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Abstract

This paper introduces a momentum-like regularisation
term for the region-based Mixture of Gaussians framework.
Momentum term has long been used in machine learn-
ing, especially in backpropagation algorithms to improve
the speed of convergence and subsequently their perfor-
mance. Here, we prove the convergence of the online gra-
dient method with a momentum term and apply it to back-
ground modelling by using it in the update equations of the
region-based Mixture of Gaussians algorithm. It is then
shown with the help of experimental evaluation on both sim-
ulated data and well known video sequences that these reg-
ularised updates help improve the performance of the algo-
rithm.

1. Introduction

The online Mixture of Gaussians (MoG) algorithm pro-
posed by Stauffer and Grimson [[L1] uses a Robbins-Monro
type stochastic approximation technique [[10] to update the
mixture parameters over time. These updates are controlled
by a learning rate parameter « that can be tuned to vary
the speed of learning of the mixture model. These updates
can also be viewed as analogous to gradient methods that
are widely used in online learning. The objective of these
methods is to minimise the difference between the samples
and the means of the mixtures. The standard form for these
types of updates is usually

o) — pt=1) _ onf(H(t)) (1)

The drawback of this approach however is that it is quite
slow to converge [4]. One way to speed up the convergence
is by introducing an additional term to the update equation
called the momentum term. Gradient methods have often
been combined with a momentum term that adds a fraction
of the difference between the two previous values of the pa-
rameters. The momentum term can be seen frequently ap-

plied to backpropagation methods for training artificial neu-
ral networks. The update equation (I]) can thus be modified
to include the momentum term as

ot — pt=1) _ avf(g(t)) + ﬁ(g(t—l) — g(t—2)) )

The additional term can be viewed as inertia as it takes a
small step further in the same direction of the previous up-
date. This inertia reduces oscillations when the direction of
the gradient keeps changing. It can also aid the learning rate
by pushing the update further towards the optimum value if
there is no change in the direction of the gradient. This
helps to increase the speed of convergence to the optimum
value. This momentum can also help the system escape lo-
cal minima better than conventional gradient methods.

This was first introduced by Polyak [9] and was called
the heavy-ball approach. The heavy-ball method is a batch
version of the gradient descent algorithm with an addi-
tional momentum term that accelerates convergence. An
optimal version of the heavy-ball method was derived by
Nesterov [8]. He obtained a superior convergence rate of
O(1/t?) compared to the gradient descent method which
had a convergence rate of O(1/t). This is the fastest con-
vergence rate achievable by a first-order method. Beck and
Teboulle [2]] extended this algorithm to composite functions
by using proximal gradient updates and this algorithm is
known as FISTA and it is used widely in image processing
for image deblurring and image deconvolution. In 2008,
Paul Tseng combined all these algorithms and more into a
unified framework for accelerated proximal gradient algo-
rithms [[13]]. All these algorithms are for batch learning, but
we show that similar benefits can be gained by using the
momentum term in online learning.

Momentum term has also been used previously in vari-
ous applications like object tracking by Le et al. [6]], image
segmentation by Andersson et al. [1]], image deconvolution
by Wang and Miller [16]], scene labelling and denoising by
Domke [5].

This term can also be used as a regularisation term and
was introduced to regularise the classification Expectation-



Maximisation (cEM) based Mixture of Gaussians algorithm
by Wang and Miller [15]. In this paper, we apply momen-
tum as a regularisation term to the region-based Mixture of
Gaussians approach proposed by Varadarajan et al. [14] to
improve the performance of the algorithm.

The spatio-temporal modelling approach with region-
based MoG (RMoG) algorithm is briefly introduced in sec-
tion[2] The convergence of the online gradient method with
a momentum term is derived in section [3} This extrapola-
tion step is then applied to the RMoG framework and the
background subtraction algorithm is explained in detail in
section ] This is followed by experiments and results of
well-known video sequences and comparison with the base-
line RMoG approach.

2. Region-based Mixture of Gaussians algo-
rithm (RMoG)

Here, we start by outlining the online RMoG algorithm
for dynamic background that was introduced in [14]]. This
algorithm is a complete framework for MoG modelling ex-
tending the standard per-pixel approach to larger regions
thus enabling it to model highly dynamic regions in the
scene. The standard MoG algorithm considers pixels to be
independent of one another hence important spatial cues in
the scene where there is dynamic motion like waves rip-
pling or leaving swaying are not captured. The RMoG al-
gorithm takes into consideration this spatial relationship be-
tween pixels in a region and builds the model accordingly.
It was shown in [14] that this framework models dynamic
motion in the scene quite effectively.

