates the compu-

tation of the SRS descriptors: baricenter depth map, 7–bins SRS vector, and SRS histogram,

introduced in the following subsections.
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Figure 4.14: Labelled sampling points, computing baricenters from a triangular region in 2 itera-
tions.

4.3.2.1 Baricenter Depth Map

A baricenter depth map is a straightforward solution, which is generated from sampling

points using the baricenter–based algorithm with two iterations.

Figure 4.14 shows 25 labelled sampling points generated using the baricenter approach

with 2 iterations. It is known that these sampling points will be the same no matter how

the three points within the triplet are sorted. However, in order to encode depths from these

sampling points they are labelled as shown in Figure 4.14. Then, the labels are used to assign

each depth into a specific bin as indicated in Table 4.7. As observed, this is a pose–invariant

solution, but it is oriented, and different features are obtained if the triplet {p1, p2, p3} is

sorted differently, which affects labels in Figure 4.14.

Figure 4.15 shows two baricenter depth map samples from the same person. One from

the landmark–triplet: left endocanthion, right endocanthion, and pronasale; and another

from the landmark–triplet: right endocanthion, right exocanthion, and right cheilion.

4.3.2.2 7–bins SRS Vector

A 7–bins SRS vector is a feature descriptor which, contrary to a depth map, is pose–invariant

and undirected, which make this an attractive descriptor for several applications. Such a

feature vector is a straightforward solution computed from 25 sampling points, as detailed

in Figure 4.14, generated from the baricenter algorithm in 2 iterations. The idea here is
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Table 4.7: SRS depth map bins. This [5 × 5] array shows how every labelled sampling point in
Figure 4.14 is sorted to produce an SRS depth map.
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Figure 4.15: Baricenter depth map samples from the same person: (a) from the landmark–triplet:
left endocanthion, right endocanthion, and pronasale; and (b) from the landmark–triplet: right endo-
canthion, right exocanthion, and right cheilion.

to fold down the initial triangular section, collapsing symmetrical points into just one, for

example: points p1, p2, and p3; and the internal baricenters. This descriptor is inspired

by an ideal model, an equilateral triangle, that can be folded down symmetrically. In this

case, it is done by adding depths of what were considered coincident points in the ideal

model. Addition is considered an appropriate operation because it is commutative, making

an undirected feature descriptor. Figure 4.14 illustrates the 25 sampling points, where labels

in this case are just for reference to show how they are folded down, into a new triangular

region as observed in Figure 4.16. Using this approach, depths in Figure 4.16 are distance

to surface values (DTS) from each sample point to the surface RBF model.

In Figure 4.17 shows two 7–bins SRS vectors from the same person but a different

landmark–triplet: one from the left endocanthion, right endocanthion, and pronasale; and

another from the right endocanthion, right exocanthion, and right cheilion.
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Figure 4.16: The 7–bins SRS vector is generated by folding down 25 sampling points from the
baricenter algorithm (2 iterations), where depthi is the distance to surface value from the i–sample
point to the surface’s RBF model.
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Figure 4.17: 7–bins SRS vectors from the same person but different landmark–triplet: (a) from
the left endocanthion, right endocanthion, and pronasale; and (b) from the right endocanthion, right
exocanthion, and right cheilion.

105



Chapter 4. Feature Descriptors and Analysis

2 4 6 8 10 12

2

4

6

8

10

12

(a)

2 4 6 8 10 12

2

4

6

8

10

12

(b)

Figure 4.18: SRS depth map samples from the same person. (a) from the landmark–triplet: left
endocanthion, right endocanthion, and pronasale; and (b) from the landmark–triplet: right endocan-
thion, right exocanthion, and right cheilion.

4.3.2.3 SRS Depth Map

An SRS depth map is a counterpart to the weighted–interpolated depth map (Section 4.3.1),

where depths are generated by sampling an RBF model using a regular grid, but taking

only those values within the triangular region defined by a point–triplet {p1, p2, p3}. This

is possible by applying a type of binary mask (see Figure 4.11), however, this solution is

neither undirected nor pose–invariant.

Two SRS depth map samples are observed in Figure 4.18. One is from the left endocan-

thion, right endocanthion, and pronasale landmark–triplet; and another one is from the right

endocanthion, right exocanthion, and right cheilion landmark–triplet.

4.3.2.4 SRS Histograms

A surface RBF signature (SRS) histogram is related to Pears’ SSR histograms (Pears et al.,

2010). Given a point–triplet which defines a triangular region in the 3D space, an SRS his-

togram is computed by generating sampling points using the baricenter algorithm. Distance

to surface (DTS) values are then obtained from this sample set at different heights, above

and below the target triangular region. Normalised DTS values are obtained by dividing

each DTS by its respective height, producing values between −1 to 1. Finally, a 23–bin

histogram is produced with the normalised DTS values for each height. In doing this, con-

sistent triangular regions from views at different heights are being sought, as illustrated in

Figure 4.19. The theory being that given a triangular region defined by a point–triplet, an
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Figure 4.19: A facial RBF model illustrating two heights (h1, h2), above and below a given trian-
gular region defined by a point–triplet (yellow sampling points), when computing an SRS histogram
for the landmarks–triplet endocanthions and pronasale.
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Figure 4.20: SRS histogram samples from different landmark–triplets: (a) left endocanthion, right
endocanthion, and pronasale; and (b) right endocanthion, right exocanthion, and right cheilion.

SRS histogram is computed by sampling an RBF surface model at different heights, where

such a sampling set is produced using the baricenter sampling point algorithm.

Figure 4.20 shows two SRS histogram samples from different landmark–triplets. One

from the left endocanthion, right endocanthion, and pronasale; and another from the right

endocanthion, right exocanthion, and right cheilion.
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Figure 4.21: Experimental framework to localise the triplet endocanthions and pronasale landmarks
using point–triplet descriptors.

4.3.3 Landmark Localisation using Point–triplet Descriptors

This section presents the experimental framework to illustrate how the point–triplet descrip-

tors can be used to identify distinctive facial landmarks, the pronasale and endocanthions.

As shown in Figure 4.21, the investigation firstly needs candidate point–triplets. To do this,

distance to local plane (DLP) and spherically sampled RBF (SSR) value features are used,

along with contextual support based on Euclidean lengths. Point–triplet descriptors are then

computed and the candidate triplet with the minimum Mahalanobis distance to the mean of

respective point–triplet training data is stored for localisation performance evaluation.

For this investigation a testing procedure which allows the presentation of localisation

performance figures was defined. The following subsections explain both in detail.

4.3.3.1 Testing Procedure

As illustrated in Figure 4.21, a system was created using each point–triplet descriptor to

localise the pronasale and endocanthions landmarks, giving five point–triplet systems (PT–

S) in total, as observed in Table 4.8.

Then, the experimental procedure is as follows:
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Table 4.8: Systems with embedded point–triplet descriptors to localise triplets of pronasale and
endocanthion landmarks.

System Point–triplet feature descriptor

PT–S1 Weighted–interpolated depth map
PT–S2 Baricenter depth map
PT–S3 7–bins SRS vector
PT–S4 SRS depth map
PT–S5 SRS histogram

1. As described in Section 3.2.1, separate training and testing sets are defined. This

experiment used trainingSet–2, which accounts for 200 shape images from different

people.

2. From these 200 training images, point–triplet training data is gathered at the ground–

truth level (Section 3.1.4).

3. Testing scenario #1 in Table 3.3 is used in this experiment, accounting for 509 faces

with variations in depth, with neutral expressions.

4. For each testing face above, candidate triplet–landmarks (endocanthions and pronasale)

are collected as illustrated in Figure 4.21. Firstly, initial candidate lists for endocan-

thions and pronasale landmarks are collected. This is done by computing ‘distance

to local plane’ (DLP) first, and then, ‘spherically sampled RBF’ (SSR) values for

every vertex within a testing face. For a vertex to be a candidate, it must be within

3–standard deviations of respective training data. Secondly, point–pair candidates

were gathered based on training Euclidean distance within three standard deviations.

This produces both candidate endocanthion–pairs and endocanthion–pronasale–pairs.

This allows endocanthion pairs (left–right) without pronasale support to be ignored,

as they are not useful for creating triplets. Candidates with the minimum Mahalanobis

distance to the mean of SSR value training data are then kept, giving a kind of local

maximum and local minimum for pronasale and endocanthion landmarks. Finally, a

triplet is formed by combining pronasale and endocanthion candidates mutually sup-

ported. Every triplet is right-hand oriented, from left to right endocanthion, then to

the pronasale candidate, which allows identification of duplicated triplets, which are

expected from the shape similarity between the left and right endocanthions.

5. Depths for weighted–interpolated depth maps are computed using raw points within

the triangular region defined by the candidate triplet {p1, p2, p3}.
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6. SRS depth maps are produced by computing 25 sampling points, using the baricenter

algorithm with 2 iterations, then binning each depth into a [5× 5] array, as illustrated

in Table 4.7.

7. 7–bins SRS vector features are computed as defined in Section 4.3.2.2.

8. SRS histogram features are generated using 673 sampling points (4 iterations), 8

heights: 10:5:45 and 23 bins, giving SRS histograms of [23× 8].

9. When appropriate, PCA is used to reduce the feature space to 8, 16, 32 and/or 64

dimensions.

10. Point–triplet features are computed for every candidate triplet and compared against

respective training data. Then, the triplet with the minimum Mahalanobis distance

to the mean of respective point–triplet training data is taken as the best landmark

estimation.

11. Localisation performance figures as described in Section 3.2.2 are presented; re-

sults are then gathered by computing localisation errors between estimated landmarks

against the manually marked ground–truth (see Section 3.1.4). The results are then

used to present localisation performance figures, i.e. cumulative error curves and ta-

bles. Figures are also presented for successful, poor, and failure localisations using

thresholds in Table 3.4.

4.3.3.2 Localisation Performance

Performance figures when using the point–triplet descriptors to localise the landmark–triplet

pronasale and endocanthions are now presented.

From the block diagram, Figure 4.21, it can be observed that the point–triplet descriptors

localisation performance is related to the candidate triplets obtained off–line. A base–line

to estimate the best localisation performance within the point–triplet localisation system

is then defined. To compute this base–line, localisation errors between every candidate

landmark–triplet are computed against the ground–truth landmark–triplet. For every can-

didate landmark–triplet their localisation errors are added. Finally, the landmark–triplet

with the minimum total localisation error is taken as the best estimation. Figure 4.22 and

Table 4.9 show the base–line defined by this approach. As observed, only the pronasale

landmark reaches 100% successful localisation performance, but the same would not be

expected for the endocanthion landmarks.
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Figure 4.22: Performance base–line when experimenting with our point–triplet descriptors.

Table 4.9: Base–line when experimenting our point–triplet descriptors.

Landmark Successful Poor Failure

Left endocanthion 96.26% 2.75% 0.98%
Right endocanthion 99.01% 0.19% 0.78%
Pronasale 100.00% 0.00% 0.00%

As described in Table 4.8, the point–triplet descriptors were embedded into five locali-

sation systems. From these systems, different performance is observed. Hence, a summary

of successful localisation is presented in Table 4.10. Details for every feature descriptor are

as follows.

Performance, when localising the triplet pronasale and endocanthions using weighted–

interpolated depth maps, is illustrated in Figure 4.23 and Table 4.11. From here, it can be

observed that 98.82% of pronasale landmarks are succesfully located. However, it is not

the same for the left and right endocanthion landmarks, where only 82.90% and 76.03%

Table 4.10: Summary: Successful landmark localisation using systems with embedded point–triplet
descriptors as defined in Table 4.8.

