
HAL Id: hal-00718293
https://inria.hal.science/hal-00718293

Submitted on 16 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual Statistics of Space-Time Ordered Features
for Human Action Recognition

Piotr Bilinski, Francois Bremond

To cite this version:
Piotr Bilinski, Francois Bremond. Contextual Statistics of Space-Time Ordered Features for Hu-
man Action Recognition. 9th IEEE International Conference on Advanced Video and Signal-Based
Surveillance (AVSS), Sep 2012, Beijing, China. �hal-00718293�

https://inria.hal.science/hal-00718293
https://hal.archives-ouvertes.fr


Contextual Statistics of Space-Time Ordered Features

for Human Action Recognition

Piotr Bilinski and Francois Bremond

INRIA Sophia Antipolis, STARS team

2004 Route des Lucioles, 06902 Sophia Antipolis, France

firstname.surname@inria.fr

Abstract

The bag-of-words approach with local spatio-temporal

features have become a popular video representation for

action recognition. Recent methods have typically focused

on capturing global and local statistics of features. How-

ever, existing approaches ignore relations between the fea-

tures, particularly space-time arrangement of features, and

thus may not be discriminative enough. Therefore, we pro-

pose a novel figure-centric representation which captures

both local density of features and statistics of space-time

ordered features. Using two benchmark datasets for human

action recognition, we demonstrate that our representation

enhances the discriminative power of features and improves

action recognition performance, achieving 96.16% recog-

nition rate on popular KTH action dataset and 93.33% on

challenging ADL dataset.

1. Introduction

Automatic recognition of human actions has gained

tremendous interest in recent years. Video surveillance,

video data indexing, video retrieving, human-computer in-

teraction or sport event analysis are just few of many ap-

plications, in which action recognition plays the main role.

In recent years, various methods have been proposed and

much progress has been made. However, due to enormous

variations in visual and motion appearance of both people

and actions, camera view point, occlusions, noise and enor-

mous amount of video data, action recognition still remains

a challenging problem.

Over the last few years, many different action recogni-

tion techniques have been proposed. Existing techniques

could be divided into four categories. The first group of

techniques uses silhouette or body contour information to

represent an action [5, 2, 1, 13, 20]. Such techniques

usually require precise algorithms, which is often diffi-

cult to achieve, especially in real-world videos. The sec-

Figure 1: Multi-scale figure-centric neighbourhoods used to

calculate Space-Time Ordered Contextual Features.

ond category contains methods analysing motion trajecto-

ries [25, 28, 11, 32]. This group of techniques usually re-

quires either feature point or object tracking. Reliable track-

ing is also difficult to achieve due to illumination variability,

occlusions, noise, low discriminative appearance or drift-

ing problems. The third category of techniques uses local

spatio-temporal features [16, 27, 14, 8, 22] which have re-

cently become a very popular video representation method

for action recognition. Local spatio-temporal features have

shown very good performance in recognition of various ac-

tion classes. They are able to capture both visual and mo-

tion appearance. They are robust to viewpoint and scale

changes, they are easy to implement and fast to process.

Moreover, they do not require either object localization or

tracking and in addition they are robust to background clut-

ter. Over the last few years, many different local interest

point detectors (like Harris3D [16], Cuboid [6], Hessian

[35] or Dense sampling [33]) and many spatio-temporal de-

scriptors (like HOG [17], HOG3D [14], HOF [17], Cuboid

[6] or ESURF [35]) have been proposed. One of the most

commonly used descriptors in the literature showing a high

performance over the various datasets [33] are: Histogram

of Oriented Gradients (HOG) and Histogram of Oriented

Flow (HOF) descriptors [17]. The former describes the lo-

cal visual appearance and the latter characterizes the local

motion appearance of the interest point. These descriptors

are usually applied with the Harris3D corner detector [16],
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which is a space-time extension of the Harris operator.

Local spatio-temporal features are mostly used with a

bag-of-words model. Together, they have shown to achieve

high recognition rate across various datasets [21, 17, 26].

