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Abstract

With the increasing number and variety of camera instal-
lations, unsupervised methods that learn typical activities
have become popular for anomaly detection. In this article,
we consider recent methods based on temporal probabilistic
models and improve them in multiple ways. Our contribu-
tions are the following: (i) we integrate the low level pro-
cessing and the temporal activity modeling, showing how
this feedback improves the overall quality of the captured
information, (ii) we show how the same approach can be
taken to do hierarchical multi-camera processing, (iii) we
use spatial analysis of the anomalies both to perform local
anomaly detection and to frame automatically the detected
anomalies. We illustrate the approach on both traffic data
and videos coming from a metro station.

1. Introduction and Previous Work

An increasing number of camera networks are being
deployed to ensure safety and abnormal event detection
through visual surveillance. Even if some applications can
afford systematic human monitoring, this is surely impossi-
ble when the number of cameras in the network is huge. It
has become of prime importance to design algorithms able
to handle this vast amount of data, filter out typical activ-
ities and show the most abnormal parts to human opera-
tor. In this article, we improve over recent approaches to do
anomaly detection and video abnormality characterization.

Related work A way of detecting abnormality is to
learn to recognize abnormal events. From a well specified
event type, one can build dedicated detectors [2] that usually
perform well. Such approaches require to define the events
of interest and gather a variety of training data. These ap-
proaches are thus not adequate in large camera networks
where no supervision is expected.

Given the above limitations, unsupervised methods have
gained interest recently. As these approaches cannot rely
on pre-defined abnormality classes, they rather learn what
is a normal activity and they consider as an anomaly any-
thing that deviates from these normal activities. Differ-
ent features have been used to characterize videos. In the
context of public spaces, person tracking with person re-
identification across cameras provides an effective solution
to abnormal behavior detection [ 12, 1, 13]. However, robust
tracking requires sufficient resolution and frame-rate, and,
often surveillance cameras have low resolution, low quality
(dirty, blurry, etc.) and low framerate (e.g., 5 frames per
second). This profile of cameras explain the growing inter-
est in relying on lower level features such as background
subtraction information [8] or localized motion in the form
of tracklets [5, 6] or optical flow [4].

Probabilistic methods have been shown very effective in
handling these low level features in a principled way. Orig-
inally designed for text semantic analysis and after their
success in many domains, various Topic Models has been
proposed and applied for activity modeling [7, 6]. In this
article, we build upon the Probabilistic Latent Sequential
Motifs (PLSM) model that have been proposed in [9, 11].
The main advantage of PLSM is its capacity of automati-
cally (with no supervision) extracting motifs (temporal pat-
terns) that capture strong temporal information in temporal
document represented by word X time count matrices. Ap-
plied to traffic or metro station videos, the motifs are shown
to capture the typical activities (related to trajectories) ob-
served in a scene, as illustrated in Fig. 5. PLSM has been
used for anomaly detection in surveillance video in [4].

In previous works, PLSM was applied to documents built
from an intermediate representation learned by dimension-
ality reduction of the low-level features. This intermedi-
ate representation had been learned in advance which had
two drawbacks (i) it made it possible to create artifacts for
PLSM, and (ii) the learning ignored temporal information,
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and thus was not benefiting by the temporal structure that
PLSM can provide. Also, when used for anomaly detec-
tion, PLSM was not considering the semantic of the inter-
mediate representation and thus it was for example ignoring
the spatial layout of anomaly in the scene. In this article we
explore solutions to these two restrictions in PLSM usage.

Outline of contributions We propose to improve the
anomaly detection approach using PLSM [9] by (i) jointly
learning the dimensionality reduction representation along
with the PLSM temporal model, and (ii) reasoning about
the spatial distribution of anomalies in the image. Sec-
tion 2 presents the two main paper contributions. Results
are shown in Sec. 3 for traffic data and in Sec. 4 for public
space data (metro station). Section 5 concludes the work.

2. Approach and Contributions

The main contributions of this paper are introduced in
this section. Subsection 2.2 details how we propose a new
model that integrates both a dimensionality reduction and
a higher level temporal modeling. The generalization of
this extension also allows to hierarchically stack multiple
temporal models as also presented in Subsection 2.2 with
a multicamera setup. Subsection 2.3 explains how we ex-
tract a new anomaly measure that takes into account the lo-
calization of the anomalies. We start by introducing in
Subsection 2.1 the elements that we reuse from state of the
art approaches and that motivate our contributions. As the
models involve multiple layers, we will systematically use
the superscript [ to denote lowest level elements.

