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Abstract

Identity safekeeping has recently become an important
problem for the social web: as a case study, we focus
here on instant messaging platforms, proposing novel soft-
biometric cues for user recognition and verification. Specif-
ically, we design a set of features encoding effectively how
a person converses: since chats are crossbreeds of written
text and face-to-face verbal communication, the features in-
herit equally from textual authorship attribution and con-
versational analysis of speech. Importantly, our cues ig-
nore completely the semantics of the chat, relying solely
on non-verbal aspects, taking care of possible privacy and
ethical issues. We apply our approach on a novel dataset
of 94 different individuals, whose chat conversations have
been recorded for an average period of five months; recog-
nition rate, intended as normalized AUC on CMC curve, is
95.73%, while verification rate amounts to 95.66%, as nor-
malized AUC on ROC curve.

1. Introduction

Protection from identity violation on social networks is
a critical problem our society faces across both geographi-
cal and cultural boundaries. Essentially, there are two ways
an identity can be violated; the first is by identity theft [13],
where an impostor manages to access the personal account
of someone else, mostly due to Trojan horse keystroke log-
ging programs (as Dorkbots [6]), or by social engineer-
ing (i.e., tricking individuals into disclosing login details
or changing user passwords) [3]. The second consists in
faking an identity, that is, acting as an invented person, or
emulating another person [10].

Since communication through social networks, such as
Facebook, Twitter, and Skype is rapidly growing [17], iden-
tity violation is becoming a primary threat to people’s cul-

tural attitudes and behaviours in social networking. The
numbers are impressive: the Federal Trade Commission re-
ported that 9.9 million (22% more than 2007) Americans
suffered from identity theft in 2008 [7].

As a matter of fact, identity violation by theft is easier
than one can think given the cyber-habits of average users:
a survey conducted in 2008 in the U.S.A, Canada, and some
European countries illustrates that 25% of Germans and
60% of Americans have shared their account passwords
with a friend or family member; Furthermore, 50% of the
Americans use as passwords important dates, nicknames, or
pet and family member names.

The urgency of attacking the identity violation problem
led several institutions (banks, enforcement agencies and
judicial authorities) to produce algorithms capable of lim-
iting or discovering as soon as possible this threat: for ex-
ample, the Identity Theft Red Flags Rule, issued in 2007,
requires creditors and financial institutions to implement
identity theft prevention strategies. Such strategies should
be triggered by patterns, practices, or specific activities −
known as red flags − that could indicate identity theft [7].
In this paper, we follow this line by investigating technolo-
gies aimed at revealing the genuine identity of a person in-
volved in instant messaging activities. In practice, we sim-
ply require that the user under analysis (from now on, the
probe individual) engages in a conversation for a limited
number of turns. This allows us to extract cues and pro-
vide statistical measures of how well the user matches the
samples in a gallery of signatures. Subsequently, the match
mesures can be employed for performing user recognition
or verification.

It is worth noting the novelty of our contribution: chat
texts are an intriguing type of data, representing crossbreeds
of literary text and spoken conversations. Whereas Author-
ship Attribution (AA) of standard written text has a long
history [1], recognizing the participants of a chat conversa-
tion is pretty novel, especially when it comes to taking into
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account the similarity with spoken conversations.
The proposed features inherit equally from the two

realms, actually exploiting the turn-taking dynamics while
considering the turn as the most basic chunk of information
to be analysed, rather than the entire conversation as in stan-
dard AA. In addition, our features are non-verbal in nature,
meaning that the semantics of the words is completely dis-
carded: we simply neglect the content of the conversations
by substituting the letters with a generic symbol. In this
way, the features are privacy preserving and make the usage
of our system more plausible in commercial applications.

The experiments have been performed over a corpus of
chat conversations involving 94 individuals in total. The
chat conversations of each subject have being recorded for
an average period of five months; in particular, for each in-
dividual we get around 13 hours of chatting activity, on av-
erage. The recognition rate, intended as normalized AUC
on CMC curve, is 95.7%, while verification rate amounts to
95.7%, as normalized AUC on ROC curve.

The rest of the paper is organized as follows: Sec. 2 sur-
veys previous approaches for authorship attribution on dif-
ferent kinds of texts; Sec. 3 presents the features proposed
in this work and Sec. 4 shows how they have to be used for
matching. Experiments on recognition and verification are
discussed in Sec. 5, and, finally, Sec. 6 concludes the paper.