The bag-of-words model simplifies the structure of 3D

video data assuming conditional independence across spa-

tial and temporal domains. It encodes global statistics of

features computing histogram of feature occurrences in a

video. However, this technique has few limitations: it ig-

nores relative position of features, local density of features,

local pairwise relationships among the features and infor-

mation about the space-time order of features. A common

way to overcome these limitations is to use either spatio-

temporal grids [17] or multi-scale pyramids [18]. Unfortu-

nately, these methods are still limited in terms of detail de-

scription providing only a coarse representation. To over-

come these limitations, techniques of the fourth category

can be used to enhance the discriminative power of features

and help in the task of action recognition. The fourth group

of method is based on contextual information [7] extracting

from the video content scene information [19, 23], spatio-

temporal relations between trajectories [31], figure-centric

features [34, 3, 15] or modelling human-object interactions

[9]. Sun et al. [31] have proposed to model the spatio-

temporal context of trajectories into transition matrix of a

Markov process, and then extract its stationary distribution

as the final context descriptor. The authors capture the lo-

cal occurrence statistics of all types of trajectories within

figure-centric neighbourhoods. Wang et al. [34] have pro-

posed a representation that captures contextual interactions

between interest points, based on the density of all features

observed in each interest point’s multiscale spatio-temporal

contextual domain. However, both these methods are re-

stricted to aggregate statistics over the video volume and ig-

nore local pairwise relationships between features. Baner-

jee et al. [3] have proposed to learn the local neighbour-

hood relationships between local features, and train a CRF

based human activity classifier. The neighbourhood rela-

tionships are modelled in terms of pairwise co-occurrence

statistics. Kovashka et al. [15] have proposed to learn the

shapes of space-time feature neighbourhoods that are the

most discriminative for a given action category. The au-

thors have proposed figure-centric statistics that capture the

orientation between features. However, despite that these

methods capture relationships between local features, they

are still limited ignoring important information about the

spatio-temporal order of features.

To differ from those ideas, we propose a novel repre-

sentation based on quantized local spatio-temporal features.

We enhance the discriminative power of features incor-

porating figure-centric information about the local spatio-

temporal distribution and order of features. For each de-

tected local feature, we define its neighbourhoods and com-

pute statistics of pairwise co-occurring visual words within

such neighbourhoods. Our representation captures not only,

local density of features but also, local pairwise relation-

ships among the features and information about the space-

time order of features. We evaluate our approach on two

publicly available datasets for human action recognition

(KTH and ADL). We show that the proposed representation

enhances the discriminative power of features and improves

action recognition performance.

2. Proposed Approach

Local spatio-temporal features used with bag-of-words

model have shown to achieve high action recognition per-

formance. Recent methods have typically focused on cap-

turing global and local statistics of features. However, exist-

ing approaches ignore relations between the features, partic-

ularly space-time arrangement of features, and thus may not

be discriminative enough. Therefore, we propose a novel

figure-centric representation which captures local density of

features and local pairwise relationships among the features

with information about the space-time order of features.

The technique presented in this section enhances discrim-

inative abilities of features and improves action recognition

performance.

2.1. Interest Point Quantization

Firstly, we extract local interest points P = {P1, ..., Pn}
and their descriptors for each video sequence. Then, we

cluster all the descriptors extracted from the training videos

into k classes, called visual words. Finally, for each video

sequence V, we map the extracted interest points to the clos-

est visual words using associated local descriptors:

V = {(P1, c1), . . . , (Pn, cn)}, (1)

where point Pi is represented as Pi = [P
(x)
i , P

(y)
i , P

(t)
i ]T

and ci is an index of the closest visual word from the Pi.

2.2. Figure­Centric Neighbourhoods

To specify Space-Time Ordered Contextual Features

(STOCF), we initially define the neighbourhoods of de-

tected points.

For each detected interest point Pi, we compute a set

S = {S1, ..., S|S|} of multi-scale blocks around it. For sim-

plicity, we define s-th scale neighbourhood of the point Pi

as cuboid with side lengths G
(x)
s , G

(y)
s and G

(t)
s (Figure 1).

The points that belong to such s-th scale cuboid can be de-

fined as:

Ni,s = {Pj ∈ P :
⋂

d∈{x,y,t}

|P
(d)
j − P

(d)
i | ≤ W (d)

s }, (2)

where ∀d∈{x,y,t}G
(d)
s = 2W

(d)
s + 1.