The RMoG model can be written in mathematical terms
as

p(x|0) Z quk s« N (| i, Zqr) 3)

qER, t

where z is the pixel (or a feature vector of pixels) under
observation, A/ (e) denotes a Gaussian distribution and the
parameter set is © = {w, u, X} namely the weight, mean
and variance of each mixture in the distribution. R, denotes
the neighbourhood of the feature vector x. This usually in-
cludes r x r pixels (or feature blocks) around x. The sub-
script ¢ indicates the location of the chosen mixture compo-
nent k in the neighbourhood R. The algorithm is also cus-
tomisable in terms of the feature size and the region size to
consider for modelling. For instance, a block of pixels can
also be considered as features instead of the conventional
approach of using a single pixel within a given region. It
can be easily shown that by using a single pixel as a feature
in a 1 x 1 window, the algorithm reduces to the standard
MoG approach.

The mixture parameters are updated by using the follow-
ing equations:

i) = (L= p) sV p (a) )

2
S ==p) i+ p(e® - V) ®)
W =(1-a)wlV +a ©6)

3. Convergence of Online Gradient method
with Momentum

In this section, we prove the convergence of the online
gradient method with a momentum term. This allows us
to use the momentum term in the online RMoG algorithm.
The algorithm is usually of the form

y® = 20 4 g (58 _ 4= 7

2 = Py — aVo f(y™")) ®)

where P, denotes the projection of X on to a closed con-
vex set. Notice the subscript w for the gradient that indicates
that the gradient is equivalent to the expectation of the cur-
rent observation error i.e. V,f(y®) = E(H(w®,y®)).
Here, w® are the observations at each instant ¢.

In order to prove the convergence, we first introduce the
Supermartingale Convergence Theorem [3].

Lemma 1 (Supermartingale Convergence Theorem)
Let YV, Z®) and W, ¢ = 0,1, 2, ..., be three sequences
of random variables and let F(®) ¢ = 0,1,2, ..., be sets of
random variables such that F(!) ¢ F(:+1) for all . Suppose
that:

1. The random variables Y, Z®) and W(® are non-
negative, and are functions of the random variables in
F®,

2. For each t, we have

E{y#D p®Oy <y® _ 7z L y®

3. There holds, with probability 1, Y5> W® < 0o

Then, we have >~ Z () < 50, and the sequence Y (*)
converges to a non-negative random variable Y, with proba-
bility 1. ]

For the online gradient method with the momentum term
to converge, we assume the following:

1. f is convex, differentiable and finite for all =
2. There exists a finite solution x*

3. The gradient is Lipschitz continuous with a constant
L,ie.

Vi) =Vl < Lllz—yll, Yo,y (9



The proof continues by expanding the term for z(*+1)
and setting the upper limit

F@T) = fly — aVm f(y))

fly — aB(H(w®,y")))

< W)+ Vi) (v —aVimy) —y)
+ 2y — aB(HEO,y9) ~ il

= f(y) - all Lo W3 + LQ—aE(H(w(t),y(t)y)

(10)

The first inequality is by using the quadratic upper bound
due to the third assumption.
Now, applying conditional expectation on both sides,

E(f(z")) < B(f(y)) - all fuw W)ll3

FE2BHWO, 3O an
Now, the Supermartingale Convergence Theorem can be
applied to this equation as we are dealing with positive val-
ues as long as the final term of the equation converges with
a probability of 1. Now, assuming o = %, it is enough to
show that the term E(H (w®, y®)?) is bounded.
In online mode, this term refers to the second moment of
the updates [4]] and can be decomposed as

E(H(w®,y®)? = (Vo f(9))? + varo Hw®, y®)
(12)

This second term given by the variance indicates the
noise due to the stochastic nature of the algorithm. This
term remains positive at all locations, even at the optimum
value. Since the gradient is Lipschitz continuous, it imposes
the bound required for the almost sure convergence of the
final term of Equation (TT).