2.1. Motif mining using PLSM

Previous approaches that use PLSM extract features
from videos and then apply a pre-processing step (e.g., the
PLSA topic model in [9]) before PLSM. These steps, in-
troduced below, have been done in a feed-forward manner,
the first steps not taking into account the information cap-
tured by the subsequent steps. We will show here how this
limitation can be waived.

Feature Extraction, low-level words For each video
we extract optical flow features from a dense image grid.
We keep only pixels where some motion is detected and
we quantize the motion into 8 directions, and the 9th «gj-
rection” indicates slow moving pixels. We obtain low level
words w!" defined by a position in the image and a motion
direction. We apply a sliding window of 1 second, with-
out overlap, to obtain an histogram n'!(w', d}! ) indicating
the number of times the word w!! appears in the low-level
document dii representing the sliding window at time ¢,,.

The PLSA model PLSA (Fig. 1, right) is a minimal
topic model. Given a set of documents made of word counts
and summarized in a table n!!(w!,d"), it extracts “top-
ics” capturing sets of words that often co-occur in the doc-

uments. Each topic is actually a distribution over words
¢, = p(w'|z"). Each document d' is also decomposed
as a mixture 6%, = p(2"|d'"") of these automatically learned
topics. PLSA usually has a non-informative prior o' on the
6" weight vectors. This means that the model is not encour-
aged to give any special shape to #" distributions and thus
it can arbitrarily choose the best ones that explains the data.
We will exploit this prior as a mechanism for feeding higher
level information to PLSA.

The PLSM model PLSM (Fig. 1, left) adds time to
PLSA: it is a topic model which automatically finds tempo-
ral and spatial co-occurrences of words. More precisely, it
takes as input a count matrix n(w, t,, d) indicating for each
document d (video clips), the number of times the word w
occurs at time ¢,. By describing the documents as mixtures
of temporal motifs, PLSM learns two sets of distributions,
similarly to PLSA but adding time. a set of motifs z, each
represented by a distribution ¢, = p(w, t.|z) denoting the
probability that a word w occurs at a relative time ¢, since
the start of the motif. and the distributions p(z, ts|d) which
indicate when the motifs occur, i.e., the probability that a
motif z starts at time ¢5. In videos, a motif captures spa-
tially and temporally co-occurring words in the document.

PLSM on top of PLSA One modeling issue with
PLSM is how to define the count matrix n(w,t,,d). A
first possibility would consist in ordering the low level doc-
uments dffa of the video clip d according to time ¢, to ob-
tain the temporal document n''(w!! t,, d). However, as the
number of low-level features is quite high, the learning of
PLSM can be time-consuming. To overcome this issue, the
PLSA topic model can be applied as a dimensionality re-
duction pre-processing step using as input the un-ordered
low-level documents. Figure 1 illustrates this approach with
blue arrows. PLSA results in a set of topics 2 which cap-
tures the frequently co-occurring words in the video which
often correspond to local spatial cluster of words, and the
distribution of topics p(z!!|d% ) within each document. By
assimilating these low-level topics z!! as the words w of
PLSM, we can build the temporal document for PLSM as:

n(w = 2" ta = d", d) = p(z"|dl}) Zn”(w”, di) (1)

wil

where the topic distributions p(z!!|d!. ) are weighed by the
mass of the document (number of low-level words at time
ta) to account for the overall amount of activity at each time
step. This temporal document is then fed as input to PLSM
to learn the temporal motifs and their starting times.

Intuition: PLSM as a corrector for PLSA output
From the learned distributions ¢ and 6, PLSM is fully able
to reconstruct an updated version of its input that takes into
account temporal co-occurrence captured in the motifs. The
reconstruction of the input is done following the PLSM
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Figure 1. PLSM Model on top of PLSA, from [9] and illustration
of the prior feedback (in red). The otherwise uninformative prior
on the topic weights in each document inll , is replaced by a prior
coming from the time-aware higher-level PLSM model.

equations (with ¢, = t, — t5):
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By applying PLSM on top of PLSA as presented above,
PLSM captures temporal patterns of occurrences of PLSA
topics. Given that PLSM tries to explain the documents
with temporal motifs, the reconstructed input n"¢“ corre-
sponds to the original input but updated to exhibit better
temporal coherence. This motif-constrained reconstruction
motivated [4] to use the difference between the input and
n"° as a measure of temporal anomaly.