2. Related work
Authorship Attribution (AA) is the domain aimed at au-

tomatically recognizing the author of a given text sample,
based on the analysis of stylometric cues. AA attempts date
back to the 15th century [15]. Since then, many stylomet-
ric cues were designed, usually partitioned into five major
groups: lexical, syntactic, structural, content-specific and
idiosyncratic [1]. Table 1 is a synopsis of the features ap-
plied so far in the literature.

Typically, state-of-the-art approaches extract stylometric
features from data and use discriminative classifiers to iden-
tify the author (each author corresponds to a class). The ap-
plication of AA to chat conversations is recent (see [16] for
a survey), with [1, 2, 11, 18] the most cited works. In [18],
a framework for authorship attribution of online messages
is developed to address the identity-tracing problem. Stylo-
metric features are fed into SVM and neural networks on 20
subjects, validating the recognition accuracy on 30 random
messages. PCA-like projection is applied in [2] for Author-
ship identification and similarity detection on 100 potential
authors of e-mails, instant messages, feedback comments
and program code. A unified data mining approach is pre-
sented in [11] to address the challenges of authorship attri-
bution in anonymous online textual communication (email,
blog, IM) for the purpose of cybercrime investigation.

In the last ten years, authorship attribution and
forensic analysis have extended their research to IM

communication[8]. In [14], four authors of IM conversa-
tions have been identified based on sentence structure as
well as use of special characters, emoticons, and abbrevia-
tions.

The main limitation of the works above is that they do
not process chat exchanges as conversations, but as nor-
mal texts. In practice, the feature extraction process is al-
ways applied to the entire conversation and individual turns,
while being the basic blocks of the conversation, are never
used as analysis unit. This work overcomes such limitation
and introduces, among the others, a new class of features
that account for the presence of turns (see below) in chat
conversations. Furthermore, the proposed approach does
not apply the feature extraction process to the entire con-
versation (like in all works above), but to individual turns.

3. A new set of features for AA on chats
In our work, we examine chats among pairs of people,

i.e., dyadic interactions. These conversations can be con-
sidered as sequences of turns, where each “turn” is a set of
symbols typed consecutively by one subject without being
interrupted by the other person. In addition, each turn is
composed by one or more sentences: a sentence is a stream
of symbols which is ended by a “return” character. Each
sentence is labeled by a temporal ID, reporting the time of
delivery.

For each person involved in a conversation, we examine
the stream of turns (suppose T ), completely ignoring the in-
put of the other subject. This corresponds to assuming that
the chat style (as modeled by our features) is independent
of the interlocutor: this has been validated experimentally.
From these data, a personal signature is extracted, that is
composed by different cues: some of them could be associ-
ated to particular classes of the taxonomy of Table 1, while
others need a new categorization, being tightly connected
with the “conversational” nature of a chat. Therefore, we
define a new class of “turn-taking” features.

In all the cases, it is very important to note that in stan-
dard AA approaches, the features are counted over entire
conversations, obtaining a single quantity. In our case, we
consider the turn as a basic analysis unit, obtaining T num-
bers for each feature. For ethical and privacy isues, we de-
cided to discard all cues involving the content of the con-
versation. Even if this choice is very constraining, because
it prunes out many features of Table 1, the results obtained
are encouraging.

In the following, we list the proposed features: in cursive
bold, we indicate the novel features1, together with a brief
explanation.

1In some sense, all the features are novel, since they are collected on
turns instead of the whole text; still here we want to highlight “structurally”
novel features.



Group Description Examples References

Lexical

Word level Total number of words (=M), # short words/M, # chars in words/C,
# different words, chars per word, freq. of stop words [2, 11, 14, 16, 18]

Character level Total number of characters (chars) (=C), # uppercase chars/C, # low-
ercase chars/C, # digit chars/C, freq. of letters, freq. of special chars [2, 14, 16, 18]

Character—Digit n-grams Count of letter—digit n-gram (a, at, ath, 1 , 12 , 123) [2, 16, 18]
Word-length distribution Histograms, average word length [2, 11, 14, 16, 18]
Vocabulary richness Hapax legomena, dislegomena [2, 11, 16, 18]

