Loading [MathJax]/extensions/MathMenu.js
Vehicle make and model recognition using symmetrical SURF | IEEE Conference Publication | IEEE Xplore

Vehicle make and model recognition using symmetrical SURF


Abstract:

SURF (Speeded Up Robust Features) is a robust and useful feature detector for various vision-based applications but lacks the ability to detect symmetrical objects. This ...Show More

Abstract:

SURF (Speeded Up Robust Features) is a robust and useful feature detector for various vision-based applications but lacks the ability to detect symmetrical objects. This paper proposes a new symmetrical SURF descriptor to enrich the power of SURF to detect all possible symmetrical matching pairs through a mirroring transformation. A vehicle make-and-model recognition (MMR) application is then adopted to prove the practicability and feasibility of the method. To detect vehicles from the road, the proposed symmetrical descriptor is first applied to determine the ROI of each vehicle from the road without using any motion features. This scheme provides two advantages; there is no need of background subtraction and it is extremely efficient for real-time applications. Two MMR challenges, i.e., multiplicity and ambiguity problems, are then addressed. The multiplicity problem stems from one vehicle model often having different model shapes on the road. The ambiguity problem results from vehicles from different companies often sharing similar shapes. To address these two problems, a grid division scheme is proposed to separate a vehicle into several grids; different weak classifiers that are trained on these grids are then integrated to build a strong ensemble classifier. Because of the rich representation power of the grid-based method and the high accuracy of vehicle detection, the ensemble classifier can accurately recognize each vehicle.
Date of Conference: 27-30 August 2013
Date Added to IEEE Xplore: 21 October 2013
Electronic ISBN:978-1-4799-0703-8
Conference Location: Krakow, Poland

References

References is not available for this document.