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Abstract

We describe a system for content-based retrieval from

large surveillance video archives, using behavior, action

and appearance of objects. Objects are detected, tracked,

and classified into broad categories. Their behavior and ap-

pearance are characterized by action detectors and descrip-

tors, which are indexed in an archive. Queries can be posed

as video exemplars, and the results can be refined through

relevance feedback. The contributions of our system include

the fusion of behavior and action detectors with appearance

for matching; the improvement of query results through in-

teractive query refinement (IQR), which learns a discrim-

inative classifier online based on user feedback; and rea-

sonable performance on low resolution, poor quality video.

The system operates on video from ground cameras and

aerial platforms, both RGB and IR. Performance is eval-

uated on publicly-available surveillance datasets, showing

that subtle actions can be detected under difficult condi-

tions, with reasonable improvement from IQR.

1. Introduction

The increasing volume of surveillance video collected
by ground cameras and aerial platforms vastly exceeds the
processing capacity of human analysts. Research into auto-
mated exploitation of such data has mostly focused on ob-
ject detection and tracking, person re-identification, image
retrieval and matching, anomaly detection and face recog-
nition. Far-field surveillance, where image resolution is a
primary challenge, receives less attention, but typically ac-
counts for most of the activities and objects of interest in
aerial surveillance and ground camera scenes with signifi-
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Figure 1. Sample frames from the VIRAT Video Dataset. Top row:
aerial video; bottom: ground cameras.

cant depth of field.
To address this challenge, as part of the DARPA VIRAT

program[6], we have developed an end-to-end video analyt-
ics system that ingests video from a stationary or moving
platform; stabilizes and enhances the video; detects, tracks,
and classifies all movers; characterizes their motion and
behaviors globally and locally with action-independent de-
scriptors, which are indexed into a compact archive; enables
user querying of the archive via image/video exemplars or
pre-defined action types; and enables interactive query re-
finement to improve results and learn new event or action
types. A GUI enables analysis and result browsing.

Much of the extensive research in content-based re-
trieval for general images and video [11] and CBR sys-
tems (e.g. en.wikipedia.org/wiki/List of CBIR engines)
does not translate effectively to surveillance video, whose
visual content has lower diversity due to continuous scene
coverage at lower resolutions [16]. Compared to recent
commercial and prototype video analytics systems [8], our
approach offers significant contributions: Activity-based



Figure 2. A query video of a “cartwheel” returns two other in-
stances in the top four results (excluding query video), from a two
hour archive containing more than 1600 computed tracks. Query
results are displayed on a map and a ranked list (lower left, right).

retrieval, enabling queries based on not just appearance but
also kinematics, actions, and events; relevance feedback

via Interactive Query Refinement (IQR), dynamically im-
proving the query model’s precision via user feedback; and
performance under far-field and poor video quality con-
ditions, including far-field resolution where persons are as
small as 10 pixels in height.

Our algorithms are designed to handle poor image qual-
ity conditions such as low contrast, high levels of sensor
noise, compression artifacts, and graphics burned into the
video frames (issues particularly common in aerial video.)
In ground-camera video, operating at lower resolutions sig-
nificantly increases the effective field-of-view. The system
processes both RGB and infra-red video; queries in one
modality may yield results in either, see [1] §5.

Figure 1 shows samples of full-motion video (FMV)
from the VIRAT Video Dataset [16]. Consider the frame
in the upper left; at this resolution adults are about 30 pix-
els high, and the imagery is blurred from sensor motion.
Multiple events are occurring simultaneously, as is typical
in busy scenes. With our system, an analyst may specify an
interval of an object track showing a particular action, and
find instances of the same action across the video archive,
without any prior training or knowledge of the action type.

In the top right of Figure 2, the user selected the per-
son performing a cartwheel as the query exemplar. The
archive contains two hours of aerial video with over 1600
tracks, mostly on moving people. The results adjacent to
the query show that two other instances of gymnastics were
found in the top four results, out of a total of less than 10
similar actions in the archive, performed by three individu-
als. For common actions such as “person running”, “vehicle
stopping”, etc., detectors trained offline are included, which
may be run as queries without video exemplars.

The system has been evaluated on aerial and ground
camera video datasets, particularly the VIRAT Video
Dataset [16]. In our experiments, we measure baseline re-
trieval accuracy on challenging actions such as carrying,

and improvement through IQR iterations across different
descriptor types. We also compare the accuracy of popular
action descriptors included in the system such as space-time
histogram of gradients [13]. Although accuracy is lower
than non-surveillance action recognition datasets such as
UCF 50 [17], it is comparable to reported results on the
most similar dataset and evaluation, the Surveillance Event
Detection task of the TRECVID evaluation [15].