Syntactic Function words Frequency of function words (of, for, to ) [2, 11, 14, 16, 18]
Punctuation Occurrence of punctuation marks (!, ?, : ), multiple !—? [2, 11, 14, 16, 18]
Emoticons—Acronym :-), L8R, Msg, :( , LOL [14, 16]

Structural Message level Has greetings, farewell, signature [2, 11, 14, 16, 18]

Content-specific Word n-grams
Bags of word, agreement (ok, yeah, wow), discourse mark-
ers—onomatopee (ohh), # stop words, # abbreviations,
gender—age-based words, slang words

[2, 11, 14, 16, 18]

Idiosyncratic Misspelled word Belveier instead of believer [2, 11, 14, 16]
Table 1. Synopsis of the state-of-the-art features for AA on chats. “#” stands for “number of”.

Lexical Features

• Number of words, chars, mean word length, number of
uppercase letters;

• Number of Uppercase / Number of Chars; usually,
entire words written in capital letters indicate a strong
emotional message. This feature records such commu-
nicative tendency.

• n-order Length Transitions (noLT); These features
resemble the n-grams of [9]; the strong difference here
is in the fact that we consider solely the length of the
words, and not their content. In practice, for a noLT
of order n = 1 (1oLT), we build probability transition
matrices that in the entry i, j, 1 ≤ i, j ≤ I , exhibit
the probability of moving from a word of length i to a
word of length j. In our case, we set I = 15. noLT of
order n = 2 (2oLT) are modeled by transition matrices
of I3. We did not take into account superior order, for
sparsity issues.

Syntactic Features

• Number of ? and ! marks, three points (...), generic
marks (”,.:*;), rate of emoticons / words, rate of emoti-
cons / chars;

Turn-taking Features

• Turn duration; the time spent to complete a turn
(in seconds); this feature accounts for the rhythm of
the conversation with faster exchanges typically cor-
responding to higher engagement. As shown in [5],
turn duration modeling allows one to finely character-
ize dyads, highlighting for example the degree of the
engagement, as soon as the age of the participants.

• Writing speed; number of typed characters -or words-
per second (typing rate); these two features indicate
whether the duration of a turn is simply due to the

amount of information typed (higher typing rates) or
to cognitive load (low typing rate), i.e. to the need of
thinking about what to write

• Emoticons Category Positive, Negative, Other; these
features aim at individuating a particular mood ex-
pressed in a turn through emoticons. In particular, we
partition 101 diverse emoticons in three classes, por-
traying positive emotions (happiness, love, intimacy,
etc. − 20 emot.), negative emotions (fear, anger, etc. −
19 emot.), and neutral emoticons (portraying actions,
objects etc. − 62 emot.), counting their total number
of occurrences. We are conscious that our partition is
somewhat subjective: still, our attempt was to discover
whether emotion-oriented classes of emoticons were
more expressive than a unique class, reporting all the
possible emoticons. Experimentally, our choice lead to
higher recognition performance.

• Mimicry; ratio between number of chars -or words- in
current turn and number of chars -or words- in previ-
ous turn; this feature models the tendency of a subject
to follow the conversation style of the interlocutor (at
least for what concerns the length of the turns). The
mimicry accounts for the social attitude of the subjects.

• Answer Time; this feature is the time spent to answer
a question in the previous turn of another interlocutor.

These quantities are extracted from each turn, as written
above, with the exception of the mean word length, the
noLT feature, the Emoticons Category: actually, in such
cases, the turn does not offer sufficient statistics for a robust
description. Therefore, for these cues, we consider all the
turns of a subject as they were a unique corpus. Conversely,
for all the other cues, we have T numbers; these numbers
are then described employing histograms. On our data, we
noted that most of the features extracted are strongly col-
lapsed toward small numeric values: for this reason, we



adopt exponential histograms, where small-sized bin ranges
are located toward zero, increasing their sizes while going
to higher numbers. Experimentally, we get much better re-
sults than exploiting uniformly binned histograms over the
whole range of the features.