System Left endocanthion Right endocanthion Pronasale

PT–S1 82.90% 76.03% 98.82%
PT–S2 90.17% 81.92% 99.60%
PT–S3 91.35% 83.10% 99.01%
PT–S4 93.71% 89.98% 99.21%
PT–S5 90.76% 84.67% 99.60%
Base line (Table 4.9) 96.26% 99.01% 100.0%
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Figure 4.23: Cumulative error curve when localising the triplet: endocanthions and pronasale land-
marks using weighted–interpolated depth maps. A categorisation of these results is shown in Ta-
ble 4.11.

Table 4.11: Localisation performance categorisation using weighted–interpolated depth maps. Fig-
ure 4.23 illustrates cumulative error curves.

Success Poor Failure

Left endocanthion 82.90% 0.98% 16.11%
Right endocanthion 76.03% 7.26% 16.69%
Pronasale 98.82% 0.19% 0.98%

respectively, are successfully located using a reduced feature space of 64 eigenvectors.

As expected, the SRS features present a better performance in comparison with the

weighted–interpolated depth maps. This will be discussed one at a time. Table 4.12 sum-

marises localisation performance using the baricenter depth maps with a feature space of

8 and 16 dimensions. Clearly, the best performance is obtained with a feature space of 16

dimensions, where the system successfully localises the left endocanthion, right endocan-

thion, and pronasale in: 90.17%, 81.92%, and 99.60%, respectively. A cumulative error

curve is shown in Figure 4.24, where baricenter depth map features with a feature space of

16 dimensions were used.

Figure 4.25 and Table 4.13 show localisation performance using the 7–bins SRS vector
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Figure 4.24: Cumulative error curve when localising the triplet: endocanthions and pronasale land-
marks using baricenter depth maps. Table 4.12 summarises these results.

Table 4.12: Summary of successful localisation using baricenter depth maps. Figure 4.24 shows
respective cumulative error curves.

Feature space dimension
8 16

Left endocanthion 87.62% 90.17%
Right endocanthion 79.76% 81.92%
Pronasale 99.60% 99.60%
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Figure 4.25: Cumulative error curve when localising the triplet: endocanthions and pronasale land-
marks using 7–bins SRS vectors. Table 4.13 categorises these results.

Table 4.13: Localisation performance using 7–bins SRS vector features. Respective cumulative
error curve is shown in Figure 4.25.

Success Poor Failure

Left endocanthion 91.35% 0.78% 7.85%
Right endocanthion 83.10% 8.25% 8.64%
Pronasale 99.01% 0.39% 0.58%

descriptor. Note that contrary to some descriptors, PCA is not necessary to reduce the

feature space for comparison. Thus, successful localisation for the left endocanthion, right

endocanthion and pronasale landmarks are: 91.35%, 83.10%, and 99.01%, respectively.

These are promising results in comparison with more elaborated point–triplet descriptors.

A practical way to compare SRS depth map features is by using a reduced feature space.

Thus, Table 4.14 summarises successful localisation performance when 8, 16, 32, 64 di-

mensions are used within the localisation system using SRS depth maps. Here, the best

pronasale localisation score is observed with only 8 feature space dimensions (99.80%),

whereas the left and right endocanthions achieve their best localisation score using a 32

and 64 feature space, 94.10% and 89.98% respectively. Figure 4.26 illustrates performance

using SRS depth maps to locate the landmark–triplet, pronasale and endocanthions, with a

114



Chapter 4. Feature Descriptors and Analysis

0 5 10 15 20 25 30 35 40 45 50
  0 %

 10 %

 20 %

 30 %

 40 %

 50 %

 60 %

 70 %

 80 %

 90 %

100 %

S
u
c
c
e
s
s
fu

l 
lo

c
a
lis

a
ti
o
n

Error thresholds [ mm ]

 

 

LeftEye

RightEye

NoseTip

Figure 4.26: Cumulative error curve when localising the triplet: endocanthions and pronasale land-
marks using SRS depth maps, feature space of 64 dimensions. Table 4.14 summarises localisation
performance at different feature space dimensions.

Table 4.14: Summary of successful localisation using SSR depth maps at different feature space
dimensions. Figure 4.26 shows cumulative error curves using 64 eigenvectors.

Feature space dimension
8 16 32 64

Left endocanthion 91.94% 93.51% 94.10% 93.71%
Right endocanthion 87.22% 88.80% 89.58% 89.98%
Pronasale 99.80% 99.60% 99.60% 99.21%

feature space of 64 dimensions.

Figure 4.27 and Table 4.15 show localisation performance using SRS histogram fea-

tures. Successful localisation for the left endocanthion, right endocantion and pronasale

landmark using a feature space of 64 dimensions are: 90.76%, 84.67%, 99.60%, respec-

tively. From these numbers, it can be observed that no significant performance can be

achieved within the landmark–triplet localisation system using SRS histogram features. Fur-

thermore, these features are computationally more expensive than other SRS feature.
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Figure 4.27: Cumulative error curve when localising the triplet: endocanthions and pronasale land-
marks using SRS histograms, with a feature space of 64 dimensions. A categorisation of these results
is shown in Table 4.15.

Table 4.15: Localisation performance using SRS histograms with a feature space of 64 dimensions.
Cumulative error curves are shown in Figure 4.27.

Success Poor Failure

Left endocanthion 90.76% 0.78% 8.44%
Right endocanthion 84.67% 6.28% 9.03%
Pronasale 99.60% 0.19% 0.19%
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Table 4.16: Summary: statistical feature descriptors.

Landmarks Binning raw values Sampling RBF models

One Spin–images SSR histograms
(Johnson and Hebert, 1999) (Pears et al., 2010)

Two Point–pair Spin–images Cylindrically Sampled RBF (CSR) histograms
(Contribution) (Contribution)

Three Weighted–interpolated depth maps Surface RBF Signature (SRS) features
(Contribution) (Contribution)

4.4 Discussion

In particular, this chapter devised new surface descriptors, derived from either unstructured

surface data, or a radial basis function (RBF) model from a surface. First, state–of–the–art

feature descriptors were investigated (Section 4.1). Then, two new families of descriptors

were introduced, namely point–pair and point–triplet descriptors, which require two and

three vertices respectively for their computation (see Section 4.2 and Section 4.3). This

approach and contributions are summarised in Table 4.16.

Section 4.1 analysed state–of–the–art feature descriptors, including three properties: re-

peatability, accuracy and complexity. From there, the vision was to explore new feature

descriptors by using more than one vertex at a time. Thus, in Section 4.2 and Section 4.3,

the point–pair and point–triplet descriptors were introduced and as a first application their

ability to localise distinctive facial landmarks was shown. The point–pair descriptors (Sec-

tion 4.2) are related to the state–of–the–art descriptors, spin–images (Johnson and Hebert,

1999) and SSR histograms (Pears et al., 2010), sharing properties and advantages. All

the point–pair approaches are pose–invariant, and undirected versions have been presented

when applied.

Section 4.3 introduced the point–triplet descriptors. This was based on the belief that

a good point–triplet descriptor must be invariant to pose and orientation. Thus, from this

criteria, the 7–bins SRS vector descriptor is the only one that possesses these properties,

making this a potential descriptor for future research.

In summary, Table 4.17 lists two properties for every feature descriptor investigated in

this chapter. From state–of–the–art feature descriptors, DLP and spin images are shown

undirected, because they depend on a normal’s orientation. Point–pair descriptors can be

computed in both modalities, directed or undirected, according to their definition (Sec-

tion 4.2). As for point–triplet descriptors, 7–bin SRS vector and SRS histograms are undi-

rected. Weighted–interpolated depth map and SRS depth map features, depend on a normal’s
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Table 4.17: Summary: Feature descriptors’s properties.

Descriptor Pose–invariant Undirected

State–of–the–art DLP Yes No
(Section 4.1) SSR values Yes Yes

Spin images Yes No
SSR histograms Yes Yes

Point–pair descriptors Point–pair spin images Yes Both
(Section 4.2) CSR histograms Yes Both

Point–triplet descriptors Weighted–interpolated depth map Yes No
(Section 4.3) Baricenter depth map Yes No

7–bins SRS vector Yes Yes
SRS depth map Yes No
SRS histogram Yes Yes

orientation. Finally, a Baricenter depth map feature is undirected, as long as it is binned ac-

cording to fixed labels from sample points.

This chapter presented performance figures when computing every feature descriptor to

localise particular facial landmarks as summarised in Table 4.2, Table 4.5, and Table 4.10.

However, this is not the only property that can be observed from them. The motivation to in-

vestigate feature descriptors using a number of vertices (e.g. one, two, or three) is based on

natural limitations associated with each feature descriptor. For instance, a very good ques-

tion could be: ‘why use more than one vertex to compute a feature, when SSR histograms

or spin–images are able to robustly localise the pronasale landmark?’ (see Table 4.2). There

are several reasons that can be discussed in answering this question; however, at this point

the focus is on three main arguments:

a) Robustness to extreme pose variation: the experimental feature descriptors, computed

from a single vertex, e.g. DLP, SSR features and spin–images, are defined radially and

a decrease in performance for particular facial landmarks is expected when computed

from self occluded data, such as in pure profiles. For instance, an SSR histogram at the

pronasale landmark in a pure profile will be computed from the half of the nose in the

best case, which suggests a reduction in effectiveness. In this respect, point–pair and

point–triplet descriptors are flexible and they can be computed from a set of distinctive

landmarks, present within a wide range of pose variations, as observed in preliminary

experimentation.

b) Single facial landmark dependence: Section 2.2 and Section 2.5.3 show that most 3D

face processing applications depend on pronasale detection to extract the face from

a shape image. Although this chapter presents experimental results supporting the
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pronasale as the most distinctive facial landmark among eleven (Section 4.1), these re-

sults are from nearly front–pose data, and a different performance is expected using data

with pose variations. Thus, the most distinctive facial landmark cannot be depended on

alone. Contrarily, with the point–pair and point–triplet descriptors, more than one vertex

can be combined to assist any localisation process.

c) Scale invariance: Computing a feature descriptor based on a single vertex does not

provide enough information to define an appropiate scale for an intended facial feature.

For instance, SSR histograms are computed from 10 to 45 mm in steps of 5 mm (Sec-

tion 2.4.4). Similarly, distance to local plane (DLP), SSR values and spin–images need

a specific radius to be computed. Contrarily, point–pair features are scale invariant,

where their height is defined by the Euclidean distance between a given pair of points.

Furthermore, using point–triplet descriptors, surface shapes can be encoded within the

triangular region defined by the given triplet of points.

However, in exchange for the advantages mentioned above, it is necessary to collect

suitable candidates in pairs or triplets to compute either a point–pair or a point–triplet de-

scriptor. This is a crucial task, because the overall system performance greatly depends on

these initial candidates.

4.5 Summary

In this Chapter, novel feature descriptors were investigated. Three main sections were pre-

sented. Firstly, a selected number of feature descriptors were analysed in terms of repeata-

bility, accuracy and complexity. For that purpose, the experimental methodology was de-

tailed and performance figures discussed; secondly, the point–pair descriptors were intro-

duced, and their application to localise pairs of pronasale and endocanthion landmarks was

investigated; thirdly, the point–triplet descriptors were introduced, and their applicability to

localise triplets of distinctive facial landmarks (endocanthions and pronasale) was shown.
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Landmark Localisation Methods

This chapter investigates two facial landmark localisation methods. In Section 5.1, a cas-

cade filter approach to localising the pronasale landmark is studied. In Section 5.2 a re-

laxation by elimination technique for localising the endocanthions and pronasale landmarks

simultaneously is implemented. Finally, in Section 5.3 a summary of this chapter is pre-

sented.