Therefore, by Lemma 1, it can be said that

T —>ti; x* (13)

This proves that the online gradient method with mo-

mentum almost surely converges to an optimum value with
the probability of 1.

4. Regularisation for Region-based Mixture of
Gaussians algorithm

Since hard Expectation-Maximisation type classification
is used to assign a pixel to a particular mixture, the non-
convex cost function of MoG is converted into smaller con-
vex optimisation problems [15] and hence, the momentum

term can be applied to the update equations after assign-
ing the pixel to a particular mixture. The online RMoG can
be regularised by using an extrapolation involving the di-
rection of the difference between the previous two values of
the mixture parameter. Now, the question would be whether
to apply it on all the parameters or apply it on certain pa-
rameters. The three parameters under consideration are the
Means, Variances and Weights of the mixture components.
The weights of the distribution are constrained by normal-
isation within a given neighbourhood, hence an additional
regularisation term will have little or no influence on them.
This can also be seen in the experiments from the simulated
dataset of [[15]. We also noticed empirically that applying
the momentum term on the second order Variance term can
cause the values to become negative at times thus render-
ing the system unstable. Even at times when the variance
remained positive, it did not have a big influence on the per-
formance. Therefore, we apply the regularisation only on
the Mean update equation of the RMoG algorithm given in
(@) which can be written as

i) =l p (20 = ) = BV - )
(14)

This application is justifiable because the mean param-
eter is the one that defines the cluster centers. In the case
of background modelling, the means of the clusters are up-
dated based on the pixel values and in regions having highly
dynamic motion, the regularisation term helps smooth the
mean parameter even if there is a high fluctuation of colour
samples.

The momentum parameter 3, is usually between O and 1.
The momentum term helps to find the optimum value faster,
however, by maintaining a large momentum value for a long
period of time, it can cause the values to diverge away from
the optimum value. Therefore, two choices are available to
us. [3 can either be a decreasing parameter over time [[15]],
or it can increase from O to 1 as in the batch approach [3]]
for a time period proportional to the learning rate and then
stopped with subsequent updates taking place without the
momentum term so that this divergence does not occur.

Algorithm Regularised Region-based Mixture of Gaus-
sians

1. Consider a series of 7T images Y =
{Y1,Ys,....Y,, ..., Y} where ¢ is the index of the
image at the current time instant. The image Y; (of size
I x J feature blocks) at location (i, j) can be denoted
byY; ={y,; :i=1:1,j=1:J} wherey, are
the different feature vectors. The model is given by the
parameters {6y ; i n : i hs 02t7i7j7h,wt,i,j7h} where
h =1 : H is the index of the mixture and K is the total
number of mixtures at each location. The size of each



feature vector is dependent on the number of pixels in
the feature blocks.

2. Initialise the first mixture of the model with the means
equal to the pixel values of Y], variances are initialised
by a suitable high value scaled by the number of pixels
in each block and weights normalised over each region
R;; given by r. Initialise the difference in the mean
values to 0. Initialise the 3 value.

3. For every subsequent image Y3, calculate the most likely
mixture 8,  ; 5, where (k, 1) € R; ; for the reference fea-
ture block y, j (over its entire neighbourhood). This can
be calculated by using Euclidean distance.

4. Compare the distance of the most likely Gaussian mix-
ture with a threshold D which is usually a scaled factor
of the standard deviation of the mixture. This indicates
whether the pixel matches the mixture model or falls out-
side the model.

5. If a match is found, update the mixture parameters of
the above Gaussian 0; x,; j, by using Equation (3)) for the
variance and Equation for the mean with ¢ corre-
sponding to (k,1) and k corresponding to h.

6. Recalculate the differences in the mean values for the
next image and update the beta value.

7. If no match is found, create a new Gaussian mixture if
there aren’t already H mixtures at the reference block
location (4, j) or else replace the Gaussian mixture with
the lowest weight (at the current block location (i, 7))
with a new mixture by initialising it again. Reset the (3
value for the Gaussian mixture that is reinitalised.

8. The weights are updated with Equation (6) and nor-
malised over the corresponding region.

9. The background model is built with Gaussians having
high weights in the region. If the observation falls within
this model, it is classified as a background pixel; other-
wise it is classified as a foreground pixel.

