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Abstract

Local Binary Pattern (LBP) has been well recognised

and widely used in various texture analysis applications of

computer vision and image processing. It integrates prop-

erties of texture structural and statistical texture analysis.

LBP is invariant to monotonic gray-scale variations and

has also extensions to rotation invariant texture analysis.

In recent years, various improvements have been achieved

based on LBP. One of extensive developments was replac-

ing binary representation with ternary representation and

proposed Local Ternary Pattern (LTP). This paper further

generalises the local pattern representation by formulating

it as a generalised weight problem of Bachet de Meziriac

and proposes Local N-ary Pattern (LNP). The encourag-

ing performance is achieved based on three benchmark

datasets when compared with its predecessors.

1. Introduction

Local image patterns are very important in texture clas-

sification. The Local Binary Pattern (LBP), as one of

the most widely used texture descriptors, has been suc-

cessfully applied to many computer vision tasks, such as

face recognition, texture recognition and shape localiza-

tion [7][13][4][17]. LBP compares the intensity value of

a center pixel to that of its neighborhood pixels and uses a

binary thresholding function to extract binary patterns ac-

cording to comparison results [10]. Following LBP, a large

number of improved texture descriptors have been pro-

posed. Those improvements are categorized into fusion-

based methods, geometry-based methods, and arity-based

methods.

Fusion-based improvement Fusion-based improvement

integrates multple local pattern representations [18][8].

In [18], the Completed LBP (CLBP) is proposed. In

order to enhance the discriminability of the descriptor,

the orginal LBP is generalized to CLBP-Sign (CLBP S)

in [18]. In addition, CLBP-Magnitude (CLBP M) and

CLBP-Center (CLBP C) are also proposed. The integra-

tion of CLBP S, CLBP M (magnitude of neighborhood

pixels) and CLBP C (gray-level of the center pixel) forms

the CLBP map, which provides extra information to im-

prove the LBP descriptor.

In [8], two novel descriptors, Elongated LTP (ELTP)

and Improved LTP (ILTP) are proposed. The ELTP is ob-

tained by replacing LBP in Elongated LBP (ELBP) [12]

with LTP. The ELBP performs better when anisotropic

structure exists in images. The ILTP is obtained by replac-

ing LBP in Improved LBP (ILBP) [6] with LTP. The ILBP

works better against the effect of noise. Both ELTP and

ILTP outperform the LBP descriptor in [8].

Geometry-based improvement Geometry-based im-

provement alters binary comparison scheme in the original

LBP [5][3].

In [5], the Center Symmetric LBP (CS-LBP) is pro-

posed. In order to encode spatial information of the image,

the CS-LBP first divides an image using a 4 × 4 grid, then

process the image sub-block in each cell. Instead of com-

paring the intensity value of a center pixel to those of its

neighborhood pixels, the CS-LBP compares the intensity

value of each of those eight neighborhood pixels with that

of its center-symmetric counterpart (a total of four compar-

isons). As a result, the CS-LBP only produces 24 = 16
different binary patterns. Compared to LBP, the CS-LBP

captures the gradient information better, hence the CS-LBP

achieves significant reduction in dimensionality while pre-

serving distinctiveness.



In [3], in order to achieve more efficient texture clas-

sification, the Binary Gradient Contour (BGC) texture de-

scriptor is proposed. There are three differnt types of BGC

descriptors, the single-loop, the double-loop, and the triple-

loop. The single-loop BGC descriptor generates local bi-

nary patterns by comparing the intensity value of each of

those eight neighboring pixels with that of its immediate

adjacent pixel following clockwise direction. More details

are found in [3].

Arity-based improvement Arity-based descriptors rely

on a sophisticate thresholding function and local patterns

of higher arity to explore more discriminant features from

the local texture [14].

The Local Tenary Pattern (LTP) is proposed to alleviate

the sensitivity of LBP to the random and quantization noise

in uniform and near-uniform image regions [14]. The LTP

uses a ternary thresholding function and forms a ternary lo-

cal pattern of {−1, 0, 1}. Such tenary local pattern is then

split into a pair of binary patterns, termed as the upper pat-

tern and the lower pattern, respectively. The upper pat-

tern and the lower pattern are then concatenated together

to form the LTP representation.