5.1 A Cascade Filter Approach

This section details a cascade filter approach (Pears et al., 2010; Romero and Pears, 2009a),

as follows: essential definitions are provided in Subsection 5.1.1; the cascade filter ap-

proach is introduced in Subsection 5.1.2; the experimental framework for this approach is

described in Subsection 5.1.3; performance evaluation is presented in Subsection 5.1.4; and

a discussion is provided in Subsection 5.1.5.

5.1.1 Definitions

A decision tree is a structure in which every internal node represents a decision and the

possible results of that decision are represented by edges leading to the nodes at the next

level. The final outcomes of the procedure are represented by the leaves of the tree. A binary

decision tree is a particular case of this, where the result of each decision is stated as true or

false (Biggs, 1989).

Binary decision trees have proved useful for several applications. In biometrics for

example, Amit et al. (1997) constructed a classifier from multiple classification trees and

applied them to handwritten digits classification. Fleuret and Geman (2001) implemented a

coarse–to–fine face detection method using binary decision trees.
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Figure 5.1: A binary decision tree in which every candidate is evaluated by a sequence of weak
classifiers (WC). A positive evaluation activates the next classifier, whilst a false evaluation leads to
eliminate a candidate. The best candidate is expected at the end of the process.

Following Geman’s success and knowing that no feature descriptor was able to classify

with low error-rate, Viola and Jones (2001) proposed a cascade structure which combines

AdaBoost classifiers in a processing order, such that positive data will sequentially trig-

ger the cascaded AdaBoost classifiers and negative data will immediately be rejected, as

illustrated in Figure 5.1. This approach allows simpler classifiers to be used in the early

stages to reject the majority of negative data, which helps to speed up the testing process.

Additionally, discarded regions are unlikely to contain the object of interest.

Viola and Jones (2001) investigated weak classifiers hj(x) constructed with a simple

feature fj(x), a threshold θj , and a parity value pj to produce a binary decision as in Equa-

tion 5.1. They integrated a strong classifier h(x) using a set of the weak classifiers in the

form of Equation 5.2.

hj(x) =

 1 if pjfj(x) < pjθj

0 otherwise
(5.1)

h(x) =

 1 if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise
(5.2)

Many variants and extensions have been proposed in the literature following Viola and

Jones. Zhou (2005), for example, investigated the core idea of using a strong classifier that

consists of weak classifiers. While Li and Jain (2005) stated that a large portion of false

candidates can be effectively eliminated using a boosted strong classifier, while preserving

a high detection rate. Nonetheless, a single strong classifier may not meet the requirements

of an extremely low false alarm rate. In this case, Rowley et al. (1998) proposed to arbitrate

between several strong classifiers, for example by using the AND operation, .
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5.1.2 Cascade Filter

Four pose–invariant feature descriptors with varying computing cost are analysed in Sec-

tion 4.1, from there, repeatability and accuracy properties for each feature descriptor are

known when locating eleven facial landmarks individually. This analysis indicates that some

facial landmarks are repeatable located within a high accuracy (Table 4.2). For instance, the

pronasale landmark is shown as the most distinctive among the eleven facial landmarks.

Additionally, it is also observed a trade–off among repeatability, accuracy and complexity;

where the simple descriptors DLP and SSR values do not achieved a 100% repatability. On

the other hand, more sophisticated descriptors, spin images and SSR histograms, robustly

localise the pronasale landmark but only with an extra computing time (see Table 4.3).

Those results suggest that the pronasale landmark can be accurately located within a

time by computing those feature descriptors. That finding motivates this research to inves-

tigate an approach to reduce such computing time as possible. Clearly, processing time is

related to the number of computed features. Then, it is sensible to think that computing a

reduced number of features, for a reduced number of vertices, leads to save processing time.

As observed in Section 5.1, a binary decision tree is a simple and straightforward approach

to filter the number of candidate vertices.

Inspired on this idea, a cascade filter algorithm is implemented by using a binary de-

cision tree to reduce the number of candidate landmarks. The principle here is to progres-

sively eliminate the less likely candidates by progressively computing more discriminating

descriptors. To do this, every feature descriptor investigated in Section 4.1 is computed

according to their computing cost (Table 4.3). At the end of this filtering process, the best

landmark candidate is expected. A practical approach for this algorithm is now provided

when localising the pronasale landmark.

Localising the pronasale landmark over all the vertices within a 3D image is compu-

tationally expensive. Thus, the raw pronasale landmark is identified via a cascade filter

algorithm, as illustrated in Figure 5.2. Effectively, this algorithm is a binary decision tree

where progressively more discriminating and expensive operations are employed to retain

the most likely candidates. As observed, four simple classifiers are used in this implementa-

tion. The constraints (thresholds) employed within each classifier are designed to be weak,

by examining trained pronasale feature value distributions. By using weak thresholds, elim-

ination of the pronasale landmark itself is unlikely to happen. Conceptually, this amounts

to considering every vertex as a candidate pronasale landmark, where all but one vertex are

false positives. Then, at each stage, a filter is applied to reduce the number of false positives,

until there remain a small number of candidates at the final stage, at which point the most
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Figure 5.2: A cascade filter is a straightforward approach for facial landmark localisation. In here, a
cascade of four classifiers is implemented to progressively eliminate less likely pronasale landmark
candidates. This is possible by using more discriminating, hence more expensive descriptors embed-
ded into each classifier. Note that classifier 4 has two versions, giving two systems in total. In the
first system, classifier 4 identifies the pronasale landmark by computing spin images, whereas, the
second system do the job by computing SSR histograms (balloon images).

expensive and discriminating test (spin images or SSR histograms) is used to find the best

pronasale landmark estimation.

The feature used in classifier 1 is distance to local plane (DLP) (Section 2.4.2), using a

radius of 10 mm. The classifier uses weak thresholds, so that candidates need to be within

three standard deviations of the average DLP value for trained pronasale landmarks in order

to survive. In classifier 2, SSR convexity values (Section 2.4.4) are computed using a single

sphere of radius 10 mm and 128 sampled points. Again, for a candidate to survive, its

SSR convexity value must be within three standard deviations. Several local maxima in

SSR convexity value are observed at this stage. The pronasale is expected to be situated at

some local maximum in convexity value. In classifier 3, the local maxima are then found

and all other vertices eliminated. Finally, in classifier 4, spin images (Section 2.4.3) or

SSR histograms (Section 2.4.4) are used to select the best pronasale landmark estimation,

from the set of local maxima in SSR convexity value, by finding the minimum Mahalanobis

distance to the mean of the respective training data.
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Note that the classifier 4 has two versions, giving two different localisation systems in

total. The first is a system that compute spin images in the fourth classifier, whereas SSR

histograms are computed by the fourth classifier in the second system. Thus, it is possible

to compare localisation performance when computing spin images (Johnson and Hebert,

1999) or SSR histograms (Pears et al., 2010) through these two systems.

5.1.3 Testing Procedure

As detailed in Section 3.2, the landmark localisation systems were evaluated on the FRGC

database (Phillips et al., 2005). The FRGC database contains the largest 3D face dataset that

is widely available to the research community, with 4,950 shape images, each of which has

an associated intensity image (texture information). The files are divided into three subsets,

named after their collection periods: Spring–2003, Fall–2003 and Spring–2004.

Two systems were created to localise the pronasale, each of which uses the same training

and testing data. However, they use different feature descriptors, with particular training

sets. The experimental framework is as follows:

1. For each record in the FRGC database, ground–truth data was collected by very care-

fully manually clicking on enlarged intensity images and then computing the corre-

sponding 3D point using the registered 3D shape information (Section 3.1.4). A dual

(2D and 3D) view was used to verify 2D–3D landmark correspondences and only

those with an accurate visual correpondence were retained (Table 3.2). From this

process 3780 shape files were obtained from the 4950 in the dataset; 100 of these

were used for training and 3680 for testing.

2. As described in Section 3.2.1, separate training and testing sets were defined. This

experiment used trainingSet–1, which consists of 100 shape images from different

people, and 3680 testing images in Table 3.3.

3. SSR shape histograms at the ground–truth pronasale landmark were constructed for

each of these 100 training 3D images, using 8 radii of 10mm to 45mm in steps of

5mm and 23 bins for normalised RBF values. This gave SSR shape histograms of

dimension [8× 23].

4. For the same training set above, spin–images [8× 23] at the same ground–truth land-

mark were computed, using a maximum radius of 45mm, a height of ±45mm, and

a mesh resolution of 3mm.
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5. The localisation systems were evaluated in two scenarios, considering variations in

depth and facial expressions. The FRGC database is already divided in this way

and they were adopted as they are (see Table 3.3). Naturally, there are variations in

illumination and small variations in pose.

6. Principal component analysis (PCA) was applied to both sets of training data (spin–

images and SSR histograms), reducing the shape descriptors dimensionality from 184

to 64.

7. For all pronasale landmark candidates (classifier 4 outputs in the cascade filter) on all

test images, the Mahalanobis distance to the mean of spin–images or SSR–histograms

training data was calculated. For each test image, the vertex with the minimum Ma-

halanobis distance was identified as the pronasale landmark and stored.

8. As described in Section 3.2.2, performance results were collected by comparing lo-

calised landmarks against the ground–truth data. Since the definition of successful

landmark localisation is dependent on setting a threshold of acceptable error, perfor-

mance was explored over the full range of possible thresholds. This allowed identifi-

cation of both gross errors (‘fails’), where the system completely fails to identify the

correct landmark, and errors of poor localisation, which are due to the combined ef-

fect of any inaccuracies in the system. Table 3.4 shows some thresholds for reference.

5.1.4 Localisation Performance

This section presents a performance evaluation for the binary decision tree approach, in-

cluding an identification performance report and a processing time analysis.

5.1.4.1 Identification performance

As discussed in Section 3.2.2, results are gathered by computing the error of the automat-

ically localised landmarks with respect to the landmarks manually labelled in the ground–

truth. Remember that localisation is done at the 3D vertex level, using a down–sample factor

of four on the FRGC dataset, which gives a typical distance between vertices of around 3–

5 mm. This has implications for the achievable localisation accuracy. Figure 5.3 presents the

performance curve for this experimentation and indicates an excellent performance, using

either SSR histograms or spin images.

It is useful to choose some error threshold values to quote performance figures (e.g.

categorisation in Table 3.4). A sensible place to choose the threshold is close to where the
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Figure 5.3: Pronasale’s identification performance in the FRGC database for varying thresholds.
Similar performance is observed between SSR histograms and spin–images.

graph switches from the rising region to the plateau region, which is around 12 mm, indi-

cating that the pronasale is localised within 3 vertices of the ground–truth. This threshold

gives an SSR histogram performance of 99.92% (3 errors) and a spin image performance of

99.7% (11 errors). The three failed cases for the system were visually observed using the

SSR histograms, and it was found that the first fail contained a facial scan with a missing

nose, the second selected a vertex within the subject’s hair that was nose shaped, and the

third selected a vertex on the subject’s lips due to a non–neutral facial expression.

A valid question to ask is: ‘why extract an RBF surface model and use RBF based

descriptors, if spin–images can perform just as well as SSR histograms when the surface

data is high quality, with no significant areas of missing data due to specular reflections or

self occlusions?’. The answer to this is that the advantages of SSR histograms over spin

images are certainly reduced, but the performance of both systems is high as a result of the

SSR value descriptor (the second filter in the binary decision tree) selecting only a small

number of candidate vertices to test for each of the shape histograms. For example, if spin

images are directly applied to the much larger number of candidates extracted from the

distance to local plane (DLP) filter, pronasale identification performance falls below 70%.