2. Architecture

The system is organized into functional modules (Figure
3, and scales to large data volumes by parallelization using
standard IPC mechanisms. A 720x480@30fps video stream
can be processed in real-time on a 16-core workstation.

Video enters the stabilization process, which computes
frame-to-frame homographies. If available, sensor position
metadata is used for geo-location and scene scale estima-
tion. Tracking uses the ingested video, homographies, and
metadata to detect moving objects, and to initialize and up-
date tracks. Tracks are then classified as either “Person”,
“Vehicle”, or “Other” (hereafter, PVO) by a classification
module. Using tracks and the PVO scores, descriptors are
computed and indexed in an archive. Descriptors include
characterizations of kinematic (track-level) motion, behav-
ior as articulated motion, events, and object appearance.

Figure 3. The system architecture.

To search the archive, an analyst (via the GUI) forms
a query from either pre-trained action types (e.g. “person
running”) or using a single video exemplar. If given, the
exmplar is processed; the system then searches the archive
for similar content. A single exemplar often leads to noisy
initial results, but using IQR the user can provide relevance
feedback, guiding the system to find more relevant results.

The major system components are described in the fol-
lowing sections.

3. Multi-Object Tracking

Detection and tracking of moving objects reduces the
volume of video drastically, segmenting the video into



spatio-temporal trajectories used in all subsequent process-
ing. Challenges in low-quality video include: a wide range
of scales; very small objects, often < 20 pixels high; EO
and IR video; abrupt camera motion with significant zoom
changes; on-screen metadata burn-in; missing or unreliable
sensor metadata; and corrupt images due to data transmis-
sion errors. We address these and related challenges in the
proposed system. The techniques in [7] are used to automat-
ically detect and mask pixels with on-screen burn-in. The
video is stabilized using frame-to-frame homographies esti-
mated via KLT feature points [26] and RANSAM [12, 10].
When available, sensor metadata is used to estimate the
ground-sample-distance (GSD) and image-to-ground trans-
formation to rectify distortions. Empirical evaluation shows
that fusing stabilization with metadata significantly reduces
geo-localization error when the metadata is inaccurate.

Tracks are initiated on moving object detections from ei-
ther Gaussian Mixture Models (GMM) [25] or three-frame
differencing [29]; typically the latter is used for aerial video
due to memory and processing requirements of GMMs.
Following [4], multi-frame analysis of motion detections
in a stabilized reference plane is used for track generation.
Tracks are updated via adaptive integration of appearance
models and motion detections; when the motion detections
are unreliable or unavailable, the appearance or foreground
tracker are used as in [2]. The system detects and tracks
person and vehicles simultaneously; a track reconciliation
process merges and suppresses duplicates. PVO classifica-
tion (Section 4) further reduces false alarms.

4. Descriptors

Object appearance and activity are captured by descrip-
tors, the critical part of the proposed system. During devel-
opment, we investigated a wide variety of descriptor algo-
rithms [18, 13, 30, 5, 3, 14, 19, 27, 31, 22], focusing first on
algorithms suitable for low-resolution, low-quality video,
and further down-selecting based on descriptor quality, run-
time, and software reliability; see [1], §4 for more details.

The system uses two types of descriptors, classifier and
raw. Classifiers are computed by an action or event detec-
tor, and encode the probability that a track interval is an
instance of the event. Raw descriptors capture low-level in-
formation such as gradients or kinematics variance within
a spatiotemporal volume on a track, and are typically used
for exemplar matching and IQR (Section 6).

Descriptors can be grouped into three broad categories
based on their focus of attention: trajectory, articulation,
or interaction. The first group contains kinematic fea-
tures extracted from the stabilized trajectories of tracked
objects [31], and classifiers built upon them to detect kine-
matic events such as vehicle start, stop, turn, u-turn, etc.
Articulated descriptors encode part-based motion and shape
deformations over time, in order to represent actions such

as opening a door, closing trunk, digging, etc. A number of
these descriptors rely on extensions [3, 18, 13] of histogram
of gradients (HoG) [5] and histogram of optical flow (HoF)
features. The UTECE HOG descriptor [3] models a series
of human poses as a time series of HOG and HoF along
with Supervised Principal Component Analysis for action
classification. [18] creates a 3D representation of the HoG
feature. Other descriptors involve action template match-
ing [19], flow categorization [27], visual bag-of-words, and
Partial Least Squares (PLS) [22]. Interaction descriptors
represent multiple object events. Dynamic Bayesian Net-
works similar to [30] are used to model relational activi-
ties such as person entering vehicle/facility, while [14] uses
temporal logic for modeling human-vehicle interaction with
dynamic programming for optimal search.