In this paper, we further propose the Local N-ary Pat-

tern (LNP) in order to enhance the discriminability of the

local pattern. LNP belongs to the Arity-based descriptors.

However, different from LTP, we do not split the N-ary pat-

tern into N-1 binary patterns, instead a N8-vector is formed.

The reason for not splitting is explained in Section 3.1.

Our contributions are summarised as follows.

Firstly, we formulate local image representation as a

weight problem of Bachet de Meziriac [2]. This formu-

lation enables us to take advantage of the solution to the

weight problem of Bachet de Meziriac to extract better im-

age patterns.

Secondly, we propse a uniform framework to general-

ize the local pattern representation. By replacing the bi-

nary representation in LBP and the ternary representation

in LTP with N-ary representation, the Local N-ary Pattern

(LNP) is proposed. The LBP is in fact a special case of

LNP (i.e. N = 2). The LNP with N greater than two out-

performs both LBP and LTP in our texture classification

experiments.

The rest of this paper is organized as follows. In Sec-

tion 2.3, the motivation of LNP-The Weight Problem of

Bachet de Meziriac and its generalization is introduced. In

Section 3.1, the LNP descriptor is proposed, an example

comparison between LNP and LTP is also provided. Ex-

perimental results are detailed in Section 4. Section 5 con-

cludes this paper and briefly mention future works.

2. Related works

2.1. Local Binary Patterns

LBP is one of the most widely used texture descriptor.

The process for LBP feature extraction (using 3 × 3 patch

size) is illustrated in Fig. 1.

In Fig. 1, the binary thresholding function is represented

by

ai =

{

1 if pi > c

0 if pi ≤ c
, (1 ≤ i ≤ 8). (1)

In (1), c is the intensity value of the center pixel, and pi

is the intensity value of the neigborhood pixels.

The weighted sum function is represented by

VB =

8
∑

i=1

ai · 2
i−1, (ai ∈ {0, 1}). (2)

2.2. Local Ternary Patterns

As an extension of LBP, the LTP is more reliable be-

cause it uses a ternary thresholding function, which is more

resistant to noise. The process for LTP feature extraction

(using 3 × 3 patch size) is illustrated in Fig. 2.

In Fig. 2, the ternary thresholding function is repre-

sented by

ai =







1, if pi > c + t

0, if c − t ≤ pi ≤ c + t

−1, if pi < c − t

, (1 ≤ i ≤ 8).

(3)

In (3), c is the intensity value of the center pixel, pi is

the intensity value of the neigborhood pixels, and t is a

threshold value that controls the sensitivity of the ternary

pattern against noise.

The binary thresholding function for the upper pattern

is represented by

ui =

{

1 if ai = 1
0 otherwise

, (1 ≤ i ≤ 8). (4)

The binary thresholding function for the lower pattern is

represented by

li =

{

1 if ai = −1
0 otherwise

, (1 ≤ i ≤ 8). (5)

The weighted sum function for the upper pattern is rep-

resented by

Vu =
8

∑

i=1

ui · 2
i−1, (ui ∈ {0, 1}). (6)

The weighted sum function for the lower pattern is rep-

resented by

Vl =
8

∑

i=1

li · 2
i−1, (li ∈ {0, 1}). (7)
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The histogram of the upper pattern and the histogram of

the lower pattern are concatenated together to form the LTP

representation, as illutrated in Fig. 2.

2.3. Generalized Weight Problem of Bachet de
Meziriac

Motivated by the binary representation of LBP and the

ternary representation of LTP, the local pattern represen-

tation is converted to The Weight Problem of Bachet de

Meziriac [2], which is briefly introduced here. More de-

tails are found in [2].

The Weight Problem of Bachet de Meziriac A mer-

chant had a forty pound weight that was broken into four

pieces as a result of a fall. When the pieces were subse-

quently weighed, it was found that the weight of each piece

was a whole number of pounds and that the four pieces

could be used to weight every integer weight between one

and forty pounds. What were the weights of the pieces?

(Solution: The weights of those pieces are one pound, three

pounds, nine pounds, and twenty-seven pounds.)

