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Abstract—The objective of human re-identification is to
recognize a specific individual on different locations and to
determine whether an individual has already appeared. This
is especially in multi-camera networks with non-overlapping
fields of view of interest. However, this is still an unsolved
computer vision task due to several challenges, e.g. significant
changes of appearance of humans as well as different illumi-
nation, camera parameters etc. In addition, for instance, in
surveillance scenarios only low-resolution videos are usually
available, so that biometric approaches may not be applied.
This paper presents a whole-body appearance-based human re-
identification approach for low-resolution videos. We propose
a novel appearance model computed from several images of
an individual. The model is based on means of covariance
descriptors determined by spectral clustering techniques. The
proposed approach is tested on a multi-camera data set of a
typical surveillance scenario and compared to a color histogram
based method.

I. INTRODUCTION

There are several approaches for re-identifying humans in
multi-camera networks. Depending on the image resolution
of persons, biometric approaches can be applied such as
re-identification by face [1], gait [2] or their combination
[3], to name but a few. Other approaches use soft biometric
features such as skin color, hair color, tattoos or other body
decorations, height or width as well as behavioral traits
of the individuals [4], [5]. However, if only low-resolution
videos are available, these approaches may probably not
applicable, for the simple reason that such features cannot
be extracted due to the low resolution.

In this paper, we propose a human re-identification
method based on the whole-body appearance. Appearance-
based techniques perform the re-identification on color or
texture information of person’s clothing. Recently, there
are several appearance-based approaches, an overview can
be found in [6]. The use of local features for human re-
identification in low-resolution videos are generally not
adequate as persons don’t often show up significant tex-
tures. One common suitable approach may be using color
histograms which represent the whole-body appearances.
Another approach is the use of covariance matrices as image
region descriptors which have been proposed by Tuzel et

al. [7]. The authors got convincing results for different
computer vision tasks especially according to their discrim-
inability (see e.g. [7], [8] and [9]). Two examples for human
re-identification methods using covariance descriptors are
[10] and [11]. One drawback here is the computation time
caused mainly through the high number of necessary com-
parisons of the covariance descriptors. Furthermore, the grid-
based approach is not adequate for low-resolution videos.
In our proposed approach, we first build a representative
set of means of covariance descriptors representing the
whole-body appearance and compare only means with each
other instead of comparing all descriptors with each other,
which decreases the number of necessary comparisons by
approximately factor 1000. Thereby, it is important to get
representative and discriminative means that as well as their
number are determined by spectral clustering techniques.

Our approach is presented in Section IV, after we treated
the basics of the covariance descriptors and their correspond-
ing Riemannian manifold in Section II as well as spectral
clustering fundamentals in Section III. Experimental results
are shown in Section V before we conclude our contribution.

II. COVARIANCE DESCRIPTORS

Covariance descriptors were introduced by Porikli et al.
[7]. A covariance descriptor represents an image region
by a covariance matrix of image features. It proposes a
natural way of fusing multiple features which might be
correlated with each other, where diagonal entries of the
covariance matrix represent the variance of each feature and
the off-diagonal entries represent the correlations between
the features. In other words, a covariance descriptor contains
information about spatial and statistical properties of the
image region as well as linear correlations between these
properties.

As pointed out in [7] there are several advantages of using
covariance descriptors:
• Support of scale invariant features/properties
• Invariant to mean changes (e.g. invariant to identical

shifting of color values)
• Insensitive to noise
• Efficient fusion of multiple features



• Feature set may be easily extended or modified
Using covariance matrices as descriptors, there is need for
non-Euclidean metrics since covariance matrices do not lie
in a vector space. For that, the set of positive definite sym-
metric matrices can be formulated as Riemannian manifold
as described in the following sections.

A. Covariance Descriptor Computation

Let R1 be an image region. First, for each pixel inside
R1 features such as color, gradients, filter responses, etc.
are computed. Then, d-dimensional feature vectors are con-
structed - one for each pixel inside R1. For human re-
identification we use the y-coordinates of the image pixels
as well as the color values R, G and B.