We will use the reconstructed PLSM input in two novel
ways. First we will consider it as a more time-coherent ver-
sion of the PLSM input (PLSA output) and feed it back to
PLSA in the form of a prior. Next, we will back-project this
reconstructed intermediate document n"“ down to the input
images, to be able to do spatial reasoning about anomalies.

2.2, Integrated hierarchical model

As outlined above, we propose to integrate the PLSA di-
mensionality reduction step with PLSM. We call this ap-
proach Integrated PLSM (IPLSM) and it can be generalized
to a hierarchical version for example for multicamera.

Integrated PLSM (IPLSM) To increase the quality of
the captured PLSA topics, we propose an integrated model
shown in Figure 1 with a red arrow. The goal of IPLSM is to
have the temporal structure of the data (captured by PLSM)
impacts on the image-level topics (PLSA level). We do it
by jointly learning the PLSA and PLSM models. When
a scene is crowded, it is often difficult for PLSA to cap-
ture clean topics. When getting temporal information from
PLSM, PLSA is able to capture cleaner topics. In practice,
we exploit two facts: PLSM can reconstruct its input with
some added temporal constraints, and, a modified PLSA
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Figure 2. Hierarchical Integrated PLSM Model. Cam#: refers to
a camera view ¢. The process captures information at three levels:
topics (image level), motifs (per-camera temporal patterns) and
multi-camera motifs. Each level iteratively feeds back information
as a prior to the previous level.
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can accept a prior on what topics occur in which document.
The inter-level information flow is formulated in the form
of feedback as explained below.

* Inference by Prior-Feedback The overall goal of
IPLSM is to use higher-level temporal structure (motifs)
to improve lower level structures (topics). As exact infer-
ence is intractable (even just for PLSA), we use iterative
approximate inference method and formulate the feedback
of higher levels as a prior for lower levels. The document re-
constructed by PLSM, n"“¢ will be used after re-weighting
as a prior o for PLSA. This process goes on iteratively.

More precisely, the prior o'’ for the document at time ¢,
(o' is used as a shortcut for afillg )is computed as follows:

(2 =nrec(2 by, d) x S + Uniform 3)

For a given low level document, ! represents the hyper
parameters of a Dirichlet prior over . Adding the uniform
distributions encodes the inherent uncertainty of the PLSM
feedback. This helps in Expectation Maximization algo-
rithm to obtain a better local maximum during the learning
phase for PLSA and PLSM. S is a constant and is a parame-
ter to the model: the bigger the .S, the more the information
coming from PLSM will be trusted. A S value greater than
1 indicates a very strong prior would not allow the motifs
to change much as it requires more observations than the
training documents to change the belief. So a prior less than
one is more meaningful in this context. As previously men-
tioned, this is an iterative approach, the necessary number
of iterations is also a parameter to the model. The number
of iterations is camera specific, a metro camera may require
more iterations than a traffic camera because of loosely con-
strained motion. An example of the evolution of topics on a
single traffic camera is shown in the result section, in Fig. 5.

Multi-camera with Hierarchical IPLSM Following
the idea of integrating PLSA with PLSM, layers of PLSM
can be stacked and integrated. The prior feedback can be



used on the o parameter of PLSM. This approach becomes
especially interesting when considering multiple cameras as
illustrated in Fig. 2. The idea is to have an IPLSM for each
camera and a higher-level PLSM working on their com-
bined outputs and capturing motifs of per-camera motifs.
The motivation for feedback from hierarchical layer to sin-
gle camera IPLSM layer is to capture motifs that are rel-
evant (in time) across cameras as depicted in the included
supplementary material.

2.3. Localized anomaly detection

As described in Section 2.1, PLSM fits its input with
some motifs and it can be used to reconstruct a corrected
version of the input. Intuitively, the reconstructed input n" ¢
is the same as the original input when the motifs explains
perfectly the input.