5.1.4.2 Processing Time

This section analyses the processing time taken for the binary decision tree approach to

localise the pronasale landmark using only SSR features. This computation was performed

on an AMD Athlon 64 Dual core 2.2 Ghz personal computer with 4 Gb RAM, running
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Table 5.1: Processing time analysis using the binary decision tree approach.

Process Time [sec]

RBF modelling 12.0720
Classifier 1, DLP features 6.6347
Classifier 2, SSR values 40.6653
Classifier 3, Local maximum SSR values 0.0003
Classifier 4, SSR histograms 6.5152
Average time 64.8875

Windows XP as an operating system. The timing method was as follows:

1. The same training data, as described in Section 5.1.3 is used.

2. Processing time is estimated using testingSet–1, see Section 3.2.1, which consists of

100 shape images.

3. In total, five processing times for each testing face are gathered: a) RBF modelling; b)

DLP features computation; c) SSR values calculation; d) local maximum SSR values

identification; and e) SSR histograms generation.

4. Finally, averaged processing times are computed within every stage.

Using this timing method, it was found that one face can be processed within 64.88 sec

on average as illustrated in Table 5.1. Up to this point in the research, the most expensive

process was to compute SSR values (classifier 2), followed by the RBF model generation.

Although this result is not appropriate for real applications, the cascade filter proposal can

be improved in several ways. For example, a clear reduction in processing time can be

obtained if local maximum DLP values are identified instead of SSR values (i.e. move the

third classifier to the second place). However, this is an assumption, and further research

should be carried out in order to optimise the binary decision tree.

5.1.5 Discussion

In this chapter, the binary decision tree approach to localising the pronasale landmark in 3D

face data was investigated. The approach taken is composed of novel feature descriptors, in

the form of weak classifiers, and its structure helps to compare SSR features (Pears et al.,

2010) with its closest counterpart spin–images (Johnson and Hebert, 1999).

The SSR values used in the second classifier promote a clear discrimination such that the

final classifier behaves in almost the same way with either SSR histograms or spin–images,
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i.e. there is no significant statistical difference in performance between the systems based

on spin–images or SSR histograms.

These results indicate that the binary decision tree constitutes a strong classifier which

is able to effectively identify the pronasale in 3D face data. Further discussion is presented

in the following subsections.

5.1.5.1 RBF model dependency

It is clear that SSR features work efficiently, resulting in an outstanding localisation perfor-

mance for the pronasale landmark (nose tip). Although this approach can be extended to

localise more facial landmarks, it is important to observe that it is dependent on an RBF

model. Hence, SSR features are only as accurate as the RBF model. Experimentation on

the FRGC database, presented here, uses unstructured data, i.e. clouds of 3D points. Only

a basic cleaning process was applied to delete spikes and pits, causing extra holes, which

were filled with a simple weighted interpolation process. This unstructured data lead to a

meticulous process to generate face–like RBF models.

5.1.5.2 Additional Facial Landmarks

The clearly effective binary decision tree approach could be extended to localise other facial

landmarks. The literature review (Chapter 2) and results in Chapter 3 indicate that endo-

canthions and pronasale landmarks constitute an ideal triplet, since this triplet is robust to

facial expressions; furthermore, they are the most distinctive landmarks using only shape

images. Problems with using this triplet are occlusion and extreme pose variations, such as

in pure profiles. Thus, a larger landmark set is recommended to promote face processing

applications that can operate over the full range of facial poses.

5.1.5.3 Cascade Filter

Experimental results indicate that the binary decision tree works well. However, the clas-

sifiers were integrated ad–hoc, based on the feature descriptor’s computing complexity and

discrimination. Further research should be done to investigate a possibly more effective

binary decision tree. For example, finding local maximum SSR values (classifier 3) in this

binary decision tree will not be useful when this method is expanded to other landmarks in

the dataset, but the filter stages and thresholds can be adapted as necessary for other land-

marks. For instance, an endocanthion landmark is expected to be a local minimum SSR

concavity value. Moreover, from the processing time analysis it can be observed that the
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binary decision tree approach could be improved by moving the third classifier into sec-

ond place, i.e. to find local maximum DLP values instead of local maximum SSR values,

although further experimentation is needed to confirm this idea.

5.1.5.4 Feature Descriptors Parameters

This experiment was successful as the proposed binary decision tree was able to identify

the pronasale landmark in 99.92% of the testing set. However, the investigation uses radial

feature descriptors and in this experimentation the radius was prescribed; for instance, a

radius = 20mm was used to compute DLP and SSR values. Further research should be

done to investigate the effect of this and other key parameters within the complete procedure.

5.2 A Relaxation by Elimination Technique

In this section, a relaxation by elimination technique to localise triplets of endocanthions

and pronasale landmarks simultaneously is implemented (Romero and Pears, 2008, 2009a);

in Subsection 5.2.1, the idea of contextual support is presented; in Subsection 5.2.2, the

relaxation by elimination (RBE) implementation is introduced; in Subsection 5.2.3, a test

procedure for the RBE implementation is described; in Subsection 5.2.4, localisation per-

formance is reported; finally, in Subsection 5.2.5, a discussion about this implementation is

provided.

5.2.1 Contextual Support

The facial surface as a whole contains specific and clearly distributed facial features: fore-

head, eyebrows, eyes, cheeks, nose, mouth and chin; which are uniquely located and related

to one another. In a standard front–oriented view, the forehead is the most upper part of

the face and there are two eyebrows below it, one on its left and another on its right side.

Exactly below each eyebrow there is an eye, and below each eye there is a cheek. The nose

region is located between the eyes and cheek areas. Below the nose is located the mouth and

below this is the chin. Thus, how each facial feature, or possible landmark associated with

that feature, is related to the others can be modelled and these relationships can be used to

provide mutual support between the locations of particular facial feature landmarks.

Using this information, a simple graph can be constructed (an example is illustrated in

Figure 5.4), where each node represents one facial feature and every edge indicates connec-

tion between a pair of facial features. This research is interested in the problem of facial

landmark localisation using 3D face data only, which produces some effects in the facial
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Figure 5.4: Facial features represented into a graph model. In here, an arc represents physical
connection between a pair of facial features.

graph model shown in Figure 5.4. As observed in Chapter 2, there are significant problems:

a) 3D sensors are not completely immune to surface reflection properties, hence, some facial

areas (like eyebrows, cheeks, mouth vicinity, and chin) might be inaccurately located due to

the presence of facial hair; b) except for the rigid nose region, facial expressions change the

shape of the facial surface; c) in this approach, to localise any of the facial features, at least

one facial landmark is required to clearly identify and localise such facial regions.

Because of the expression variations mentioned above, it appears that the nose area is

mostly rigid in comparison to other areas. 3D data provide enough information to explore

distinctive shape areas, such as concave, convex, or saddle shaped, and these are precisely

the surface shapes which are encountered in the common region shared by the eyes and

nose. This fact, promotes the eye cavities and the nasion (n) as potential landmarks to be

located in this work. Additionally, the characteristic shape of the nose’s base promotes the

alar curvature point (ac) and alare (al) as potential landmarks for this research. Using these

robust landmarks a new graph is constructed, which is shown in Figure 5.5.

The graph model illustrated in Figure 5.5, is a simple graph with 8 vertices and 13

edges. With every node associated with a unique facial landmark and every edge indicating

a relevant connection between a pair of landmarks.

As observed in the graphs in Figure 5.4 and Figure 5.5, contextual support implies

mutual connection between a pair of nodes (facial regions). Two nodes are neighbours

when their regions have a mutual boundary and, in this case, an edge can be drawn between

them.
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Figure 5.5: Graph model considering facial landmarks robust to facial expressions and facial hair.

The feature descriptors investigation (Section 4.1) showed that a landmark is not always

uniquely described on a facial surface, because neighbouring nodes to any landmark are

expected to be locally similar. This means that instead of getting a singular candidate point

for every landmark on a facial surface, a cluster of candidate points is expected after a fea-

ture descriptor is applied. This is important for contextual analysis in the localisation task,

because this means that contextual support can be seen as an m to n relationship between

candidate landmarks from two neighbouring clusters. A large contextual support for true

positive candidate landmarks would be expected, and a very poor contextual support for

false positive candidate landmarks. Although the number of possible combinations could

be large, a process of elimination to discard less likely combinations can be applied. For

example, in a very simple graph of three vertices and three edges, which represents the en-

docanthions and pronasale landmarks. When a feature descriptor is computed from each

vertex over the facial surface, three clusters of candidates, one for each landmark, are then

generated. Thus, the size of every cluster is defined as the contextual support which is mutu-

ally provided to each neighbour cluster. If this is true, it can be assumed that a true landmark

is the one that has the maximum contextual support from its neighbours.

Obviously, the process outlined above is not that simple, its complexity increases as

more nodes within the graph are involved; whereas finding the best combination implies

searching a large number of combinations. The relaxation by elimination approach, detailed

in the next section, is aimed at reducing this complexity by using training data that allows a

contextual support between any pair of landmark candidates to be defined.
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Table 5.2: Possible number of tuples given a typical number of candidates per landmark within a
graph model of size n.

Nodes in graph model Candidates per landmark Number of tuples (combinations)

6 l1 = 154 156,018,795,854,152
l2 = 217

l3 = 293

l4 = 197

l5 = 277

l6 = 292

3 l1 = 147 6,897,240
l2 = 204

l3 = 230

5.2.2 Relaxation by Elimination

Given a set of n landmarks with defined connections, a graph G can be constructed. As

mentioned in Section 5.2.1, every landmark lives in a cluster of candidate landmarks, be-

cause of local similarity within its neighbourhood. Hence, the number of combinations of

candidate landmarks will be increased in relation to the size of every cluster. Finding the

original landmarks implies exploring the complete set of combinations. For instance, con-

sider two graph models with 6 and 3 nodes respectively, Table 5.2 shows the number of

tuples (combinations) given a typical number of candidate landmarks.

Evaluating every possible combination would be too computationally expensive. Thus,

an attempt to significantly reduce the number of combinations that have to be tested is

made, first by checking for appropriate nodal attributes, and then by checking pairwise

relationships between node pairs.

To do this, a relaxation labelling approach is followed. A structural graph matching

algorithm is used, as suggested by Turner and Austin (1998), known as relaxation by elimi-

nation (RBE). The implementation (Romero and Pears, 2008) is divided into four sequential

steps: initialisation, generation, iteration and selection, as shown in Figure 5.6.

Three preliminaries are required in this approach. First, a graph model should be

defined, with a specific number of nodes (landmarks) and the relationship between them

(edges). A suitable feature descriptor for nodes and edges should then be selected. Next,

training data for all the nodes and edges in the graph model is collected, so mean vectors

and covariance matrices can be computed. Having done that, the next sequential steps are

followed in order to evaluate any face in the test set.
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Initialisation

This step populates an initial candidate list for each node within the graph model. For a data

vertex x to become a candidate, its Mahalanobis distance:

r2 = (x− µ)tΣ−1(x− µ) (5.3)

must be less than three. Where µ and Σ are the mean and covariance matrices from respec-

tive training data (Duda et al., 2001).

Generation

In this step, contextual support is computed and stored in binary arrays, which represent the

existence (1) or lack of existence (0) of mutual support between a pair of candidate nodes.

These binary arrangements are referred to as contextual support relationship (CSR) matri-

ces. Basically, CSR matrices indicate the presence of an edge between a pair of candidate

nodes. Hence, the number of CSR matrices is defined by the number of edges in the graph

model. For example, in a 3 node model graph, with different numbers of candidates, say p,

q, and r, then there would be three CSR matrices of size p× q, q × r and p× r.

Every CSR matrix entry is initialised with 0, and is set to 1 only if a contextual support

relationship is detected. This means that the two nodes and edge attributes fall sufficiently

close to the mean of the multivariate (3–DOF) distribution of these values in the training

data. Again, a Mahalanobis distance (to the mean of respective training data) of less than

three is required for the two candidate nodes to be deemed mutually supportive.