Let{fi}(i=1...n) be a set of feature vectors of the W -width
and H-height rectangular R1 and

fi = (y,R(x, y), G(x, y), B(x, y))T (1)

a feature vector at the pixel with the coordinates (x, y) and
R(x, y), G(x, y), B(x, y) the corresponding color values.
The covariance matrix representing R1 is then given by

CovR1 =
1

WH

WH∑
i=1

(fi − µR1
)(fi − µR1

)T (2)

where µR1
denotes the mean-vector of {fi}(i=1...n).

More details about the covariance descriptor computation
including an efficient method by using integral images can
be found in [12].

B. Space of Positive Definite Covariance Matrices

A covariance matrix contains information about statistical
dispersions and linear relationships of random variables. Let

Cov(Xi, Xj) =

E [(Xi − E(Xi))(Xj − E(Xj))] ,

i = 1 . . . n, j = 1 . . . n,

(3)

the pairwise covariances, the covariance matrix Σ is then
given by

∑
=

Cov(X1, X1) · · · Cov(X1, Xn)
...

. . .
...

Cov(Xn, X1) · · · Cov(Xn, Xn)

 . (4)

The set of positive definite covariance matrices (nonsin-
gular covariance matrices) describes a Riemannian mani-
fold and is denoted by Sym+

n . A Riemannian manifold
or Riemannian space is a topological space that is only
locally Euclidean: there is a tangent space at each element
of the manifold (in our case at each covariance matrix).
Hence, Euclidean geometry is not appropriate to compare
covariance matrices. In past years functions like the trace
or determinant of a covariance matrix have been used to

measure the similarity. However, these measures are not
suitable [13] and hence Foerstner et al. [13] and Pennec
et al. [14] deduced invariant Riemannian metrics. These
metrics are equivalent, thus it is sufficient to concentrate
on Pennec’s:

< y, z >∑
1
= trace

(
Σ
− 1

2
1 yΣ−1

1 zΣ
− 1

2
1

)
, (5)

Σ1 is a covariance matrix and y, z are elements of the tan-
gent space at Σ1. y and z are computed by a diffeomorphism
which maps elements of the tangent spaces into the manifold
of covariance matrices. Associated to the Riemannian metric
(5) it is defined by the exponential map

expΣ1
(y) = Σ

1
2
1 exp

(
Σ
− 1

2
1 yΣ

− 1
2

1

)
Σ

1
2
1 . (6)

The exponential map is global in Sym+
n and thus there is

an inverse mapping (logarithmic map) which is uniquely
defined everywhere:

logΣ1
(Σ2) = Σ

1
2
1 log

(
Σ
− 1

2
1 Σ2Σ

− 1
2

1

)
Σ

1
2
1 . (7)

It maps points of the manifold into tangent spaces. Now,
by substituting Equation (7) into (5) we get the following
equation for Pennec’s metric:

< y, z >∑
1

= trace

(
log2

(∑− 1
2

1

∑
2

∑− 1
2

1

))
= < log∑

1
(
∑

2) , log∑
1

(
∑

2) >∑
1

. (8)

The exp and log are the ordinary matrix exponential and
logarithm operators.

C. Empirical Mean Value

There are several definitions of the (empirical) mean value
for a set of measures of the same positive definite symmetric
matrix [15]. One applicable mean is the so-called Karcher
or Fréchet mean which minimizes the sum of the squared
distances between the matrices. According to [15], [16] and
[17] this mean exists and is even unique in Sym+

n , as
this manifold has a non-positive curvature [18]. It can be
computed by a gradient descent algorithm [15]: matrices
are mapped into the tangent space first, where then the
Euclidean mean is calculated. Eventually, the mean value
of the covariance matrices is given by mapping back the
Euclidean mean.

Let Σ1 . . .Σn be a set of n measures of the positive
definite symmetric matrix Σ̄t, then the new mean Σ̄t+1 of
this set is given by

Σ̄t+1 = expΣ̄t

(
1

n

n∑
i=1

logΣ̄t
(Σi)

)
. (9)

An important point using this computation is to determine
a good starting point. If there is no

∑̄
t, in general, an



element of
∑

1 . . .
∑

n can be selected randomly as starting
point. If required, the matrices may be weighted differently,
for instance, by their distances to the mean value [8].