Following the above intuition, authors in [4] used the dif-
ference between the input and n"*¢ as an anomaly index.
One limitation of this approach is that it ignores the seman-
tics of the words used as input of PLSM. In practice, these
words correspond to PLSA topics and thus to patches of lo-
calized motion in the image.

Low-level document reconstruction Once we ob-
tained n"¢(w, to, d), as w corresponds to z'! (PLSA topic)
it is possible to use the PLSA topics to reconstruct the low
level documents. By unrolling the equations, we obtain:

nee ll(wll’ dila) _ anec(zll,tmd) 4)

2l

The exact same approach can be used in the hierarchical
case with stacked PLSM.

Localized abnormality measure We can obtain ab-
normalities [3] from the reconstructed document by us-
ing the distance measure proposed in [4]. However, this
measure does not take into account the spatial locality of
the anomaly. We thus compute anomaly by first extract-
ing anomaly in blocks and then finding the most abnormal
group of blocks.

We achieve localized abnormality by dividing the frame
of video into A X w sub-frames where h and w are param-
eters to the model. We compute the reconstruction error
measure to each sub-frame as:

abn(ta, z,y,d) = Z [n"ee Ul dily — n”(w”,dila)‘
wlERyy

S)

where I, represents all the words mapping to the sub-

frame x,y. We also normalize the reconstruction error in

a sub-frame by diving it by the mass of the document corre-
sponding to the sub-frame.

abn(ta,z,y,d)
> al(utdl)

wER,

(6)

normabn(ta,xz,y,d) =

UQM-Junction UQM-Roundabout

Figure 3. The arrows depict driving flow directions which are
allowed (in green) or not (in red).

We then use Kadane’s algorithm for the maximum 2D sub-
array problem on normabn(ta, ., .,d) to obtain the abnor-
mality measure for the whole frame and its spatial locality.

3. Experiments on Traffic Videos

To test whether our model can detect activity patterns not
learned by the model, we used two different traffic scenes.
Below, we will describe in brief the datasets, the anomalies
they contained, and provide some quantitative and quali-
tative evaluation. As parameters for IPLSM, we used 80
PLSA topics, 5=0.75, and 4 feedback iterations for learn-
ing. The frame segmentation parameter h x w for the
anomaly detector is 24 x 24. The number of motifs and
motif length is specified individually for datasets.

3.1. QMUL Roundabout datset

Dataset It contains 60 minutes of video at a resolu-
tion of 360 x 288 at 25fps. The traffic movements in the
roundabout signal are restricted to only certain driving di-
rections as illustrated in Fig. 3. The single type of anomaly
present in this dataset is indicated by a red arrow in 3 and
corresponds to driving straight ahead on a right only lane.
Annotation of these events was conducted on 10 minutes of
the dataset.

Parameters and Results The IPLSM model was
trained using either 10 or 20 motifs on 15 minutes of video
ensured to contain low instances of the abnormality we
wanted to detect. As the longest duration for a vehicle to
cross the roundabout was around 12 seconds, we choose a
motif length of 12 seconds. Examples of extracted motifs
are shown in Fig. 5. We applied our method to the test data
and compared the results to the ground-truth (a detected
event was considered to match the Gt if it overlapped with
it). The results are summarized in Table 1.

The false alarm rate was lower when we used higher
number of motifs as it could better capture the different traf-
fic patterns variations due to speed, density and type of ve-
hicles in the traffic. We also observed that small vehicles
were more difficult to detect in general and would require
to set a lower threshold for their detection. Fig. 4 provides



IPLSM

Abnormalities GT

10 motifs 20 motifs
Incorrect direction 15 10 12
False alarms 0 10 4

Table 1. Roundabout abnormality results

Figure 4. Localized anomaly regions detected by our approach.
Note that the regions are large as they encompass all the regions
with unusual temporal activity (including the regions were activity
should have occurred in the normal situation).

motif 2 motif 3

iteration O - no feedback

motif 1

motif 2 motif 3

iteration 4 - iterative feedback

motif 1

motif 6

motif 5
unchanged motifs

motif 4

Figure 5. QMUL Roundabout dataset. Example of evolution of
motifs during iterative IPLSM learning. Parameters: S=0.75, iter-
ation=>5, PLSA topics=80, PLSM motifs=10 with motif length=12.
The color gradient represents time from blue (start) to red (12s).
Motifs 1-3 evolve during the iterative process from having simi-
lar temporal patterns with respect to other motifs in iteration O to
more distinct patterns in iteration 4. Motifs 4-6 don’t evolve as
they all represent distinct patterns. Motifs 7-10 are not shown.

some examples of the regions detected by the system.