Iteration

As discussed at the beginning of this section, vertices close to each other are locally simi-

lar. Thus, clusters of candidate vertices are often found around the ground–truth landmark,

producing a large number of candidate combinations which are mutually supportive. At this

point the ‘elimination’ in the RBE iteration comes in. Every least supported candidate node

is iteratively eliminated, until a stop condition is obtained, i.e. either a minimum number of

candidates remain or a maximum number of iterations is reached.

Selection

Finally, the best combination is selected by an exhaustive search of the remaining possible

candidate combinations. This is done by computing the Mahalanobis distance to the mean

of the complete 6 degree of freedom (6 DOF) multivariate feature space, consisting of n
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Pre-processed 
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Figure 5.6: The relaxation by elimination (RBE) approach consists of four steps: Given a shape im-
age, initial candidate lists of landmarks are populated (initialisation). After that, binary arrays (CSR)
which represent mutual support between a pair of candidate landmarks are created (generation).
Next, in the iteration step, the less supported combinations are iteratively eliminated (RBE) until a
stop condition is reached. Finally, the closest combination of landmarks to the training set is selected
using Mahalanobis distance computed from a 6 DOF multivariate normal (MVN) distribution.

(nodes = 3) plus e (edges = 3) properties within the training data. Again, the mean and

covariance matrices are determined from the training data. Finally, the candidate combi-

nation with the minimum Mahalanobis distance is taken as the best estimate to the graph

model landmarks.

5.2.3 Testing Procedure

The RBE approach was evaluated on the FRGC database (Phillips et al., 2005). As men-

tioned in Section 3.1, the FRGC database is the largest 3D face dataset currently available

to the research community.

In the first instance, an investigation was carried out of the localisation of the endocan-

thions and pronasale landmarks simultaneously; the block diagram of the complete exper-

imentation is shown in Figure 5.7. The graph model which was fitted is very simple and
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Figure 5.7: Block diagram of the complete experimentation for the RBE approach.

consists of three nodes and three edges, as shown in Figure 5.8. As discussed above, ex-

haustively testing every possible vertex triplet against training data is too computationally

expensive and a significant reduction is sought in the number of vertex triplets to be tested

using the relaxation by elimination method.

The graph matching approach used here is flexible and different feature descriptors can

be used as attributes for the nodes and the edges within the graph model. In this case, it

started with exploiting simple descriptors: with distance to local plane (DLP) selected as

the node representation, because it is stable, computationally inexpensive (Section 4.1) and

can be implemented with any linear algebra package, whereas, edges are represented by

simple Euclidean distance between nodes.

A localisation system for the endocanthions and pronasale landmarks was then created,

which used simple descriptors within the relaxation by elimination approach. The experi-

mental framework is as follows:

1. For each record in the FRGC database, eleven landmarks (only three were used in the

experiments) were collected by very carefully manually clicking on enlarged inten-

135



Chapter 5. Landmark Localisation Methods

Left eye

Nose tip

Right eye

Le-Re

Re-NoLe-No

Figure 5.8: To localise the endocanthions and pronasale landmarks simultaneously using the RBE
approach, a simple graph model which consists of three nodes (inner eye–corners and nose–tip) and
three edges: leftEye–rightEye (Le–Re), leftEye–noseTip (Le–No) and rightEye–noseTip (Re–No)
was used.

sity images and then computing the corresponding 3D point using the registered 3D

shape information. A dual (2D and 3D) view was used to verify 2D–3D landmark

correspondences as detailed in Section 3.1.4.

2. Separate training and testing sets were defined, as described in Section 3.2.1. In this

experiment trainingSet–2 was used, which consists of 200 shape images of different

people.

3. For each of these 200 training shape images, DLP values at the endocanthions and

pronasale ground–truth vertices were constructed, using a radius of 20 mm. Also

Euclidean distances from these three vertices were computed. This gave a training set

of 6–DOF vectors as follows:

[DLPle, DLPre, DLPno, Euc(le, re), Euc(le, no), Euc(re, no)]

4. The localisation systems were evaluated in two scenarios, including variations in

depth and facial expressions. The FRGC database is already divided in this way and

it was adopted as it is (see Table 3.3). Naturally, there are variations in illumination

and small variations in pose.

5. For each of these testing sets the relaxation by elimination approach was applied.

First, an initial candidate list for each of the three nodes was populated, based on the

Mahalanobis distance of DLP features and using the appropriate mean and variance

from the training data. For a data vertex to become a candidate, its Mahalanobis

distance had to be less than three.
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6. After that, binary arrays were created (generation) to represent pairwise ‘Euclidean

distance’ relationships between nodes and edges in the model. These binary arrange-

ments were referred to as contextual support relationship (CSR) matrices and there

were three in the model:

CSRleftEye−rightEye → [candidateLeftEyes, candidateRightEyes]

CSRleftEye−noseT ip → [candidateLeftEyes, candidateNoseT ips]

CSRrightEye−noseT ip → [candidateRightEyes, candidateNoseT ips]

Essentially, a ‘1’ exists in a CSR matrix, if the two node candidates are mutually

supportive. This means that the two DLP values (one for each node candidate) and

the Euclidean distance between them fall sufficiently close to the multivariate (3–

DOF) distribution of these values in the training data. Again, a Mahalanobis distance

of less than three is required for the candidates to be deemed mutually supportive.

7. It was noted that vertices close to each other have very similar DLP values and, hence,

there are often clusters of candidate vertices around the ground–truth landmark. This

means, for example, that a particular left eye candidate can have many right eye can-

didates that are mutually supportive and vice versa. All of those matches with low

contextual support scores are now pruned from the candidate node match list. Nodes

with at least two edges, according to the model graph are looked for. All of those

nodes with a contextual support of less than two are removed. The candidates with

zero contextual support are removed cleanly without any knock–on effects, but the re-

moval of candidates with a contextual support of one changes the score of other nodes

which remain in the graph and must be updated. Once the number of node removals

reaches zero, or a maximum number of iterations is reached (if zero removals never

happens), the iteration terminates. A list of candidate data node matches (vertices)

for each node in the graph model is left.

8. Finally, the best combination is selected by exhaustive searching of the remaining

possible candidate triplets. This is done by computing the Mahalanobis distance in

the multivariate (6–DOF) feature space [DLP–leftEye, DLP–rightEye, DLP–noseTip,

E–left–right, E–left–nose, E–right–nose]. The triplet with the minimum Mahalanobis

distance is selected as the best estimation for the endocanthions and pronasale land-

marks. These vertices are stored for performance evaluation.
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9. As detailed in Section 3.2.2, results are gathered by computing the error of the au-

tomatically localised landmarks, with respect to the landmarks manually labelled in

the ground–truth. Remembering that localisation is done at the 3D vertex level and a

down–sample factor of four is being used on the FRGC dataset, which gives a typical

distance between vertices of around 3–5 mm. This has implications on the achievable

localisation accuracy. It was found useful to choose some error threshold values and

quote performance figures, therefore, thresholds in Table 3.4, as previously described

in Section 3.2 were used.

5.2.4 Localisation Performance

In this section, the localisation performance of the RBE approach in two different scenarios

(Table 3.3) from the FRGC database is presented. Localisation cumulative error curves and

bar graphs for the endocanthions and pronasale landmarks are given for both scenarios. As

detailed in the experimental procedure, low resolution data (down sampled at rate 4) were

used, which has implications in these results. Figure 5.9 to Figure 5.16 show landmark

localisation performance using cumulative error curves and bar graphs. A summary table

for successful landmark localisation within the complete testing set is presented in Table 5.3.

Scenario #1: Depth variations, neutral expressions

Although the Spring–2003 subset was created under controlled illumination and generally

neutral expressions, large variations in depth are presented. This subset originally consisted

of 943 files, 200 were used to train the system and 509 were used for testing. The rest

were not considered because they showed poor 2D–3D correspondence (as explained in

Section 3.1), on manual inspection, and therefore the manual mark–up of ground–truth

landmarks would be corrupted (landmarks in 2D are marked up and mapped onto the 3D

data using the known 2D to 3D registration).

Figure 5.9 shows the localisation performance for the three landmarks in this experi-

mentation. As observed, the algorithm successfully localises just under 80% of landmarks

within an error of 15 mm. This is confirmed in Figure 5.10, where thresholds from Table 3.4

are used to classify this localisation task as successful, poor or failure. Examples of these

cases are illustrated in Figure 5.11 and Figure 5.12, where the triplet with the minimum

Mahalanobis distance to the mean of the 6–DOF feature space is shown.
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Figure 5.9: Cumulative error curve testing 509 shape images from Spring–2003 subset using a 200
training set.
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Figure 5.10: Overall localisation performance from Spring–2003 subset, testing 509 shape images
using 200 training images from different people.
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(a) Neutral expression test (b) Facial expression test

Figure 5.11: Successful landmark localisation, shape images: (a) 04336d211 and (b) 02463d662,
with neutral and facial expression, respectively.

(a) Poor localisation (b) Faulty localisation

Figure 5.12: Poor (a) and faulty (b) landmark localisation, shape images: 04297d210 and
04385d239 respectively. This failed location is a typical example where collars with better support
than valid candidates are selected.
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Figure 5.13: Cumulative error curve testing 1,507 different shape images from the Fall–2003 subset
using a 200 training set (different persons).

Scenario #2: Facial expression variations and few depth variations

This scenario was tested using the Fall–2003 and Spring–2004 FRGC subsets which present

facial expression variations, but relatively few depth variations. The same training set from

scenario #1 was used; two testing sets were integrated with 1,507 (Fall–2003) and 1,764

(Spring–2004) shape images, all of which were deemed to have acceptable 2D–3D corre-

spondence and illumination.

Figure 5.13 shows the fractional success rate curve, using the Fall–2003 testing set,

and it can be noted that 90% of the endocanthions and the pronasale landmarks are located

within 15 millimetres. Figure 5.14 resumes this location performance by categorising as

‘success’, ‘poor’ or ‘failure’ according to Table 3.4. Similarly, the performance of this

approach was computed using the Spring–2004 testing set (1,764 shape images), shown in

Figure 5.15 and Figure 5.16.

Results in this scenario demonstrate the robustness of this approach to facial expression

variations, an example from this dataset is shown in Figure 5.11b.
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Figure 5.14: Overall localisation performance within Fall–2003 testing set (1,507 shape files) using
a training set of 200 different persons.
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Figure 5.15: Cumulative error curve testing 1,764 different shape images from Spring–2004 subset
and a training set of 200 different people (from the first scenario).
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Figure 5.16: Overall localisation performance using Spring–2004 testing subset (1,764 shape files)
and a training set of 200 different persons (from the first scenario).

Table 5.3: Successful performance using an RBE technique to localise the pronasale and two endo-
canthion landmarks.

Landmark
Scenario #1 Scenario #2

Overall
Spring–2003 Fall-2003 Spring–2004

Left endocanthion 76.22% 87.79% 89.17% 86.87%
Right endocanthion 74.85% 87.39% 88.09% 86.03%
Pronasale 62.47% 74.18% 74.26% 72.64%
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5.2.5 Discussion

This chapter presented the relaxation by elimination approach applied to the task of facial

landmark localisation. As recommended by Turner and Austin (1998), the goal was to

identify and eliminate highly implausible matching candidates.