III. SPECTRAL CLUSTERING

This section gives a brief overview of the proposed
spectral clustering approach used in this contribution (de-
tails about well-known spectral clustering algorithms can
be found e.g. in [19], [20]). Let Σ1 . . .Σn be a set of n
covariance descriptors. First, a symmetric adjacency matrix
A = (aij) is computed:

aij = aji =

{
1 , if Σj ∈ NΣi

0 , otherwise
, (10)

using the Riemannian Metric d(Σi,Σj) as stated in Equation
(5) respectively Equation (8) and Σj ∈ NΣi

means that Σj

is a neighbor of Σi. There are several methods to determine
the neighborhood relationships of data points respectively
descriptors. For instance, all descriptors can be connected
with each other or the k-nearest neighbors of a descriptor can
be determined. In addition, the connections can be weighted
by the corresponding pairwise similarities or distances of
the descriptors regardless of the chosen method. In our ap-
proach, we consider a ε-neighborhood, where all descriptors
whose pairwise distances are smaller than ε are connected
without weighting the connections. In our experiments we
got the best results with this neighborhood, however, please
note that in general - as mentioned in [19] - theoretical
results on the question how the choice of the similarity graph
influences the spectral clustering result are not known.

Then the normalized graph Laplacian matrix Lsym is
computed. It is defined as

Lsym = I −D− 1
2AD−

1
2 (11)

with the identity matrix I . D = (dij) denotes a diagonal
matrix whose diagonal entry dii is given by the sum of the
ith row of A.

Properties of the n × n normalized graph Laplacian
matrix Lsym, which are relevant within this paper, are listed
hereafter (the proof can be found in [19]):

• 0 is an eigenvalue of Lsym with eigenvector D
1
2

→
1 .

• Lsym is positive semi-definite and have n non-negative
real valued eigenvalues 0 = λ1 ≤ · · · ≤ λn.

• Due to the graph W is undirected and only have non-
negative weights, the multiplicity k of the eigenvalue 0
of Lsym equals the number of connected components
in the graph.

• W.l.o.g., assuming that the elements of each connected
component are ordered according to the component
they belong to, then both the adjacency matrix A as well
as the Laplacian matrix Lsym have a block diagonal

form:

Lsym =


L1

L2

. . .
Lk

 . (12)

• The spectrum of Lsym is given by the union of the
spectra of Li, and the corresponding eigenvectors of
Lsym are the eigenvectors of Li, filled with 0 at the
positions of the other blocks.

After computation of the normalized Laplacian matrix, the
clustering can be performed. Let k the number of the wanted
clusters. In that case, the first k eigenvectors u1, . . . , uk of
Lsym are computed and the matrix T ∈ Rn×k is formed by
the k eigenvectors as columns of T . Additionally, the rows of
T are normalized to 1. As a final step, the rows of T , which
represent the input covariance descriptors, are grouped into k
clusters (details about the determination of k in our proposed
approach is described in the next section). For this, the k-
means algorithm is typically applied on the rows of T . In
the context of our proposed approach we run the k-means
algorithm only on blocks of the Laplacian matrix Lsym with
block size equal or greater than x (x corresponds to the
minimum number of covariance descriptors wanted for the
computation of means). Blocks with a size smaller than x
are not considered, so that we got j ≤ k clusters - at least
one mean of covariance descriptors for every block with the
size equal or greater than x.

IV. RE-IDENTIFICATION

In our context, the objective of human re-identification
is to recognize a specific person captured by a tracker in
a multi-camera network respectively to merge partial tra-
jectories, for instance, caused through gaps in the cameras’
field of views without having any information concerning
sensor topology or the like. In other words, we have an
image sequence of a connected specific individual’s track
and compare this with sequences of other connected tracks
in order to determine whether the (partial) trajectories be-
long to the same individual. Therefore, we present in this
section an efficient whole-body appearance-based human re-
identification method for low-resolution videos.

The input of our proposed approach are image regions
(rectangles) generated from our tracking method. An im-
age region contains exactly one person - image regions
containing multiple persons are detected automatically by
the tracker and are not considered in the re-identification.
Additionally, the persons are segmented in the images by the
tracker and the background are blackened (details about the
tracker can be found in [21]). The last step before performing
the re-identification is the scaling of the images to a fix width
and height.