5. Experimental results

For the first experiment, we compared the convergence
of two online gradient methods, one without the momentum
term and the other with the additional extrapolation step.
We simulated three different sets of data with 100, 1000
and 10000 samples respectively. The samples were gener-
ated from a Gaussian distribution with mean 180 and stan-
dard deviation 8. This data can be seen analogous to pixel
values falling into a particular cluster in a mixture distribu-
tion. The parameter was initialised to the minimum value

of the samples from each dataset. The value for 3(*) was
chosen as (t — 1)/(t + 2) that helps to optimally converge
in O(1/t?). Figure [l| shows the convergence for the two
different types of updates. In each case, the update method
using the momentum term learns at a higher speed com-
pared to the standard gradient method. It has to be noted
that the online gradient method with momentum is not a
descent algorithm as its batch counterpart. Hence, it will
oscillate around the optimum value once it gets close to it.
This behaviour is usually not a concern, but it can be eas-
ily regulated by applying the momentum term for a specific
time period and then reverting to the original form of up-
dates. From Figure |1} it can be seen that, with the momen-
tum term, the algorithm reaches the optimum value around
hundred samples while the standard online gradient method
takes a few thousand samples to reach the optimum value
around 180. Adding the momentum term to the update is
not computationally expensive as it only requires the calcu-
lation of the difference between the two previous iterates.

In addition to the simulated data, we compared the per-
formance of the regularised RMoG with the baseline RMoG
algorithm from [14] on four well known video sequences.
These datasets are the bottle sequence [17], the beach se-
quence [7]], the waving trees sequence [12] and a CCTV se-
quence that was captured by us on board a moving bus.The
ROC curves for each of the sequences are shown in Figure
We show the results for two different values of the neigh-
bourhood term 7 in the RMoG algorithm, =1 and r=8. r=1
corresponds to the standard MoG approach while r=8 is the
RMoG with 8 x 8 regions. It can be seen from the ROC
curves that adding the momentum term increases the perfor-
mance of the algorithm in both cases. An example output
from each of the video sequences for different approaches
are shown in Figure [3| In the bottle sequence, though the
performance of RMoG is very good even without the mo-
mentum term, applying regularisation on the updates helps
reduce false positives further in the image. Not only does
the regularisation term aid in reducing the false positives,
but it also helps in reducing the false negatives in some
cases as is evident from the output of the bus sequence and
the beach sequence. Even in cases where the number of
samples are small like the waving trees sequence, adding
the momentum term does not affect the performance and the
regularised method will work at least as good as the base-
line method. The performance gain due to the momentum
term will be even higher if the algorithms have to be cold
started or there is an increase in the number of samples.
This is because there will be a larger contribution from the
difference term when the mixtures are randomly initialised
leading to faster acceleration. Also, it was seen in the re-
sults of the simulated data that as the number of samples
increases, the difference between the convergence speed of
the two algorithms becomes more pronounced. This be-



(a) Simulated data with 100 samples

(b) Simulated data with 1000 samples

600 800 1000 0 2000 4000 6000 8000 10000

(c) Simulated data with 10000 samples

Figure 1: Convergence of Gradient methods without a momentum term (Blue/Dashed Line) and with a momentum term
(Black/Solid Line) for simulated data samples from a Normal Distribution with Mean - 180, Variance - 64.

haviour will also be true for the regularised RMoG algo-
rithm and hence, there will be a greater difference in the
performance between the two algorithms for longer video
sequences.

6. Conclusions

In this paper, we proposed a regularisation term for the
region-based Mixture of Gaussians background subtraction
algorithm by adopting the momentum based acceleration
commonly used in backpropagation algorithms for learn-
ing artificial neural networks. We proved the convergence
of the online gradient descent algorithm with an additional
momentum term and applied it to the update equations of
the RMoG algorithm. Experiments on both simulated data
and video sequences show that adding this term helps learn-
ing the dynamic background model faster thereby improv-
ing the performance of the algorithm.
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Figure 2: ROC curves for the different video sequences

Figure 3: Sample outputs for different video sequences. First Column: Input frames; Second Column: Ground Truth; Third
Column: Baseline MoG (r=1); Fourth Column: Regularised MoG (r=1); Fifth Column: Baseline RMoG (r=8); Sixth Column:

Regularised RMoG (r=_8)