The graph matching approach has been evaluated within the task of facial landmark

localisation. In particular, endocanthions and pronasale landmarks were localised simulta-

neously using simple descriptors and a graph model of three vertices and three edges. In this

initial experiment, it was found that by using very simple feature descriptors good results

could be achieved. Results with the most commonly used benchmark database (the FRGC)

were presented, using facial landmarks robust to facial expression variations, as shown by

results on the Fall–2003 and Spring–2004 subsets. Results from the Spring–2003 subset

showed a lower performance. In this subset, there are many features in the upper torso area,

such as shirt collars, which have similar descriptor values to the facial landmarks that are

being sought.

In general, a promising overall performance can be observed in adopting the RBE land-

mark localisation approach. However, it is important to note that more work is necessary to

better explore this avenue. Some matters which arise from this investigation are as follow:

5.2.5.1 Complexity Implications

The relaxation by elimination approach relies on a graph model which represents every

landmark to be localised. A very simple graph using the most distinctive facial landmarks

was investigated (as shown in Chapters 3 and 4), resulting in a 6–DOF feature space. Fol-

lowing this approach, an increase in the number of nodes and edges in the graph model

means more CSR matrices, which eventually could be time consuming and impractical. In

fact, as this approach is looking for contextual support between nodes, i.e. the existence of

one edge between them, the number of CSR matrices is equal to the number of edges within

the graph model. In addition, the dimensionality of the feature space used in the final stage

is equal to the number of nodes plus the number of edges.

5.2.5.2 Potential Landmarks

Experimental results of when the endocanthions and the pronasale landmarks are found si-

multaneously are presented, because it is known (from Chapter 3 and Chapter 4) that these

are robust facial landmarks, although experimentation here is limited to simple descriptors

and the localisation performance is not that impressive. More landmarks could be investi-

gated subject to the complexity issues discussed in the previous section.
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Additional facial landmarks, which must be explored, are the subnasion (s), the alar

curvature points (ac) and the alare (al), within a graph model similar to the one illustrated

in Figure 5.5.

5.2.5.3 Simplicity vs Processing Time

This chapter investigated the RBE approach that was taken using simple descriptors, namely

DLP and Euclidean distance. These feature descriptors were preferred because they are

easily computed, providing a straightforward RBE implementation. However, location per-

formances here indicate that more sophisticated descriptors have to be evaluated for com-

parison. It is not clear at this time whether these localisation scores could be improved.

However, it is clear (from Chapter 4) that using more sophisticated descriptors will defi-

nitely increase the processing time in the initialisation step. Further investigation is needed

to clarify this trade–off between accuracy and processing time.

5.2.5.4 Stop Conditions

Several conditions affecting the localisation approach were found: the anthropometric dif-

ferences, variations in depth, and hair styles are the most relevant. These conditions and

the simple descriptors used produce, in some cases, more false positives than true positive

landmark candidates, which means that true positive triplets were eliminated in early itera-

tions due to small contextual support. To avoid this happening, the process of elimination

must be stopped before deleting true positive combinations of landmarks but, in this case,

it is possible to have a large number of combinations in the final evaluation step and it may

be time–consuming to do the multivariate normal evaluation using the six variables in the

graph model.

5.2.5.5 Occlusion, Pose and Depth Variations

The preliminary results are limited to nearly all front pose captures with depth variations. In-

creasing the number of facial landmarks is required in further research, however, incomplete

matching cases also have to be considered in order to make this approach robust to occlusion

and pose variations. Landmark triplet matches have been investigated in this chapter and

this approach will certainly require some modification when presented with pure profiles

and other situations where facial features are occluded.

There are two possible ways to attack these problems. Firstly, different facial landmarks

within our graph model can be selected. Preliminary results suggest that landmarks in Fig-

ure 5.5 are suitable candidates when confronted with extreme pose variations, such as pure
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profiles. Additionally, landmarks in Figure 5.5 are less affected by facial expressions. Sec-

ondly, Chapter 4 presented point–pair and point–triplet descriptors which have been proved

efficient in localising distinctive facial landmarks. To use these feature descriptors with

different facial landmarks is straightforward and it is part of future work.

5.3 Summary

Two facial landmark localisation methods have been studied in this chapter: the first method,

is a binary decision tree approach, which localises the pronasale landmark in 3D face data;

the second method, is a ‘relaxation by elimination’ implementation, which localises the

pronasale and endocanthion landmarks simultaneously within a 3D face image. For both

methods, background information and test procedures were provided, followed by a locali-

sation performance evaluation and a general discussion.
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Conclusions and Future Work

In this Chapter, final remarks about the investigation are presented. In Section 6.1, final

conclusions for the thesis are presented. In Section 6.2, possible future work related to this

research is discussed. Finally, in Section 6.3, a chapter summary is provided.

6.1 Conclusions

This thesis, presented research achievements within the task of landmark localisation in 3D

face data. For this investigation, the specific research aims were defined in Section 2.7.2; it

is hoped that they have been completed satisfactorily. The aims are restated below together

with the work which was done to cover them summarised.

i) Define an experimental framework for this facial landmark investigation.

As described in Section 3.1, all the investigations have been done using the bench-

mark face recognition grand challenge (FRGC) database, which is the largest 3D face

database widely available to the research community.

Considering the most characteristic facial features, eleven facial landmarks were de-

fined in Section 3.1.4, and respective ground–truth was manually collected over all

well registered FRGC data.

In Section 3.2, experimental settings were defined, including: a) separate training and

testing sets; b) a novel cumulative error curve for localisation performance analysis;

and c) facial RBF modelling interpolation.

Finally, the prescribed set of eleven facial landmarks were analysed in Section 3.3, us-

ing simple distance to local plane (DLP) features, illustrating their retrieval, accuracy,

repeatability, and specificity metrics.
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ii) Investigate state–of–the–art pose invariant feature descriptors and extend their
applicability.

In Section 4.1, this thesis analysed four state–of–the–art pose–invariant feature de-

scriptors. For each feature descriptor, with varying complexity, their repeatability and

accuracy when localising eleven facial landmarks were analysed. Their computational

complexity was observed using the big O notation and computation times.

After analysing eleven facial landmarks, in Section 3.3 and Section 4.1, this investi-

gation focused on the localisation of the three most distinctive, the nose–tip and two

inner–eye corners, which is the minimum number of landmarks necessary for pose

normalisation.

A particular contribution in this research, is found in novel surface descriptors, which

are derived from either unstructured data or a radial basis function (RBF) model. Thus,

Section 4.2 and Section 4.3, introduced two novel families of feature descriptors,

namely point–pair and point–triplet descriptors, which need two and three vertices

respectively to be computed. This contribution is summarised in Table 4.16.

iii) Investigate practical approaches to localise facial landmarks based on related
state–of–the–art algorithms.

Two facial landmark localisation algorithms were investigated in this thesis. In Sec-

tion 5.1, a binary decision tree was used to implement a cascade filter to localise the

pronasale landmark. In Section 5.2, graph matching was implemented via relaxation

by elimination to localise the pronasale and two endocanthion landmarks simultane-

ously.

iv) Design and evaluate landmark localisation systems taking advantage of novel fea-
ture descriptors and algorithms.

All feature descriptors (Section 4.1, Section 4.2, and Section 4.3) and algorithms (Sec-

tion 5.1 and Section 5.2) investigated in this thesis, were embedded into a system to

localise the most distinctive facial landmarks, the nose–tip and two inner–eye corners.

Thus, from every system, a particular landmark localisation performance was obtained.

It is important to observe that the attributes of these novel point–pair and point–triplet

descriptors make them useful in a number of 3D graph–based retrieval applications,

and not only for 3D face processing. However, in this thesis, their ability to localise

distinctive landmarks from 3D face data as a first application has been shown.

In the rest of this section, a final discussion of findings within this thesis is presented.
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6.1.1 Overall Comparison of Landmark Localisation Systems

A number of systems to localise facial landmarks have been implemented within this thesis

(see Table 6.1). Firstly, a simple classifier system (SC–S) computes a single feature de-

scriptor for every vertex within a testing face (Section 4.1). The vertex with the minimum

Mahalanobis distance to the mean of respective training data is then taken as the best estima-

tion. Eleven facial landmarks were investigated with these systems. Secondly, point–pair

descriptors were used to construct point pair systems (PP–S). Every PP–S is used to lo-

calise a pair of pronasale and endocanthion landmarks, as further discussed in Section 4.2.

Thirdly, point–triplet systems (PT–S) compute point–triplet descriptors to localise triplets

of pronasale and endocanthion landmarks; experimental procedure for every PT–S are de-

tailed in Section 4.3. Fourthly, two versions of binary decision tree systems (BDT–S) were

presented to localise the pronasale landmark. As detailed in Section 5.1, these BDT–S pro-

gressively use more powerful descriptors, reducing the number of potential candidates; at

the end, the most powerful feature descriptors, spin–images and SSR histograms, are com-

puted. Finally, a relaxation by elimination system (RBE–S) was implemented to localise the

pronasale and endocanthion landmarks simultaneously, as detailed in Section 5.2.

Note that different testing and training sets were used among systems in Table 6.1,

which has implications for comparing them directly. However, above all of these systems, it

can be observed that the pronasale landmark is the most distinctive facial landmark, where

99.92% of pronasale landmarks are succesully located within an error of 12 mm. An overall

summary of successful landmark localisation is presented in Table 6.2, where successful

localisation is defined in Table 3.4.

6.1.2 Facial Landmark Analysis

The approach taken to analysing eleven facial landmarks (Section 3.3) has been presented,

with the main objective being to identify the most distinctive (if any) facial landmark for

robust 3D face processing applications. Eleven anthropometric facial landmarks were stud-

ied in terms of retrieval, accuracy, repeatability and specificity ratios. To do this, distance to

local plane (DLP) features using five radii (10, 20, 40, 60, and 80 mm) were first computed.

Note that any of the four feature descriptors could be used here, however, DLP was chosen

for simplicity, as stated in Section 4.1. A binary classification scheme was applied to count

true positive (TP), false positive (FP), true negative (TN) and false negative (FN) cases. The

premise was a set of potential landmarks, collected within a radius of 12 mm, for each facial

landmark at ground–truth level.

This experiment was not a state–of–the–art anthropometric landmark investigation ac-
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Table 6.1: Summary of facial landmark localisation systems implemented in this thesis. In total,
five families of systems were implemented: (SC–S) simple classifier system, (PP–S) point–pair
system, (PT–S) point–triplet system, (BDT–S) binary decision tree system, and (RBE–S) relaxation
by elimination system. Note that every system was investigated with particular training and testing
set (see Section 3.2.1).

System Feature descriptor/algorithm
Training size Testing size

(shape images) (shape images)

SC–S1 DLP feature 200 100
SC–S2 SSR value features (TrainingSet–2) (TestingSet–1)
SC–S3 Spin images
SC–S4 SSR histogramss
PP–S1 CSR histograms binned against radii 200 3780
PP–S2 CSR histograms binned against height (TrainingSet–2) (Testing scenarios Table 3.3)
PP–S3 As PP–S2 but using a single cylinder
PP–S4 [p× q × h] CSR histogram
PP–S5 Directed point–pair spin images
PP–S6 Undirected point–pair spin images
PT–S1 Weighted–interpolated depth map 200 509
PT–S2 Baricenter depth map (TrainingSet–2) (Testing scenario #1 Table 3.3)
PT–S3 7–bins SRS vector
PT–S4 SRS depth map
PT–S5 SRS histogram
BDT–S1 Binary decision tree w/spin images 100 3780
BDT–S2 Binary decision tree w/SSR features (TrainingSet–1) (Testing scenarios Table 3.3)
RBE–S1 Relaxation by elimination 200 3780

(TrainingSet–2) (Testing scenarios Table 3.3)

cording to the literature review (Section 2.5.2), where accurate 3D data and associate ground–

truth are essential in this matter. However, this experimental framework produces coarse

performance figures which correspond with the state–of–the–art in the field. Hence, these

figures are considered to be clear illustrations of the localisation performance of these facial

landmarks.