4. Matching personal descriptions
Let us suppose to have collected the features for two sub-

jects, A and B. We now have to exploit them for obtaining
a single distance, describing the overall similarity between
A and B. As first step, we derive a plausible distance for
each feature separately: in the case we have histograms, we
employ the Bhattacharyya distance. For the features rep-
resented by mean values, we adopt the Euclidean distance.
In the case of the noLT features, we consider the diffusion
distance [12], which acts similarly to the Pyramid Match-
ing Kernel [9]. In practice, the diffusion distance measures
the linear distance among the matrices’ entries, applying
iteratively (L times) Gaussian kernels of increasing vari-
ance: this allows to include cross-entries relations in the
final measure, thus alleviating sparsity problems as well as
quantization effects. Briefly speaking, given MA and MB

the noLT matrices, the diffusion distance K(MA,MB) is

K(MA,MB) = sumL
l=0|dl(x)| (1)

where

d0(x) = MA(x)−MB(x) (2)
dl(x) = [dl−1(x) ∗ φ(x, σ)] ↓2 l = 1, . . . , L (3)

with x the elements of a matrix, with dimension I × I;
φ(x, σ) is the 2D Gaussian filter of standard deviation σ;
L indicates the number of levels employed, and ↓2 denotes
half size downsampling. The parameter σ = 4 and the level
L = 4 have been set by crossvalidation.

Since the aim of this paper is explorative on the nature on
the features, and not how to fuse them, we do not investigate
how such features should be combined together. Therefore,
in this paper, we adopt a simple average rule, i.e., the final
distance is obtained by averaging over the contribute of the
single distances, opportunely normalized between 0 and 1.

5. Experiments
In the experiments, we evaluate the effectiveness of each

feature in performing identity recognition; subsequently, we
analyze how the compound of all the features does the same
task; finally we consider the identity verification task.

5.1. The dataset
In this work, we examine a corpus of 94 dyadic ital-

ian chat conversations collected with Skype, performed by
N = 94 different users. The conversations are spontaneous,

ID Name Range nAUC Rank
1 #Words(W) [0,1706] 75.6% 5
2 #Chars(C) [0,15920] 77.3% 2
3 Mean Word Length [0,11968] 74.2% 7
4 #Uppercase letters [0,11968] 70.7% 14
5 #Uppercase / C [0,1] 71.7% 12
6 1o LT [0,127] 76.1% 4
7 2o LT [0,127] 70.0% 15
8 # ? and ! marks [0,21] 58.8% 21
9 #Three points (...) [0,54] 71.4% 13
10 #Marks (”,.:*;) [0,1377] 83.1% 1
11 #Emoticons / W [0,4] 77.0% 3
12 #Emoticons / C [0,1] 75.0% 6
13 Turn Duration [0,1800] 72.5% 11
14 Word Writing Speed [0,562] 72.9% 9
15 Char Writing Speed [0,5214] 72.9% 10
16 #Emo. Pos. [0,48] 73.0% 8
17 #Emo. Neg. [0,5] 62.8% 17
18 #Emo. Oth. [0,20] 61.2% 19
19 Imitation Rate / C [0,2611] 65.2% 16
20 Imitation Rate / W [0,1128] 62.9% 18
21 Answer Time [0,2393] 59.8% 20

Table 2. Stylometric features used in the experiments and recogni-
tion statistics.

i.e. they have been held by the subjects in their real life, col-
lected over a time span of 5 months: in particular, for each
individual we get around 13 hours of chatting activity. The
number of turns per subject ranges between 200 and 1000.
Hence, the experiments are performed over 110 turns for
each person. The turns of each subject are split into probe
and gallery set, each including 55 samples. In this way, any
bias due to differences in the amount of available material
should be avoided. When possible, we pick different turns
selections (maintaining their chronological order) in order
to generate different probe/gallery partitions.

5.2. Preliminary feature analysis
For the sake of clarity, the features are numbered in Ta-

ble 2, reporting also their minimum and maximum values.
The first part of the experiments aims at assessing each fea-
ture independently, as a simple ID signature. A particular
feature of a single subject is extracted from the probe set,
and matched against the corresponding gallery features of
all subjects, employing a given metric (see Sec. 4). This
happens for all the probe subjects, resulting in aN×N dis-
tance matrix. Ranking in ascending order the N distances
for each probe element allows one to compute the Cumu-
lative Match Characteristic (CMC) curve, i.e., the expecta-
tion of finding the correct match in the top n positions of
the ranking.



