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Abstract

Retrieving information from movies is becoming increas-
ingly demanding due to the enormous amount of multime-
dia data generated each day. Not only it helps in efficient
search, archiving and classification of movies, but is also in-
strumental in content censorship and recommendation sys-
tems. Extracting key information from a movie and summa-
rizing it in a few tags which best describe the movie presents
a dedicated challenge and requires an intelligent approach
to automatically analyze the movie. In this paper, we formu-
late movies tags extraction problem as a machine learning
classification problem and train a Convolution Neural Net-
work (CNN) on a carefully constructed tag vocabulary. Our
proposed technique first extracts key frames from a movie
and applies the trained classifier on the key frames. The
predictions from the classifier are assigned scores and are
filtered based on their relative strengths to generate a com-
pact set of most relevant key tags. We performed a rigor-
ous subjective evaluation of our proposed technique for a
wide variety of movies with different experiments. The eval-
uation results presented in this paper demonstrate that our
proposed approach can efficiently extract the key tags of a
movie with a good accuracy.

1. Introduction

an intelligent video analysis to automatically extract the

salient information from movies. This information can be

utilized in a number of tasks including search optimization,

scene-driven retrieval, object detection, translating movies

to natural language, event detection, action recognition, be-

havior recognition, recommendation systems (to name a

few).

The problem addressed in this paper refers to extracting

the key information from a movie and summarizing it into

a few key tags, representing the overall theme of the movie.

The aim is not only to understand the high level semantics in

each frame of the movie, but also to identify a compact set

of the movie’s representative topics. Retrieving this infor-

mation further helps in movies classification, context-based

search, efficient archiving and content-censorship (e.g, vio-

lence, sex and nudity in kids movies). Using traditional ob-

ject detection approaches to understand individual frames of

a movie and extracting the salient information will turn out

to be highly unproductive as it will generate only the low

level information (e.g., the objects in the frame) and not the

underlying relationship among the objects and/or the over-

all context. At the same time, analyzing each movie frame

will be inefficient due to the resulting redundancy of the ex-

tracted information.

For automatic analyses of movies, a Machine Learning

(ML) based algorithm is required which can learn the rep-

resentative features of movie scenes. Recent developments

in ML have brought about a paradigm shift to analyze com-

plex data with an unprecedented efficiency which, in some

cases, even outperforms human accuracy. The general-

purpose parallel computing offered by Graphical Process-

ing Units (GPUs) has now brought the enormous computing

power required for machine learning into a single computer,

paving the way for efficient image/video analytics. That be-

ing said, using ML to learn the traditional hand-crafted fea-

tures for our problem is inefficient due to the certain known

issues pertaining to these features (scale- and rotation vari-

ance, formulation of required mathematical models, lack

of generalization, performance degradation under varying

conditions, etc).

The sheer volume of movies produced these days poses 
a huge challenge to their manual processing. Human gen-

erated meta data is generally not sufficient to describe the 
main contents of a movie and/or is not accurate due to 
the difficulty associated with precise information recall. 
We also confirm this from our preliminary experiments in 
which a number of volunteers are asked to watch some 
movie clips of diverse categories and point out the key infor-

mation contained therein. By comparing their suggested in-

formation with a ground truth collected by a careful analysis 
of the clips, we discover that human-generated semantic la-

bels lack consistency and present irregularities. Our exper-

iments further show that this seemingly trivial task requires



This problem can be efficiently addressed with Deep

Learning (DL) [6] which does not require engineered fea-

tures to be learned. Instead, it learns representations of data

by discovering intricate structure in datasets with multiple

levels of abstraction. This motivates us to formulate our

problem as a DL based classification problem. We construct

a tag vocabulary and build an appropriate dataset. For train-

ing a classifier on the constructed vocabulary, we use trans-

fer learning to modify and train the final layer of Inception-

V3 [16] Convolution Neural Network (CNN) using Softmax

classification. For analyzing a movie for tags extraction, we

first extract the key frames of the movie and compute their

CNN features to get corresponding predictions from the

model’s newly added/trained final layer. Subsequently, the

predictions pertaining to all the frames are assigned scores

and relative strengths based on their prediction probabilities

and dominance in the movie. The tags having low relative

strengths are filtered out to get a set of few key tags which

best describes the overall theme and main contents of the

movie. Although we lose motion information by analyz-

ing only the key frames of a movie, our proposed technique

still performs efficiently as the recent related work in this

domain shows that motion features have little to no impact

on such tasks [17][22][1].

The work presented in this paper has the following strik-

ing features: (i) our proposed approach works at a higher

semantic level by understanding the overall context in the

individual movie frames. The context represents the inter-

action of the objects in a scene and their overall meaning.