From this analysis, it can be observed that the pronasale is the most distinctive facial

landmark, followed by the endocanthion landmarks. Two main factors are related to this

outcome: (a) the human face anatomy; and (b) experimental data attributes. Anatomically,

it can be observed that the largest facial feature on a human face is the nose, which addi-

tionally is the largest rigid area. Furthermore, the symmetry and location of the nose make

it clearly distinctive in a front–pose capture. Although these factors were not investigated

individually, they were all indirectly considered when DLP features were computed. As

shown in Section 2.4.2, the feature descriptor used is naturally radial. This means that all

of these factors are merged when features around the nose are collected. A decrease in per-

formance can be hypothesised when localising the pronasale landmark using self occluded

data, such as pure profiles. In comparison to the pronasale, endocanthion landmarks are lo-
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cated in a smaller area, affecting their localisation rate. This is clear when larger radii make

the pronasale landmark more distinctive than the endoncanthion landmarks, as illustrated in

Section 3.3.4.

6.1.3 Feature Descriptors Analysis

In Section 4.1, four state–of–the–art pose–invariant feature descriptors of varying complex-

ity were analysed, illustrating their accuracy and repeatability when localising eleven facial

landmarks.

An experimental framework was defined to analysis one hundred shape images as fol-

lows. Firstly, each feature descriptor was applied to each vertex within a face which was

used for testing. Next, for each facial landmark, the vertex with the minimum Mahalanobis

distance to the mean of respective training data was taken as the best estimation. Cumula-

tive error curves were then generated by comparing estimated landmarks against respective

ground–truth data(Section 3.1.4). Finally, repeatability and accuracy ratios are read from

these figures.

As detailed in the literature review (Section 2.4), the four feature descriptors are defined

radially. However, DLP and SSR values are 1D features, whereas, spin–images and SSR are

n–dimensional histograms. For this reason, successful localisation figures for spin–images

and SSR histograms were presented, using from 1 to 184 dimensions (see Figure 4.4 and

Figure 4.5). It was found that spin images were able to achieved 100% successful localisa-

tion by using a feature space of 64 dimensions, whereas, SSR histograms only needed 20

dimensions. Thus, cumulative error curves using a reduced feature space of 64 dimensions

were obtained.

Complexity was analysed using the big O notation, which describes the worst–case

scenario and illustrates required computing time. To do this, algorithms for each feature

descriptor were presented. This analysis of complexity was confirmed by computational

times gathered from an experimental framework.

It was found that SSR features achieve better repeatability and accuracy ratios than DLP

and spin–images (Section 4.1.3). However, SSR features are also computationally more

expensive than their counterpart, as indicated by the analysis of complexity.

This experiment promoted the pronasale as the most distinctive facial landmark using

any of the four feature descriptors. This result corresponds with and extends the facial land-

mark analysis findings presented in Section 3.3. Unfortunately, 100% successful localisa-

tion was only achieved by using computational expensive descriptors, which is a limitation

for real applications. Based on these results, two approaches were taken in this research.
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In the first, novel feature descriptors were investigated, point–pair and point–triplet de-

scriptors. In the second, facial localisation algorithms were studied exploiding the feature

descriptors properties found in this analysis.

6.1.4 Point–pair Feature Descriptors

Section 4.2 investigated point–pair descriptors, which are able to encode 3D shape informa-

tion between a pair of 3D points in a pose–invariant way. Additionally, their applicability to

localise pairs of pronasale and endocanthion landmarks simultaneously was demonstrated,

with very promising results (Table 4.5).

The first descriptor is the point–pair spin image, which is related to the classical spin

image of Johnson and Hebert (1999). In this representation, a direction vector was defined

using a pair of 3D surface points, which are landmark candidates in these applications,

Johnson’s formulation using this direction vector instead of a normal vector was then closely

followed. This descriptor is pose invariant, but it can be directed or undirected, according

to the binning style.

The second descriptor is derived from an implicit radial basis function (RBF) model

of the facial surface, which is called a cylindrically–sampled RBF (CSR) shape histogram.

This is related to previous work by the author on spherically sampled RBF (SSR) shape

histograms (Pears et al., 2010). Here, a set of n sample points were evenly distributed

within q cylinders radii ri, the aim of which was to evaluate an RBF model. These N = nq

evaluations were then binned against radii, heights or both.

Both of these descriptors can effectively encode edges in graph based representations

of 3D shapes, and are designed to be pose–invariant. Thus, they are useful in a wide range

of 3D graph–based retrieval applications, not just 3D face recognition. However, as a first

application of these descriptors, this thesis has evaluated their ability to localise pairs of

pronasale and endocanthion landmarks in a pose invariant way. This was made possible

by applying a two step process: Firstly, a pair of candidate landmark lists were populated

using simple descriptors that measure local convexity. These descriptors were ‘distance

to local plane’ and the ‘SSR convexity values’. All landmark pairs which were within a

trained Euclidean distance metric of each other were then compared against trained point–

pair descriptors in order to select the best landmark pair.

It has been shown how the point–pair descriptors were able to identify pairs of pronasale

and endocanthion landmarks in six promising landmark localisation systems. It was found

that CSR histograms binned against radii scored the best successful localisation perfor-

mance, 96.03% & 99.65% of endocanthion and pronasale landmarks, respectively. On the
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other hand, undirected point–pair spin images performed better than directed point–pair spin

images, when 91.29% & 98.75% of endocanthion and pronasale landmarks are successfully

localised.

Clearly, to compute a point–pair feature it is necessary a pair of candidates, which has

an effect in the final localisation performance.

6.1.5 Point–triplet Feature Descriptors

The point–triplet feature descriptors were introduced in Section 4.3, which given a triangu-

lar region defined by three 3D points were able to encode shape into a surface signature.

As a first application, the point–triplet descriptors were embedded into a facial landmark

localisation system (Table 4.8). Their ability to localise landmark–triplets of pronasale and

endocanthions was then shown, with very promising results (Table 4.10). Properties of these

point–triplet descriptors, made them useful in a wide range of graph based retrieval applica-

tions. However, to compute any point–triplet feature, three candidate vertices are required.

This increased their computing time, but more importantly, this affected their localisation

performance if suitable landmarks are not matched within a triplet of candidate points.

Given a point–triplet of 3D points, a classical feature descriptor is a depth map, which is

generally computed from a regular grid (i.e. evenly distributed). Bearing this in mind, this

approach was followed: firstly a local right hand basis for the given triangular region was

defined, based on its normal vector. For consistency, this normal vector was always oriented

towards the camera’s viewpoint. Contrary to the classical depth map approach, the vision

here was to encode only shape information within the triangular region. A simple way to

do so is to create a regular grid and then apply a binary mask. However, it is dependent on

the triangular region’s geometry, and fitting a regular grid inside an irregular triangle would

be problematic. Therefore, taking advantage of basic geometry an algorithm to generate

sampling points by computing the baricenter of the given triangular region was proposed.

This approach not only generates sampling points inside the triangular region, but can also

be recursively executed, taking advantage of the baricenter geometrical properties.

In addition to the sample points generation, two approaches to computing depths were

investigated. The first was based on weighted–interpolation using neighbouring raw 3D data

around every sampling point. In the second approach, depths were computed by evaluating

a surface RBF model from every sampling point, which is related to previous work (Pears

et al., 2010). The second category is generally referred to as surface RBF signature (SRS)

features.

Above all, five point–triplet descriptors were created: a) weighted–interpolated depth
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map; b) baricenter depth map; c) 7–bins SRS vector; d) SRS depth map; and e) SRS his-

togram. The definition of these descriptors is in Section 4.3.1 and Section 4.3.2, and their

ability to localise point–triplets of pronasale and endocanthions is in Section 4.3.3. Different

properties were observed from the point–triplet descriptors.

It is believed that an ideal point–triplet descriptor should be pose–invariant and unori-

ented, and these properties were found in the 7–bins SRS vector. As might be expected,

there is a trade–off between pose & orientation invariance against descriptiveness. Never-

theless, from the experimental results it was found that the 7–bins SRS vectors are promising

point–triplet feature descriptors. So far, using 7–bins SRS features, left endocanthion, right

endocanthion and pronasale landmarks have been successfully located in 91.35%, 83.10%,

and 99.01%, respectively. This localisation performance is comparable to the base–line in

this experimentation.

6.1.6 Facial Landmark Localisation Methods

Chapter 5 investigated two facial landmark localisation methods. The first method used a

binary decision tree to implement a cascade filter; the second method used graph matching

via relaxation by elimination. The objective was to investigate a variety of approaches which

might be useful to localise facial landmarks. These methods were found practical for the

task, and both of them reported promising results.

Binary Decision Tree Approach

Binary decision trees are practical solutions for numeral problems, as discussed in Sec-

tion 5.1. The goal here was to localise the most distinctive facial landmark, the pronasale,

using this approach. To do this, more complex, hence more effective, feature descriptors

were progressively applied, as further discussed in Section 5.1.2.

As investigated by Pears et al. (2010), every feature descriptor was embedded into sim-

ple classifiers, or filters. Weak thresholds were used to guarantee that the real pronasale

landmark was never eliminated. For computing complexity, it was found practical to first

apply a DLP filter, followed by an SSR value filter. Then, a third filter which aimed to

select local maximum SSR values. Finally, the last filter used either SSR histograms or spin

images, giving two variants of this approach.

It was found that the binary decision tree approach was able to localise 99.92% of

pronasale landmarks, within an error of 12 mm, using SSR features. Surprisingly, the alter-

nate system that substituted SSR histograms by spin–images, successfully localised 99.7%

pronasale landmarks within the same error intervals. Three main reasons for this result were
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identified:

a) The experimental data set. It is largely known that spin images are mesh resolution

dependent. The 3D FRGC data are not only front–pose, as illustrated in Section 3.2.5,

but they are also largely populated around the nose area, providing a nice environment

in which to compute spin images.

b) SSR values effectiveness. SSR histograms and spin–images depend on previous filters.

It is clear from the feature descriptors analysis (Section 4.1.3), that SSR values effec-

tively discriminate a pronasale landmark from any other. Thus, either SSR histograms

or spin–images share their success with a previous filter, SSR value features.

c) Feature space reduction. In this experiment, a reduced feature space of 64 eigenvec-

tors was used for both SSR histograms and spin–images. As mentioned in Section 4.1.3,

a reduced feature space of 25 eigenvectors is enough for SSR histograms to achieve a

100% successful localisation, whereas spin–images could only achieve a 55% success-

ful localisation.

Relaxation by Elimination Method

Relaxation labelling techniques have proved useful for graph matching (Section 2.6). Hence,

the objective was to investigate this subject within the facial landmark localisation task.

It was assumed that mutual support exists between neighbouring facial features, such as

the eyes and a nose in a human face. The investigation then aimed to localise triplets of

pronasale and endocanthion landmarks simultaneously, by fitting a simple graph model of

three nodes and three edges. Obviously, exhaustively testing every possible vertex triplet

against training data is too computationally expensive and therefore significant reduction

in the number of vertex triplets that had to be tested was sought, firstly, by checking for

appropriate nodal attributes, and then by checking pair–wise relationships between a couple

of nodes.

To do this a structural graph matching algorithm known as ‘relaxation by elimination’

Turner and Austin (1998) was used (Section 2.6.1). This implementation (Section 5.2),

divided the algorithm into four steps. First, initial candidate lists for each of the three

nodes were populated, using appropriated mean and variance values from training data.