N3,s = {P1, P2, P3, P4},

C = {C1, C2},

N
(C1)
3,s = {P1, P3},

N
(C2)
3,s = {P2, P4},

M
(F )
3,s =

P1 P2 P3 P4












P1 0 1 1 1
P2 0 0 1 1
P3 0 0 0 1
P4 0 0 0 0

,

M
(C)
3,s =

C1 C2
[ ]

C1 1 3
C2 1 1

,

CF3,s = [1, 3, 1, 1]T ,

Table 1: STOCF feature - sample of computation. The red cuboids represent a figure-centric s-th scale neighbourhood of

the point P3. The set of points belonging to this neighbourhood is marked as N3,s. C represents the set of visual words and

N
(Cj)
3,s is the set of points (belonging to the N3,s) that are assigned to the visual word Cj . An order of points is represented

by binary matrix M
(F )
3,s , where M

(F )
3,s (Pa, Pb) = 1 means that point Pa occurs before point Pb. The matrix M

(C)
3,s is obtained

from corresponding points from the matrix M
(F )
3,s using point to codebook mapping. Finally, the STOCF feature is marked

as CF3,s. Related elements of the matrices M
(F )
3,s and M

(C)
3,s , and vector CF3,s are indicated by identical colours.

In the previous section, we have explained that each

point is assigned to a certain visual word v. Therefore, we

define N
(v)
i,s as a set of points in neighbourhood Ni,s, which

are assigned to the codebook element v:

N
(v)
i,s = {Pj ∈ Ni,s : cj = v}, (3)

where cj is the index of the visual world assigned to the

point Pj (defined in Equation 1).

2.3. Space­Time Ordered Contextual Features
(STOCF)

Given computed local interest points and their neigh-

bourhoods, we show how to compute the Space-Time Or-

dered Contextual Features (STOCF) for a specified point Pi

and its neighbourhood Ni,s.

We define STOCF as figure-centric statistics of features

within 3D video patches. STOCF features are represented

as histograms of pairwise co-occurring visual words. Each

element of the histogram contains information about the re-

lationship between two visual words - e.g. the value of x for

pair of visual words (Ca, Cb) means that there is x pairs of

points where the first point is assigned to the visual word

Ca and the second to the Cb. More precisely, we compute

non-negative matrix M
(C)
i,s :

M
(C)
i,s =









R
(1,1)
i,s . . . R

(1,k)
i,s

...
. . .

...

R
(k,1)
i,s . . . R

(k,k)
i,s









, (4)

where R
(a,b)
i,s is the cardinality of the set R

(a,b)
i,s (R

(a,b)
i,s =

|R
(a,b)
i,s |), and the set R

(a,b)
i,s represents pairs of co-occurring

points which are organized in space-time:

R
(a,b)
i,s = {(Pj , Pk) ∈ N

(a)
i,s × N

(b)
i,s :





∑

d∈{x,y,t}

wdsgn(P
(d)
k − P

(d)
j )



 > 0},(5)

Parameter wd, which is explained later, is the weight for the

dimension d and sgn(x) is the signum function1.

Finally, we define the STOCF features - CFi,s, computed

for the point Pi in the s-th scale neighbourhood Ni,s, as

matrix M
(C)
i,s reshaped to a single dimensional vector:

CFi,s = [R
(1,1)
i,s , . . . ,R

(1,k)
i,s ,R

(2,1)
i,s , . . . ,R

(k,k)
i,s ]T , (6)

If necessary, the size of the STOCF features can be reduced

using e.g. PCA or LDA technique. However, due to the ef-

ficiency of small codebooks, methods for dimension reduc-

tion were not applied during our experiments. A calculation

example of STOCF features is given in Table 1.

2.4. Action Recognition using STOCF features

To represent videos, we apply the bag-of-words model

for each feature class (HOG-HOF and STOCF) indepen-

dently. We construct visual vocabularies from training

videos clustering computed features. Then, we assign each

1The signum function of a real number x is defined as follows: 1 if

x > 0, 0 if x = 0, and −1 otherwise.



feature to its closest visual world. The concatenated his-

tograms of visual world occurrences over video forms the

final representation.