Appearance descriptors are also used to represent ob-
ject shape, color and distinctive parts. These are treated
similarly to action descriptors for indexing and match-
ing. Stationary scene elements can also be represented and
matched, although this capability has not been evaluated.

The PVO (person / vehicle / other) estimates are com-
puted using appearance and behavior models trained offline.
Features used include HOG [5], trajectory, object size, and
scale priors, all fused via a tree of single-class SVM classi-
fiers, each trained on a single feature type. This approach
performs well with low resolution and large variation in the
target appearance. PVO is vital in suppressing false alarms
and associating the relevant event type.

5. Indexing and Retrieval

In the system, indexing and retrieval speeds searching
through large volumes of video data. Tree based structures
can be efficient for low-dimensional data, but scale poorly
in in terms of storage and access time for high-dimensional
feature spaces like those used in visual descriptors. Uniform
space partitioning [28], while highly scalable with large di-
mensions and number of data points, does not capture the
high-dimensional space well, resulting in undetermined up-
per boundary on the selected set candidates. Locality Sensi-
tive Hashing (LSH) [9] assigns similar data (for a given dis-
tance metric) to the same bucket while relying on the prob-
abilistic boundaries on approximate search. Our indexing
engine is specifically tuned for high-dimensional descrip-
tors, using a data driven indexing approach. Prototypes of
data clusters in the high dimensional space become search
indices; these are matched at query time to the query vec-
tor, and nearest neighbors to the best matching indices are
retrieved. These nearest neighbors are then sorted by sim-
ilarity to the query vector to generate the ranked retrieval
list. [1] §6 has more discussion.



6. IQR

The system provides a “query-by-example” capability
via the GUI (see Section 7), allowing the user to indicate
what they are looking for without having to learn a complex
query specification language or to understand the abstract
representations embodied by the system descriptors (Sec-
tion 4). However, naive use of a video exemplar as the basis
for a query is likely to return only a few relevent results
among many irrelevant ones. Furthermore, the result set
from querying a large archive likely cannot be practically
reviewed in its entirety. IQR focuses the search on charac-
teristics of interest that may not have been emphasized in
the initial query, re-ranking the results to prioritize relevant
results so they may be found more quickly.

Our IQR system uses Relevance Feedback (RF), in
which a user attempts to improve the quality of the result
set based on both positive feedback, for results that match
or nearly match the desired result characteristics, and neg-
ative feedback, for results that do not match [21]. RF has
been shown to be quite useful in text applications [20], and
is also seeing application in content-based information re-
trieval systems [23, 24].

Starting with the initial result set based on the exemplar,
the user selects and provides feedback on a subset, submits
it to the system for re-ranking, and then iterates as many
times as desired constructing a customized descriptor-based
model of the activity of interest. The IQR algorithm typi-
cally converges within several iterations, such that further
iterations are of minimal value. The actual re-ranking is
very fast, typically on the order of a few seconds for 1500
results; the full user-in-the-loop process may require sev-
eral minutes. Fully developed IQR models may be saved as
a new system query, allowing analysts to leverage previous
refinement efforts. Saved queries may be copied, branched,
and further refined as necessary.

7. GUI and Workflow

The GUI is the interface for executing queries and
browsing results. The basic workflow is to (a) initiate a
query, (b) review the results, and then (c) optionally refine
the query to focus the results for further review, repeating
(b) and (c) as necessary. Query options include simple clas-
sifiers (Section 4 selected from a predetermined list, such as
“Walking” or “Running”, and video exemplars, which the
user constructs from descriptors extracted from an exam-
plar video clip (Figure 4). Exemplars may be any returned
result clip, or a novel clip supplied by the user. A typi-
cal workflow starts with a classifier query such as “Person
Moving”, then switches to an exemplar query based on an
interesting classifier result. Queries can be constrained both
in time and space. The GUI also enables IQR (Section 6)
by allowing the user to indicate whether results are relevant

or not.

Figure 4. Analyst initiates an “exemplar” query by selecting the
activity of interest in the video (green box, left); analyst may select
all or a subset of the corresponding descriptors to form the query.

8. Experiments

The system was evaluated using the VIRAT Video
Dataset [16], containing both aerial and ground camera data
(Figure 1). The aerial archive contains roughly two hours of
data collected over three days, on which the system com-
puted 1651 tracks. The ground camera archive contains
three hours of surveillance video collected at three differ-
ent sites, and contains 5600 tracks. We present results on
event retrieval, combinations of raw descriptors, and IQR
trials. An extensive end-user evaluation was also conducted
by an independent third party (MITRE Corp.) as part of the
DARPA VIRAT program; more details are at [1] §7.