Next, binary arrays that represent mutual support between two candidate nodes were cre-

ated. Then, every less supported candidate was iteratively eliminated, until a stop condition

was obtained, either a minimum number of candidates remained or a maximum number of
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iterations was reached. Finally, the best combination was selected by computing their Ma-

halanobis distance to the mean of the 6–DOF training feature space. The candidate triplet

with the minimum distance was considered the best estimation.

Promising results were obtained from this approach, as detailed in Section 5.2.4. Natu-

rally, the second testing scenario reported better localisation performance than the first sce-

nario. It was observed that testing scenario #1 contained depth and wearing variations, pro-

ducing numeral collars which confused the algorithm. On the other hand, testing scenario

#2 contained variations in facial expressions and hair styles, but in this case, the algorithm

was less affected. One reason for this would be that close–up facial captures provide better

facial shape details, hence, more explicit contextual support was generated for the triplet of

landmarks. An overall successful performance of 90% for the pronasale and endocanthion

landmarks, within an error of 12 mm, was reported.

6.2 Future Work

Finally, possible avenues for future work related to this investigation are as follows:

Landmark Localisation in Extreme Pose Variations

There is a strong motivation to extend this investigation using 3D data with extreme pose

variations, such as pure profiles. This is a natural step forward, and a pilot experiment for

this task has been prepared. Unfortunately, owing to time constraints, this investigation is

still in progress. The experimental data was computed by producing self occluded faces

at the symmetry plane level, using the FRGC ground–truth data (subnasion, pronasale and

the chin’s centre landmarks). A coarse–eigenshape (CES) descriptor (Romero and Pears,

2009a), which is believed useful to localise facial landmarks within these conditions, has

also been investigated.

Testing Data with Higher Resolution

As mentioned in Section 3.2, down–sampled data at rate four (with an average distance of

3–5 mm between vertices) was used throughout this investigation. To smooth implications

for localisation performance analysis, a localisation is labelled as successful, if the estimated

landmark is within a radius of 12 mm. Thus, a refined localisation with high resolution data

is needed, after this coarse estimation. This is taken as future work for this research.
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Facial Landmark Analysis

Although this is not an anthropometric investigation, high quality data is relevant. In par-

ticular, this facial landmark analysis is limited to: (a) moderate pose variations (FRGC);

(b) absence of highly accurate ground–truth data; (c) data capture variability, e.g. mesh

resolution and depth variations; and (d) one feature descriptor being considered at a time.

Point of improvement (a) suggests that this investigation should be extended over facial

data with extreme pose variations, such as pure profiles. A pilot experiment has been done

in this matter, where self occluded data was produced using the ground–truth landmarks

(subnasion, pronasale, and chin centre). Unfortunately, this experiment was not completed

in time to present performance figures. Points of improvement (b) and (c) are related to

the experimental data properties. This investigation has been done using capture variations,

such as mesh resolution and depth. An objective facial landmark analysis necessarily de-

pends on high quality data, including an accurate ground–truth. This is only possible by

collecting appropriate experimental data. Finally, according to point of improvement (d), it

is possible to extend the facial landmark analysis (Section 3.3) by using more sophisticated

feature descriptors, provided by an increase in computing time; although, part of this work

was covered in the feature descriptor analysis (Section 4.1).

Feature Descriptors Analysis

Appropriate experimental data, with associated ground–truth are essential to further anal-

yse these feature descriptors. Particularly, this experiment is limited to: a) front pose data

(FRGC); and b) manually collected ground–truth data. A step forward in this experiment

would be to investigate data with pose variations, including extreme pose variation such

as pure profiles. The FRGC database has nearly all front–pose captures, as shown in Sec-

tion 3.2.5, and it lacked an appropriate ground–truth landmark for this research purpose.

This problem was overcome by undertaking ground–truth collection (Section 3.1.4); how-

ever, this is only a manual estimation of eleven facial landmarks. An investigation to gen-

erate face data in different poses, including self occluded, is in progress, which might assist

the feature descriptors analysis.

Point–pair descriptors

By definition, to compute point–pair descriptors point–pair candidates are needed. This

problem was addressed in this thesis by finding candidate landmarks separately and then

combining them using a point–pair property. Therefore, the performance reported by the
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point–pair localisation systems is affected by the candidate point–pair collection. Alternate

ways to populate point–pair candidates should be explored.

The ability of point–pair descriptors to localise pairs of pronasale and endocanthion

landmarks has been shown. Different pairs of landmarks could be investigated using point–

pair descriptors. For instance, interesting results could be obtained using pairs of landmarks

across the facial symmetry plain, e.g. subnasion, pronasale, and chin centre. However, this

is not a practical approach when presented to self occluded data, such as pure profiles or

facial expressions.

Point–triplet descriptors

Obviously, three 3D points are needed to compute any of the point–triplet descriptors, mak-

ing it necessary to gather candidate point–triplets in a previous step. This has two important

implications. First, as might be expected, collecting candidate landmark triplets is not a

simple task. Secondly, the landmark localisation performance is related to the candidate

point–triplet selection, as long as valid candidates could be ignored when forming candi-

date triplets.

Potential problems arise producing sampling points from a regular grid using a binary

mask, when computing either weighted–interpolated or SRS depth maps. To overcome this

problem a novel baricenter algorithm that generates sampling points taking advantage of

geometry properties of the initial triangular region was introduced. However, this sampling

set is not evenly distributed, making necessary alternate encoding methods. For instance,

the 7–bins SRS vector is limited to encoding baricenter sampling points for 2 iterations.

Nevertheless, this is believed to be a potential feature descriptor, and there must be alterna-

tive methods to encode 7–bins SRS vectors for a larger number of sampling points. This is

part of future work.

Facial Landmark Localisation Methods

Promising results have been observed from both facial landmark localisation methods. The

binary decision tree and relaxation by elimination approaches have been specifically dis-

cussed in Section 5.1.5 & Section 5.2.5 respectively. Possible future work using these algo-

rithms is as follows.

Firstly, the binary decision tree approach could be used to investigate additional facial

landmarks, such as the endocanthions. In a preliminary implementation, it was found that

key feature descriptor parameters have to be adjusted according to the surface where every

facial feature is located.
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Secondly, it was found that the relaxation by elimination implementation is a practical

approach to reducing the number of possible combinations for a triplet of landmarks. On the

other hand, the binary decision tree method has reported excellent localisation performance

for the pronasale landmark. However, it assumed the existence of facial landmarks within

a testing file, and the number of facial landmarks to be located were prescribed. Further

investigation is needed to improve these preliminary approaches.

It was observed that extending the graph model in the relaxation by elimination ap-

proach would make it difficult to control related contextual support relationship (CSR) ma-

trices. This is in light of the number of CSR matrices that will be increased according to the

number of edges within the target graph model.

Finally, an interesting investigation would be to apply the relaxation by elimination

approach at every stage within the binary decision tree approach. The specific proposal is to

represent every node in the graph model using first DLP features, then SSR or spin–image

features according to the binary decision tree.

6.3 Summary

This chapter concludes the thesis, drawing ideas for future work based on research interests.

Both, the conclusions and future work are based on research findings. The research aims

were focused on and each of them was discussed along with possible opportunities for

improvement.
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Appendix A

Terminology

3D errors, refers to either a spike (point above a surface), a pit (point below a surface), or

a hole (data absence) within a 3D image. Unfortunately, 3D sensors are not as mature

as standard 2D cameras and, even in optimal conditions, the apparent illumination

invariance of 3D sensors is questionable (Bowyer et al., 2006; Maurer et al., 2005).

Therefore, 3D errors are likely to happen. It is beyond of the scope of this thesis to

indulge in a technical discussion about 3D sensors, however, further information can

be obtained from 3D sensor manufacturers, e.g. Minolta (2010), Maurer et al. (2005),

3Q (2002), Cybula (2010).

7–bins SRS vector, is a novel point–triplet descriptor which encodes 3D shape in a pose–

invariant way. To compute this feature, an RBF model is evaluated by n baricenter

sampling points, giving n distance to surface values (DTS). Then, these nDTS values

are binned, taking advantage of the geometric properties of the baricenter sampling

points.

Baricenter depth map, is a simple [5 × 5] point–triplet descriptor, which is computed by

evaluating an RBF model using 25 baricenter sampling points which are then sequen-

tially binned.

Baricenter sampling points, is a set of sample points within a triangle defined by a given

triplet of points. These sample points are iteratively calculated by taking advantage

of geometrical properties of a triangle’s baricenter.

Binary decision tree, is a particular structure where decisions are stated as true or false. In

this thesis, a binary decision tree has been implemented by progressively using more

powerful classifiers to identify the nose–tip landmark within a 3D image.
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CSR histogram, Cylindrically Sampled RBF (CSR) histogram, is a novel pose–invariant

point–pair feature descriptor which is computed by evaluating an RBF model using

a set of sampling points evenly distributed along a cylinder of radius r and height

defined by a given pair of 3D points.

CSR matrix, Contextual Support Relationship (CSR) matrix, is a binary array which in-

dicates mutual support between a pair of candidate vertices within a relaxation by

elimination approach implemented in this thesis.

Point–pair descriptor, refers to either point–pair spin images or CSR histograms surface

feature descriptor, where both descriptors are computed from a given pair of 3D

points.

Point–pair spin image, is a pose–invariant feature descriptor which encodes surface shape

from a given surface. In this definition, a direction vector is obtained from a given

pair of points, which is used in place of the normal vector from the classical concept

of Johnson (1997).

Point–triplet descriptor, refers to any surface descriptor computed from a given point–

triplet, namely: weighted–interpolated depth map, baricenter depth map, 7–bins SRS

vector, SRS depth map, or SRS histogram.

RBF model, is a model interpolated from scattered data using a Radial Basis Function

(RBF). For the purpose of this thesis, RBF models are computed using the FastRBF

Toolbox from FarField Technology (FarField, 2004).

Relaxation by Elimination (RBE), is a structural graph matching technique which uses

contextual support to iteratively eliminate the less supported combination of vertices

from a defined graph model. In this thesis, RBE has been implemented to localise the

nose–tip and two inner–eye corner landmarks simultaneously.

SRS depth map, is a 2D map, where depths are computed by evaluating an RBF model

using a set of sampling points evenly distributed within a triangle defined by a given

triplet of 3D points.

SRS feature, Surface RBF signature (SRS) feature, refers to any point–triplet feature de-

scriptor which is computed by evaluating an RBF surface model.

SRS histogram, is a point–triplet descriptor which encodes 3D shapes into a 2D array by

evaluating N = nq baricenter sampling points on an RBF surface model, giving N
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distance to surface (DTS) values. A [q × p] SRS histogram is produced by binning n

DTS values within each layer q in p bins.

SSR histogram, Spherically Sampled RBF (SSR) histogram, is a pose–invariant feature

descriptor derived from an RBF model. This feature descriptor is computed by eval-

uating an RBF model using N = nq sample points evenly distributed on q concentric

sphere of radius rq, giving N distance to surface values (DTS). An RBF histogram is

constructed by binning the N normalised DTS values in p bins.

SSR feature, refers to either an SSR histogram or SSR value feature. Both feature descrip-

tors are computed by evaluating an RBF model.

SSR value, Spherically Sampled RBF (SSR) value, is a 1D value pose–invariant feature

descriptor. It is computed by evaluating an RBF model using a set of sampling points

evenly distributed on a sphere of radius r. An SSR value has been proven useful to

identify convex and concave surface regions (Pears et al., 2010).

Weighted–interpolated depth map, is a point–triplet descriptor which is related to a clas-

sical depth map feature. To compute this descriptor, n sampling points are evenly

distributed within a triangle defined by a given triplet of 3D points. For every n sam-

pling point, a depth is estimated by using inverse square weighted interpolation on a

raw data surface within its neighbourhood of radius r.
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