To classify a video, we use multi-class non-linear Sup-

port Vector Machines (SVM). We apply a χ2 distance to

compare two n-bins histograms Hi = [Hi(1), ...,Hi(n)]T

and Hj = [Hj(1), ...,Hj(n)]T :

χ2(Hi, Hj) =
1

2

n
∑

k=1

(

(Hi(k) − Hj(k))2

Hi(k) + Hj(k)

)

(7)

This distance is then converted into SVM multi-channel χ2

kernel using a multi-channel generalized Gaussian kernel:

K(Hi, Hj) = exp(−
1

A
χ2(Hi, Hj)) (8)

where A is the normalization parameter set as in [17].

3. Experiments

Our experiments demonstrate the effectiveness of the

proposed representation for a various of action categories.

We evaluate our approach on two benchmark datasets for

human action recognition - KTH and ADL datasets. Sample

frames from video sequences of these datasets are presented

in Figure 2. We show that using a small codebook (Section

2.1), we are able to enhance the discriminative power of

features and improve action recognition performance.

3.1. Implementation Details

To detect interest points in a video, we use the sparse

Harris3D corner detector [16]. We detect points in multiple

spatial and temporal scales. Then, for each 3D video patch

in the neighbourhood of a detected point, we compute HOG

(Histogram of Oriented Gradient) and HOF (Histogram of

Optical Flow) descriptors [17]. The detector and descriptors

were selected based on their use in the literature and pro-

vide a good baseline for comparison with the state-of-the-

art techniques. However, our action representation method

is independent of the type of detector and descriptor, and

can be used together with any other algorithm.

In order to quantize local features, we use the k-

means clustering technique and nearest neighbour algo-

rithm. To compute the bag-of-words representation, fea-

tures are quantized to the codebook size of 1000, which

has shown empirically to give good results. As a metric

to calculate a distance between features and visual words,

we use the L2 norm. Since Harris3D corner detector cal-

culates sparse spatio-temporal features, we set the weights

w as w(x) = 1, w(y) = 2, w(t) = 4 (Equation 5). To

compute STOCF features, the HOG-HOF descriptors are

quantized to small codebook sizes (10, 15, 20 and 25) and

Boxing Hand clapping Hand waving Running Walking

Answering a phone Drinking water Eating a banana Writing on a whiteboard

Figure 2: Sample frames from video sequences of the KTH

(first row) and ADL (second row) datasets.

figure-centric neighbourhoods are calculated for 8 different

scales (W
(x)
s , W

(y)
s , W

(t)
s ∈ {4, 8, ..., 32}). The proper

selection of neighbourhood size is important. Too small

neighbourhood can contain only a few points and might

not be discriminative. Too large volume may employ too

many points and might also result in being not discrimi-

native. Choosing an appropriate scale can be done in two

ways: using Multiple Kernel Learning or cross-validation.

In all our experiments, we calculate several codebooks to

quantize local points (Section 2.1), and several multi-scale

neighbourhoods to compute STOCF features. Then, we ap-

ply the cross-validation technique to both gauge the general-

izability of the proposed approach, and select the most dis-

criminative parameters. We use the Leave-One-Out Cross-

Validation (LOOCV) technique, where videos of one person

are used as the validation data, and the remaining videos as

the training data. This is done repeatedly so that videos of

each person are used once as the validation data.

3.2. KTH Dataset

The KTH [30]2 dataset contains six types of human ac-

tions: walking, jogging, running, boxing, hand waving and

hand clapping. Each action is performed several times by

25 different subjects in four different scenarios: outdoors

(s1), outdoors with scale variation (s2), outdoors with dif-

ferent clothes (s3) and indoors (s4). The dataset contains

599 video files. All sequences were recorded with 25 fps

frame rate.

The dataset contains a set of challenges like: scale

changes, illumination variations, shadows, different scenar-

ios, cloth variations, inter and intra action class speed vari-

ations and low resolution (160 × 120 pixels spatial resolu-

tion).

We follow recent evaluations on the KTH dataset [21,

37, 12, 36, 10] using LOOCV scheme. In general, LOOCV

assesses the performance of an approach with much more

reliability than splitting-based evaluation schemes because

it is much more comprehensive. Results from the exper-

2http://www.nada.kth.se/cvap/actions/



iments are presented in Table 2. Comparison of our ap-

proach with state-of-the-art methods in the literature using

LOOCV technique is presented in the Table 3. For scenar-

ios s1, s2, s3 and s4, our approach obtains the recognition

rate of 98.67%, 95.33%, 92.62% and 98.00% respectively

(selecting codebook size of 15, 25, 10 and 10 respectively).