The examples of context include romance, violence, fight,

action, etc, (ii) this work is different from typical event or

scene recognition tasks, where each item belongs to a sin-

gle event or scene, (iii) our proposed technique also stands

apart from most object recognition tasks, where the goal is

to label everything visible in an image. This will produce

thousands of labels for a movie without providing its the-

matic points, and (iv) this work does include, but it is not

limited to, genre classification of movies. A movie typi-

cally has 2-3 genres which do not reveal other information

in the movie (e.g., violence, nudity, sex, etc). Our carefully

designed vocabulary adequately covers the main theme of a

movie and is flexible to scalability.

The rest of the paper is organized as follows. Section 2

provides an overview of the related work in this domain. In

Section 3, we briefly discuss the theoretical background of

CNN and transfer learning. Section 4 gives a detailed in-

sight into our movies tags extraction technique. Section 5

discusses the experimental setup and the evaluation results

of the proposed technique. Section 6 concludes the paper.

2. Related Work
To the best of our knowledge, the problem of automatic

movies tagging, as formulated in this paper, has still not

been studied in the relevant literature. The existing related

work is mainly focused on general video tagging on a lim-

ited scale. In [11], the authors use multi-label classification

to classify the video semantic concepts and models corre-

lations between them for annotating certain concepts in a

video. The video annotation technique presented in [14]

utilizes the redundancy among YouTube videos to find con-

nection among videos and propagating tags among simi-

lar videos. The techniques presented in [13][7] utilize the

contextual meta-data acquired from the sensors on smart

phones to generate video tags. In [9], the proposed tech-

nique recognizes basic objects in images and videos of a

digital camera and extracts the meta data including geo-

graphical and date/time information to generate tags.

With the advent of deep learning and its growing popu-

larity, the research on video understanding has been directed

to use deep networks to learn hierarchical feature represen-

tations. The major part of the research on video process-

ing using deep learning is focused on translating videos to

natural language [3][19][18][10], video question-answering

systems [2][8], and video classification [5][24][23][20].

Translating videos to natural language and video question-

answering are different tasks than video tagging as they re-

quire more complex architectures such as recurrent neu-

ral network [3] in conjunction with CNN to understand

the spatio-temporal relationship between successive video

frames. Video classification is closely related to video tag-

ging, however, it is primarily focused on predicting the ma-

jor category a video falls in, rather than extracting the key

information from a video.

3. Convolution Neural Network (CNN) &
Transfer Learning

CNNs, though similar to traditional neural networks,

have much deeper architectures and are best suited to learn

underlying patterns in complex data. In the last few years,

there has been a growing interest in using CNN for image

recognition, classification and other related tasks. A typical

CNN architecture includes convolution, activation, pooling

and classification layers. Convolution layer extracts image

features using multiple filters. The activation layer intro-

duces non-linearity in the learning process by limiting the

output of the convolution layer in a certain range. Pooling

layer downsamples the data to reduce its size and selects the

prominent features. The classification layer is a fully con-

nected layer which computes the final scores of each class.

A CNN may have a number of convolution, activation and

pooling layers. This deep architecture is useful for extract-

ing and learning general and representative features without

human intervention.

Training a CNN from scratch for a new task requires

huge computing resources, long training time and a massive



amount of training data. Recent research [21] shows that the

features learned by a CNN are transferable from one train-

ing problem to another. Starting from the lower CNN lay-

ers, which extract generic and low level features, the speci-

ficity of features increases as we move to the higher CNN

layers, making the final layer purely task specific. There-

fore, the lower layers of a CNN trained for a large dataset

contain learned weights for low level features which can

be utilized to train the model for a new task. Using the

pre-trained CNN model as a fixed feature extractor, its final

layer can be modified and retrained for a new task. This

is called transfer learning and we use it to modify and re-

train the final layer of Inception-V3 CNN, pre-trained on a

large dataset (ImageNet1), for the task of movies tags ex-

traction. Although Inception-V3 has been trained for an

entirely different problem, its features are effectively trans-

ferred to learn this new training problem.

4. Movies Tags Extraction
Following sections explain the various steps involved in

our movies tags extraction technique.

4.1. Dataset

We construct a vocabulary of 50 movie tags and collect

the dataset for each tag by extracting relevant frames from

a number of movie trailers. The tag vocabulary, shown in

Table 1, has 700 images corresponding to each tag. Note

that the tags in the same color have similar features which

makes this training problem harder than the classification

problems in which the classes have little or no overlapping.

We also frequently increase the vocabulary size as more tags

are identified and the relevant dataset is collected.