Abnormalities GT IPLSM

M=4, ML=80 M=14, ML=10
U-turn 10 7 3
Disruptions 6 4 1

Table 2. Junction abnormality results. M denotes the number of
motifs, ML their maximum length.

U-turn disruption

Figure 6. Sample of correct detections (a u-turn and a disruption).
Notice that in the disruption case, the vehicles on the left should
have closely followed the vehicles on the right so that there are
’missing’ cars in the middle.

3.2. QMUL Junction dataset

Dataset This dataset is explained in [6]. In this case,
the valid driving trajectories are illustrated in Fig. 3. The
abnormalities in this dataset were defined as U-turn and
disruptions, where U-turn denotes driving back around the
road center, and disruptions indicate interruption of normal
flow of traffic by a fire-engine, police or an ambulance. We
have not considered Jay-walking as an abnormality because
our system is not currently designed to detect abnormalities
which reason about the validity of motif occurrences in the
context of a cycle Modeling cycles could be done by adding
an HMM on top of motifs occurrences [10].

Parameters and Results To evaluate the approach, we
trained our approach on 45 minutes of videos (that included
the abnormal events) using different parameterization. In
one case, we considered motifs of 10s maximum duration,
which is more or less the maximum that a vehicle take to
cross junction, and of 80s duration, which is the duration of
a full traffic cycle. The result are summarized in Table 2.
In practice, we observed that traffic disruptions (which of-
ten occur out of sync from the traffic cycle) required higher
motif lengths able to capture full cycles and provide the nec-
essary context. Also, we noticed that U-turns could not be
detected well in very dense traffic, as the generated abnor-
mality were considered negligible as compared to the global
activity. Examples of detections are shown in Figure 6.

4. Metro Station Results

This dataset consists of two overlapping cameras,
recording neighboring areas: a stairs/escalator(Scl) and a
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Figure 7. Abnormalities for Metro dataset at 3" and 2"¢ level
PLSM and effect of feedback on reconstruction error

hall way(Sc2). Scl acts as the entrance into the metro sta-
tion. Sc2 has a ticket counter and turnstiles to the metro
network. Below we discuss the effect of feed-back on data
reconstruction (more qualitative images in supplementary
material) and briefly state the abnormalities detected.

Reconstruction error and abnormalities We trained
the hierarchical model with 10 motifs with motif Length of
4 seconds for 2nd level PLSM and 12 motifs with motif
Length of 8 seconds for third level PLSM on 720 seconds
of video. The rest of the parameters are same as used for the
traffic dataset. The motifs learned are not shown here. We
performed inference on the trained video using the model
obtained at iteration O (no feed back) and iteration 4 (with 4
iterations of feedback). We reconstructed the data from both
the models from the 3"¢ level PLSM and obtained a plot of
the reconstruction error as shown in Figure 7. As seen from
the plot, the reconstruction error is better for iteration 4. We
showed in Section 2.2 how the prior feedback improved the
sequential patterns obtained. Better motifs should constitute
to better reconstruction of data, hence lower reconstruction
error. We performed inference on a new video from the
same cameras. The abnormalities detected by the system
include: unusual density of crowd, people blocking each
other and disrupted trajectories. Table 7 shows two of these
abnormalities. The abnormality detector for the 3" level
PLSM would detect region in the most abnormal camera
while the detectors in the 2% and 1°¢ level would detect
abnormalities pertaining to a single camera.

5. Conclusions and future work

In this paper, we have made two contributions: We for-
mulated IPLSM model which integrates PLSA into PLSM
and detect spatially localized anomalies. We also formu-

lated the inter-level information flow as a Dirichlet prior.
The feedback mechanism was shown to improve the de-
tected sequential patterns. We then showed how the model
can be extended to multiple cameras. We also tested the
model on real datasets and showed that it can detect abnor-
malities and localize the region of abnormality. Presently
our model cannot locate multiple spatial abnormalities. Our
model also cannot reason about the co-occurrences of mul-
tiple motifs. We would like to address these two problems
in our future work.
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