Overall, our approach obtains 96.16% recognition rate. The

results clearly show that our representation enhances the

discriminative power of features and outperforms state-of-

the-art techniques.

Moreover, given quantized local interest points, we ex-

amine the average computation time of STOCF features us-

ing various codebooks (Section 2.1) and neighbourhoods.

Results are presented in Table 4. We observe, that using

small codebooks, STOCF features are very fast to calculate

and achieve high action recognition rate.

s1 s2 s3 s4 s1-s4

98.67% 95.33% 92.62% 98.00% 96.16%

Table 2: KTH dataset: Evaluation of STOCF features. The

table shows the action recognition rate.

Method Year Accuracy

Liu et al. [21] 2009 93.8%

Wu et al. [37] 2011 94.5%

Kim et al. [12] 2007 95.33%

Wu et al. [36] 2011 95.7%

Lin et al. [10] 2011 95.77%

Our method 96.16%

Table 3: KTH dataset: Comparison of our approach with

state-of-the-art methods in the literature.

Neighbourhood

Codebook 4 12 20
10 1.82ms 3.09ms 5.63ms

20 1.87ms 3.22ms 6.36ms

Table 4: KTH dataset: Average computation time of

STOCF features using various codebooks and neighbour-

hoods (W (x) = W (y) = W (t)).

3.3. ADL Dataset

The ADL (University of Rochester Activities of Daily

Living) [25]3 dataset contains ten types of human activities

3http://www.cs.rochester.edu/˜rmessing/uradl/

of daily living selected to be useful for an assisted cogni-

tion task. The full list of activities is: answering a phone,

dialling a phone, looking up a phone number in a telephone

directory, writing a phone number on a whiteboard, drink-

ing a glass of water, eating snack chips, peeling a banana,

eating a banana, chopping a banana, and eating food with

silverware. Each action is performed three times by five

different people. In total, the dataset contains 150 video se-

quences recorded with 30 fps frame rate and 1280 × 720
pixel resolution. The videos were down-sampled to the spa-

tial resolution 640 × 360 pixels.

The dataset contains a set of challenges like: different

shapes, sizes, genders and ethnicities of people, and diffi-

culty to separate activities on the basis of a single source of

information (e.g. eating banana and eating snack or answer-

ing a phone and dialling a phone).

The results from the experiments, together with a com-

parison of our approach with state-of-the-art methods in

the literature, are presented in Table 5. Our approach

obtains 93.33% recognition rate, which is comparable to

[34] (where the authors use more efficient but more time-

consuming and complex learning algorithms; also, [34]

reaches 93.8% accuracy for the KTH dataset while our

approach achieves 96.16% accuracy) and outperforms all

other state-of-the-art methods [24, 29, 4, 28, 25]. The

results clearly show that our representation enhances the

discriminative power of features and improves the action

recognition performance.

Method Year Recognition Rate (%)

Matikainen et al. [24] 2010 70%

Satkin et al. [29] 2010 80%

Banabbas et al. [4] 2010 81%

Raptis et al. [28] 2010 82.67%

Messing et al. [25] 2009 89%

Wang et al. [34] 2011 96% (93.8% for KTH)

Our method 93.33%

Table 5: ADL dataset: Comparison of our approach with

state-of-the-art methods in the literature.

4. Conclusions and Future Work

We have proposed a novel figure-centric representation

which captures statistics of space-time ordered features.

This representation has been evaluated on two public bench-

mark datasets for human action recognition. We have ob-

tained 96.16% recognition rate for the KTH dataset and

93.33% for the ADL dataset. This shows that our approach

enhances the discriminative power of features and improves

action recognition performance. In the near future work,

we intend to examine more efficient learning algorithms



(like Multiple Kernel Learning) to combine STOCF fea-

tures from different neighbourhoods, and to evaluate our

representation using various interest point detectors and de-

scriptors. We also intend to examine the proposed represen-

tation in a hierarchical manner, i.e. using STOCF features

as descriptors in the interest point quantization process.
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