The re-identification procedure is performed by com-
paring means of covariance descriptors that represent the



whole-body appearance (for every track at least one mean
is computed). To this, a set of covariance descriptors Σ =
{Σ1, . . . ,Σn} - one descriptor for each image region of a
sequence - is computed as described in Section II. Then k
empirical mean values Σ̄i , i = 1 . . . k are computed from
these descriptors for a sequence as described in Section II-C
in accordance with Equation 9.

The number of means k is determined by an eigengap
heuristic, where the common goal is to choose the number
k such that all eigenvalues λ1 . . . λk are very small, but λk+1

is relatively large. As in Section III described, in the ideal
case of k completely disconnected clusters, the eigenvalue
0 has multiplicity k, and then there is a gap to the (k+1)th
eigenvalue λk+1 > 0. If there are no ideal disconnected
clusters, we compare the eigenvalue gap to a bias that we
empirically determined from our data set.

The result are k means of covariance descriptors for a
sequence. This procedure is then done for every sequence.
After that, the means representing different sequences are
compared pairwise using the geodesic metric as defined by
Equation (8). The final decision of “who is who” results
directly from these comparisons. In the context of this paper
the objective is to get a ranking by the distances of the means
of covariance descriptors. Figure 1 gives an overview of the
proposed approach.

V. EXPERIMENTAL RESULTS

In this section, the experimental results of our proposed
approach is summarized. The camera network is installed in
an atrium at a height of 3 meters and consists of 3 IP cameras
with a resolution of 4CIF. For the experiments a test data set
consisting of 96 connected tracks were considered (16, 25
respectively 55 from each one camera). Each track consists
of minimum 10 and up to 1000 images. The image regions
containing the individuals are scaled to a width of 64 pixels
and a height of 128 pixels. Figure 2 shows some examples
of the data set. The low resolution of the persons is the
biggest challenge in this data set, so that especially similar
appearances - as exemplarily pointed out in the first two
rows of the figure - make the re-identification difficult.

Covariance descriptors were computed from the image co-
ordinates y and the R, G, B color values. The x-coordinates
were excluded from the feature set as they increase the
invariance in cases where individuals are seen from different
sides.

The re-identification experiments were performed in three
cameras, whereby their different fields of view are non-
overlapping. Most individuals passed all cameras as well as
re-entered one or more same cameras’ field of view after a
longer period of time. We evaluated our proposed approach
on this data set and compared it to a histogram based
multi-shot re-identification procedure, whereby - in both
procedures - pre-processing methods such as histogram
equalization were deliberately not applied.
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Figure 1. Overview of the proposed approach.

The histogram based method uses RGB histograms con-
taining 64 bins for each color channel. For each image of
a connected reference track a histogram was computed and
the histogram with the smallest chi-square distance of the
gallery tracks was determined. The ranking was then directly
concluded from the number of track hits (normed to the track
length).

In our proposed approach, all means of covariance de-



Table I
RANKING RESULTS OF THE RE-IDENTIFICATION EXPERIMENTS. THE

TABLE COLUMNS 2 (HISTOGRAM BASED APPROACH) AND 3 (OUR
APPROACH) SPECIFY FOR EVERY RANK THE PERCENTAGE OF THE

CORRECT CORRESPONDING TRACKS RESPECTIVELY
RE-IDENTIFICATIONS. RANKINGS HIGHER THAN RANK FIVE ARE NOT

CONSIDERED.

Rank Histogram approach Our approach

1 38.94% 64.56%

2 47.34% 71.48%

3 55.06% 76.73%

4 62.61% 80.13%

5 64.32% 83.85%

scriptors were computed first. Then for each mean of a
reference track the distances to means of the gallery tracks
were determined and ranked by their distance with the
result that the closest one was put on the first rank. At it,
for every gallery track a seperate test run was performed,
where only one track of the wanted person was kept in
the gallery. This procedure avoids random hits in cases
there are several tracks or means of one person in the
gallery. The same procedure was done if there were several
means of covariance descriptors for one track. The results
are summarized in Table I that specifies for every rank the
percentage of the correct re-identifications.

VI. CONCLUSION

We have proposed an appearance-based human re-
identification method for low-resolution videos using means
of covariance descriptors and spectral clustering techniques.
The main contribution is an appearance model based
on means of covariance descriptors which significantly
decreases the number of comparisons necessary for re-
identification. The approach was evaluated on a data set of a
representative surveillance scenario and it was shown that it
has the capability to outperform color histogram approaches.