The solution to the problem implies that any arbitrary

integer weight W is expressed by a linear equation as fol-

lows

W =
K

∑

i=1

ai · 3
i−1, (ai ∈ {−1, 0, 1}). (8)

The differences between (8) and (2) are the base of

exponential expression and the range of the coefficients.

In LBP, such exponential expressions are used to assign

weights to different bits of the binary pattern such that the

LBP value is unique for each unique binary pattern. In

the Weight Problem of Bachet de Meziriac, such exponen-

tial expressions correspond to those pieces of the broken

weight. Any integer weight is balanced by a unique set of

placement of those piece on the scale.

Without loss of generality, let V be an arbitrary non-

negative integer, and let b be an integer base of the expo-

nential expression that is greater than one. If b is increased,

the Weight Problem of Bachet de Meziriac is further gen-

eralized through deduction approach. In our study, it is

observed that if ai ∈ {−1, 0, 1, 2} and b = 4, all non-

negative integers are represented by linear equations such

as (8). Equations such as (8) can also be used to represent

the case when ai ∈ {−2,−1, 0, 1, 2} and b = 5.

Generally, V is represented by

V =
K

∑

i=1

ai · b
i−1,

(ai∈[f(b),g(b)]∧ai∈Z)
(b>1∧b∈Z) . (9)

In (9), f(b) is represented by

f(b) =

{

2−b
2 if b is even

1−b
2 if b is odd

, (b > 1 ∧ b ∈ Z). (10)

In (9), g(b) is represented by

g(b) =

{

b
2 if b is even
b−1
2 if b is odd

, (b > 1 ∧ b ∈ Z). (11)

The vectorized form of (9) is

V = AB (12)



If b = 4, V, A, and B are
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Alternative representations are found when b = 5.

3. Proposed framework

3.1. The Local N-ary Patterns

As shown in Fig. 1, two functions are needed to convert

an image patch to its unique integer representation. Those

functions are the thresholding function and the weighted

sum function.

In general, the N-ary thresholding function φ is repre-

sented by

φ∆1,··· ,∆|f(b)|+g(b)
(x) =















































f(b), if x ≤ ∆1

f(b) + 1, if ∆1 < x ≤ ∆2

· · ·
0, if ∆|f(b)| < x ≤ ∆|f(b)|+1

1, if ∆|f(b)|+1 < x ≤ ∆|f(b)|+2

· · ·
g(b) − 1, if ∆|f(b)|+g(b)−1 < x ≤ ∆|f(b)|+g(b)

g(b), if x > ∆|f(b)|+g(b)

.

(14)

In (14), the definition of f(b) is the same as in (10) and

the definition of g(b) is the same as in (11). Thresholds are

determined in the way below.

When φ(x) = 0, the threshold value ∆|f(b)| is repre-

sented by

∆|f(b)| = c − t. (15)

The threshold value ∆|f(b)|+1 is represented by

∆|f(b)|+1 =

{

c, if b is even

c + t, if b is odd
. (16)

Threshold values less than ∆|f(b)| are represented by

∆i = ∆i+1 − t,
(i∈Z)

(1≤i≤|f(b)|−1). (17)

Threshold values greater than ∆|f(b)|+1 are represented

by

∆j = ∆j−1 + t,
(j∈Z)

(|f(b)|+2≤j≤|f(b)|+g(b)). (18)
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Figure 3: Illustration of original image and its LBP, LTP

and LNP (N = 3) representations (Best viewed in color)

In (15), (16), (17) and (18), definitions of c and t are the

same as that of (3).

Using the N-ary thresholding function (14), N-ary pat-

terns are extracted from images. Using the weighted sum

function (9), those N-ary patterns are converted to integers.

By taking the histogram of those integer, the LNP repre-

sentation is obtained. LBP is a special case of LNP with

the base of the exponential expression b = 2 (b is defined

in (9)).

Fig. 3 illustrates the texture representation of LBP, LTP,

and LNP (N = 3) for an image.