The CMC is an effective performance measure for AA
approaches [4], and in our case is a valid measure for eval-
uating the task of identity recognition: given a test sample,
we want to discover its identity among a set of N subjects.
In particular, the value of the CMC curve at position 1 is the
probability that the probe ID signature of a subject is closer
to the gallery ID signature of the same subject than to any
other gallery ID signature; the value of the CMC curve at
position n is the probability of finding the correct match in
the first n ranked positions.

Given the CMC curve for each feature (obtained by av-
eraging on 10 trials), the normalized Area Under Curve
(nAUC) is calculated as a measure of accuracy. For the sake
of clarity, the features are partitioned in two sets: those re-
sembling the classical AA features, now calculated on turns
(Fig. 1) and the novel ones (Fig. 2). As visible, all our fea-
tures give performances above chance: in Table 2, last two
columns, are reported the nAUC score and the rank built
over the nAUC score. In order to understand the informa-
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1  − #Words(W)                       nAUC 75.57
2  − #Chars(C)                          nAUC 77.25
4  − #Uppercase Letters       nAUC 70.71
9  − #Three Points (...)           nAUC 71.35
3 − Mean Word Length        nAUC 74.18
10 − #Marks (.":*,;)                  nAUC 83.11
8 − # ? and ! marks                 nAUC 58.84

Figure 1. CMC curve for each “classical” feature.
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Figure 2. CMC curve for each novel feature.

tion contained in all the features, and how they are interre-
lated, we calculate the Spearman’s rank correlation coeffi-
cient (see Fig. 3), highlighting in the upper triangular part
statistically significant correlations with p-value< 1%, in

the bottom triangular part those correlations significant at
p-value< 5%. In general, a high level of correlation is ex-
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Figure 3. Correlation analysis between features: red asteriscs re-
port correlations significant with p-value< 1%, blue dots correla-
tions with p-value< 5% (best viewed in colors).

istent between features. Quite interesting, noLT features
seem to be correlated with all the other cues.

5.3. Identity Recognition and Verification by all the
features

In this section, we put together all the proposed features
as described in Sec. 4. In Fig. 4 is reported the CMC curve
obtained by joining all the distances, which gives the iden-
tity recognition performance. This performance is signif-
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Figure 4. (left) Global CMC Curve; (right) nAUC and rank1 prob-
ability varying the number of turns.

icant higher than for any cue cosidered individually, real-
izing an nAUC of 0.9573. This witnesses that, even if the
features are strongly correlated, they model complementary
information. In fact, adopting standard feature selection
strategies like, e.g., Forward Feature Selection, shows that
all the features increase the recognition rate. It is worth not-
ing that, the probability of guessing the correct user at rank
1 is slighty below 50% which is quite encouraging (actually,
in standard people re-identification tasks, where the features



are the images of people, performances with a similar num-
ber of subject into play is quite inferior). To investigate how
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Figure 5. Precision, Recall and ROC Curve.

important is the number of turns taken into account for mod-
eling the gallery and probe subjects, we show in Fig. 4 the
nUAC of the CMC curve and the rank1 probability by vary-
ing the number of turns. Intuitively, the higher the number
of turns, the higher the recognition rate.

Considering the verification task, we adopt the following
strategy: given the signature of user i, if it matches with the
right gallery signature with a matching distance which is
ranked below the rank K, it is verified. Intuitively, there is
a tradeoff in choosing K. A high K (for example, 50) gives
a 100% of true positive rate (this is obvious by looking at the
global CMC - Fig. 4), but it brings in a lot of potential false
positives. Therefore, taking into account the number K as
varying threshold, we can build ROC and precision/recall
curves, portrayed in Fig.5. Considering the nAUC of both
the curves, we get 0.9566 and 0.9351, respectively. The
best compromise between precision and recall is obtained
calculating the F1 value, which gives 0.88 for precision 0.90
and recall 0.87, corresponding to the value of K = 45.

6. Conclusions
In this paper, we proposed a new facet for biometrics,

considering the chat content as personal blueprint. From
tens of turns, we extracted heterogeneous features, which
take from the Authorship Attribution and the Conversa-
tional Analysis background. On a test set of 94 people, we
show that identification and verification can be performed
definitely above chance; even if our performances are far
from the level required for commercial systems, many im-
provements can be done. First of all, fusion strategies
for collapsing intelligently the cues should be investigated.
Secondly, learning policies should be taken into account,
which are expected to boost the accuracy in a consistent
fashion.
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