ACKNOWLEDGMENT

The research reported in this contribution is partly
funded by the German Federal Ministry of Education
and Research (BMBF) within the program “Research for
Civil Security”, in conjunction with the project CamInSens
(www.caminsens.org).

REFERENCES

[1] M. Baeuml, K. Bernardin, M. Fischer, H. K. Ekenel, and
R. Stiefelhagen, “Multi-pose face recognition for person re-
trieval in camera networks,” Proc. of International Conference
on Advanced Video and Signal-Based Surveillance, 2010.

[2] M. S. Nixon, T. Tan, and R. Chellappa, “Human identification
based on gait,” Proc. of International Series on Biometrics,
vol. vol. 4, 2006.

Figure 2. Sample images from our data set.

[3] R. Chellappa, A. K. Roy-Chowdhury, and A. A. Kale, “Hu-
man identification using gait and face,” Proc. of IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition CVPR, 2007.

[4] A. Dantcheva, C. Velardo, A. D’Angelo, and J.-L. Dugelay,
“Bag of soft biometrics for person identification,” Journal of
Multimedia Tools and Applications, vol. vol. 51-2, 2011.



[5] A. K. Jain and A. Kumar, “Biometrics of next generation : An
overview,” Second Generation Biometrics, Springer, 2010.

[6] G. Doretto, T. Sebastian, P. Tu, and J. Rittscher, “Appearance-
based person reidentification in camera networks: problem
overview and current approaches,” Journal of Ambient Intel-
ligence and Humanized Computing, vol. vol. 2, pp. 127–151,
2011.

[7] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast
descriptor for detection and classification,” Proc. of European
Conference on Computer Vision ECCV, vol. vol. 2, pp. 589–
600, 2006.

[8] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using
model update based on means on riemannian manifolds,”
Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2005.

[9] ——, “Human detection via classification on riemannian
manifolds,” Proc. of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition CVPR, 2007.

[10] S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “Boosted
human re-identification using riemannian manifolds,” Journal
of Image and Vision Computing, Elsevier, 2011.

[11] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “Person
re-identification by descriptive and discriminative classifica-
tion,” Scandinavian Conference on Image Analysis, Lecture
Notes in Computer Science, vol. vol. 6688, pp. 91–102, 2011.

[12] F. Porikli and O. Tuzel, “Fast construction of covariance
matrices for arbitrary size image windows,” Proc. of Intl.
Conf. on Image Processing ICIP, 2006.

[13] W. Foerstner and B. Moonen, “A metric for covariance
matrices,” Technical report, Department of Geodesy and
Geoinformatics, University of Stuttgart, 1998.

[14] X. Pennec, P. Fillard, and N. Ayache, “A riemannian frame-
work for tensor computing,” International Journal of Com-
puter Vision IJCV, vol. vol. 64, pp. 41–66, 2006.

[15] X. Pennec, “Intrinsic statistics on riemannian manifolds:
Basic tools for geometric measurements,” Journal of Mathe-
matical Imaging and Vision JMIV, vol. vol. 25, pp. 127–154,
2006.

[16] H. Karcher, “Riemannian center of mass and mollifier
smoothing,” Comm. Pure Appl. Math., vol. vol. 30, pp. 509–
541, 1977.

[17] W. S. Kendall, “Probability, convexity, and harmonic maps
with small image i: uniqueness and fine existence,” Proc.
London Math. Soc., vol. vol. 61-2, pp. 371–406, 1990.

[18] L. Skovgaard, “A riemannian geometry of the multivariate
normal model,” Scandinavian Journal of Statistics, vol. vol.
11, pp. 211–223, 1984.

[19] U. von Luxburg, “A tutorial on spectral clustering,” Technical
Report, Max Planck Institute for Biological Cybernetics, vol.
vol. TR-149, 2007.

[20] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering:
analysis and an algorithm,” Advances in Neural Information
Processing Systems, MIT Press, vol. vol. 14, pp. 849–856,
2002.

[21] C. Herrmann, D. Manger, and J. Metzler, “Feature-based
localization refinement of players in soccer using plausibility
maps,” Proc. of International Conference on Image Process-
ing, Computer Vision, and Pattern Recognition IPCV, vol.
vol. 2, 2011.