In contrast to LTP, we do not split our LNP represen-

tation because it is capable of representing more discrimi-

nant information. As illustrated in the case study detailed

in Fig. 4, although both LTP and LNP (N = 3) are rep-

resented by {−1, 0, 1}, the discriminality of LNP is better

than that of the LTP.

3.2. One-against-rest SVM

Having obtained the LNP representation, the next step is

to train an one-against-rest SVM classifier [1]. The SVM

classifier is favored because of its good performance in

classification accuracy. One-against-rest is one of the most

widely used method for dealing with a multi-class classifi-

cation problem, which is the case in our texture classifica-

tion experiments. The optimal SVM paramters are deter-

mined according to the experimental results.

4. Experimental results

Three publicly available datasets are used in our exper-

iments, Brodatz texture dataset, CUReT 92 gray images

subset, and UIUC texture dataset [15]. On each dataset,

four independent experiments were carried out. In each ex-

periment, the mean classification accuracy over all texture

categories are calculated. In each texture category, 20 sam-

ples are randomly selected for training and all the rest are

used for testing. The average of mean classification accu-

racies on those four experiments are used to measure the
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Table 1: Details of three datasets

Brodatz CUReT gray UIUC

# of images 64 92 40
# of classes 32 61 25
image size 64 × 64 200 × 200 640 × 480

performance. Details for those three datasets are found in

Table 1.In our experiments, the patch size is 3× 3. The di-

mensionality of the LNP descriptor for N equals 3, 4, and

5 are 6561, 65536, and 390625, respectively.

4.1. Average of mean classification accuracy

The mean classification accuracy is one of the most

commonly used measurements in multi-class classification.

The experimental results for the average of mean classifi-

cation accuracies on all three datasets are illustrated in Ta-

ble 2. In Table 2, it is found that the LNP(with N = 3)

Table 2: Average of mean classification accuracies (in per-

centage)

UIUC CUReT gray Brodatz

LBP∗ 75.95 ± 0.44 90.5 ± 0.97 86.47 ± 0.42
LTP 84.45 ± 1.55 90.17 ± 1.03 94.35 ± 0.75

LNP(3) 85.8 ± 0.98 91.0 ± 0.55 95.1 ± 0.52
LNP(4) 87.95 ± 0.85 91.25 ± 0.8 95.21 ± 0.26

LNP(5) 87.2 ± 1.67 87.79±0.9 93.98 ± 0.42

∗The LBP implementation is provided by the author

of [16].

outperforms both LBP and LTP in terms of average of

mean classification accuracy, and optimal results are ob-

tained when N = 4. However, the performance drops as N

further increases, we attribute this performance drop to the

curse of dimensionality problem.



Table 3: Optimal mean classification accuracy (in percent-

age) for different threshold values

UIUC CUReT gray Brodatz

t = 5 89.2 91.4 92.97

t = 10 89 92.28 94.39

t = 15 87.2 91.8 94.32

t = 20 86.4 91.6 95.17

t = 25 85.8 90.66 95.17

t = 30 85.2 90.8 95.38

t = 35 85.2 90.16 95.1

t = 40 85.6 90.23 95.53

In our experiments, it is also found that the optimal

threshold values differ for different datasets. Such differ-

ences are illustrated in Table 3.

The reason that better classification accuracy is achieved

on Brodatz dataset using larger threshold value is that tex-

ture images in Brodatz dataset have a wider range in inten-

sity values compared to those of UIUC dataset and CUReT

gray dataset. Therefore, using larger threshold values can

better capture the distinctiveness of texture images in the

Brodatz dataset.

5. Conclusions and future works

In conclusion, we propose the LNP framework for tex-

ture classification. The LNP is motivated by The Weight

Problem of Bachet de Meziriac and its generalization. The

LNP is higher in discriminability than both LBP and LTP.

It has been proven in texture classification experiments

that LNP outperforms both LBP and LTP, achieving higher

mean classification accuracy.

The LNP representation can be further improved us-

ing dimensionality reduction and three methods can be

considered, dimensionality reduction using discriminant

analysis [9], dimensionality reduction using uniform pat-

tern [16], and dimensionality reduction using sparse cod-

ing [11]. Using dimensionality reduction, computational

costs can be reduced while the mean classification accu-

racy stays competitive.
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