Figure 5. Top ten results from the initial query (top) and after
two rounds of IQR (bottom) for the carrying example. Observed
matches are in green, misses in red.

The first result is a “Person Carrying” query, based on an
exemplar track chosen from the archive. [1] §3 discusses ex-
emplar choice sensitivity. This clip, selected by the user in
the GUI is associated with 19 descriptors: 2 appearance, 14



articulation (5 different types), and 3 PVO. Color and trajec-
tory descriptors are not selected, assuming they are less use-
ful for detecting carrying; those remaining form the search
query basis. Note that no semantic hint is supplied that we
are looking for “carrying”; we are merely looking for clips
in the archive whose descriptors match our search query.
The first 10 results of this initial query are shown in the top
row of Figure 5; first is the query, which matched itself; 4
of the remaining 10 are hits. The aerial dataset ground truth
has 1505 events; 119 (7.9%) were labelled “Person Carry-
ing”. The ROC and P/R curves labelled initial in Figure 6
quantify this initial retrieval performance, which is encour-
aging given the challenging problem of finding such events
data at this low resolution. [1] §1 includes videos.

Figure 6. ROC and P/R curve for the carrying example; IQR has
doubled the precision for the first set of matches (left side of
curves.) See also [1] §2.

Next, the user performs IQR on these initial results, giv-
ing feedback for the top 20 returns as to whether or not the
clip seemed to match “person carrying”. The system also
nominated seven clips whose rank ranged from 19 to 765 as
“feedback requests”. The system incorporates the feedback
into the model and re-ranks the results. After two rounds of
this process, 8 of the top 10 are hits; IQR has doubled the
top-10 precision of the initial query as shown Figure 6. This
emphasizes that IQR favors improving response for higher-
ranked results, discussed further in [1] §2.

We experimented with a variety of descriptor combina-
tions; the contribution of individual descriptor types can be
analyzed by re-running the experiment with specialized sets
of descriptors. Figure 7 shows the ROC curves from replac-
ing the full suite of 14 articulation descriptors with (in ex-
perimental order) 2 instances of the UCF BoW descriptor,
3 of UTECE HOG, 5 of icosahedron HOG, 3 of ICSI HOG,
and finally, a suite made up of UTECE, UCF, and ICSI de-

Figure 7. ROC curves for the initial query (left) and after two
rounds of IQR (right), for individual and combinations of artic-
ulated descriptors.

name backpack shovel vehicle

sample

frame

dataset groundcam aerial aerial

est. prior 6% (1.2/20) 7%(1.4/20) 1% (0.2/20)

initial 3/20 3/20 3/20

feedback +5, -20 +4, -4 +2, -25

round 1 9/20 7/20 5/20

feedback +5, -15 +2, -0 +2, -14

round 2 17/20 7/20 6/20

gain vs first 5.6x 2.3x 2.0x

gain vs prior 14x 5x 30x

Table 1. Ad hoc IQR trials: observed results and feedback sched-
ules. Initial query precision is typically at least doubled by IQR.

Figure 8. Initial (top) and final (bottom) top 10 results for the IQR
“backpack” experiment. Initial results had 3 hits (in green, includ-
ing query) in the top 20, or 1.8x random; final results included 17
hits in the top 20, or 14x random. Negative feedback is in red.

scriptors. The figure shows that descriptors vary both in
absolute performance and in how they respond to IQR.

We now show results for three ad hoc queries without
a priori ground truth, as might dynamically arise during
analysis session. The first (“Wearing a backpack” ) was
computed against the ground camera archive; the other two
(“Carrying a shovel”, “Interacting with a vehicle.”) from the
aerial data archive. Using an IQR protocol similar to that for
the carrying example above, two rounds of feedback were
given after the initial query; results are summarized in Ta-
ble 1. The precision of the initial query is typically 2x bet-
ter than chance, it is further doubled by IQR. The estimated
priors were computed from the top 100 “person moving”
results and projected to top 20 for consistency. IQR results
are shown in Figure 8 (backpack query, appearance and ar-



ticulation); results for the shovel and vehicle experiments
are available in [1] §8. For the vehicle query, Table 1 shows
that the initial query performed 15x better than random, and
large amounts of feedback (4 positive, 39 negative) allowed
two rounds of IQR to again double the initial precision.

9. Conclusion

Our state-of-the-art system for surveillance video analyt-
ics is based upon the fusion of behavior and action descrip-
tors with appearance. Our focus is on low-resolution, low-
quality video conditions where typical methods for tracking
and action recognition can fail. We have developed methods
that account for these conditions, and can operate on video
from an airborne moving sensor as well as ground cameras.
Performance is demonstrated on the VIRAT Video Dataset,
showing improvement from IQR.
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