4.2. Training

We remove the last layer of Inception-V3 pre-trained

model and add a new layer for training it on our dataset. We

freeze the rest of the layers and use the model as a feature

extractor. We further add a dropout layer [15] as a penul-

timate layer to randomly drop the activations of 50% units

during training in order to prevent the emergence of inter-

dependencies among them and making the model more ro-

bust. We use a small learning parameter of 0.005 and larger

training and validation batch sizes of 500 respectively to get

more stable results. The dataset is partitioned as follows:

80% training images, 10% validation images and 10% test

images. After applying dropout, the output of the penulti-

mate layer for each input image is calculated as follows,

yi = ReLU [
∑

j

Wi,jxj + bi] (1)

1http://www.image-net.org/

Action Bomb explosion Car chase

Destruction Sword fight Vehicle crash

Violence Abduction Heist

Adventure Animal Beach/Sea

Climbing Desert Hiking

Forest Valleys/Hills Children

Family Club/Bar Dance

Music Wedding College/Univ.

Hospital Drinking Food

Smoking Exercise Sports

Swimming Glamor/Fashion Nudity

Romance Sex Horror

Monster Murder Lab Experiment

Sci-fi Super hero Technology

Robot Military Police

Prison War Weapon

Animation Drama

Table 1: Movies tag vocabulary

where Wi represents the neurons weights and bi is the bias

for ith tag. The notation xj represents the jth pixel of the

input image. ReLU (Rectified Linear Unit) activation func-

tion is used to introduce nonlinearity in the training, so that

the network can generalize well for the unseen data.

For converting the output of the penultimate layer into a

probability distribution, we use Softmax classification [4]

to predict the probabilities of all the tags by the following

rule,

pi =
eyi

∑50
j eyj

(2)

where pi represents the probability of ith tag in the set of

50 tags. For calculating the error between the estimated

distribution p and the true distribution q, we use a cross-

entropy error estimate [4] E(p, q) as follows.

E(p, q) = −
50∑

x

q(x) log p(x) (3)

The Softmax classifier minimizes the error between the es-

timated distribution and the true distribution. We run the

training for 50,000 iterations (500 epochs). Figure 1a and

Figure 1b show the smoothed curves of training/validation

accuracy and cross-entropy error during the training. It is

evident that the training/validation margin in both the cases

is greatly reduced and the model generalizes well due to the

dropout layer and the right selection of training parameters.

The overall test accuracy of the model is 85%.

4.3. Tags Extraction for Individual Movie Frames

We test the trained model on individual movie frames

for tags extraction. We utilize the overlapping among the



(a)

(b)

Figure 1: Smoothed curves of (a) training/validation accu-

racy, and (b) training/validation cross-entropy error

tags features to consider higher number of predictions in

the estimated distribution than only the topmost prediction

which represents the most dominating tag in a movie frame.

While the topmost tag has the highest probability in the esti-

mated distribution, the other lower probability tags may in-

dicate other relevant information in the movie frame. Table

2 shows the predicted tags for some movies frames. Note

that the first tag in each set of the predicted tags represents

the topmost tag with the highest probability. The rest of the

tags, though predicted with lower probabilities, still reveal

the relevant information contained in the movie frames.

4.4. Tags Extraction for Movies

For movie tags extraction, we first extract the key frames

of the movie by identifying the boundaries of successive

shots. A shot is a series of frames that runs for an unin-

terrupted period of time. We extract the movie frames at 1

Frame Per Second (FPS) and find the shots boundaries by

comparing the HSV histogram of successive frames. If the

difference of normalized histogram values of the two suc-

cessive frames is found to be greater than a certain thresh-

old, it is marked as a shot boundary and we select the me-

dian frame of the shot as a key frame. Increasing the thresh-

old makes the shot detection more lenient to change and

results in smaller number of key frame, whereas decreas-

Frames Tags

Military, action, weapon, war

Violence, destruction, bomb explosion,

action, vehicle crash

Sex, nudity, romance, Glamor/fashion

Hiking, adventure, forest, valleys/hills,

climbing

Sci-fi, super hero, robot, action

Violence, sci-fi, action, horror

Table 2: Predicted tags for individual movies frames

ing the threshold makes it more conservative and results in

higher number of key frames. We select a threshold value

0.5 which works reasonably well.

Apart from detecting the shot boundaries and selecting key

frames, we also calculate the entropy of each key frame to

check if it contains reasonable amount of information to run

the tags extraction inference. We convert the key frame to

luminance/chrominance color space and calculate the en-

tropy of each channel by the following rule [12],

H = −
n∑

i

p(xi) log2 p(xi) (4)

where p(xi) represents the probability of a pixel xi to as-

sume a certain value. The cumulative entropy H serves as

a measure to estimate the information contained in a key

frame. We only select those key frames whose cumulative

entropy is greater than a certain threshold (H > 0.20).

After extracting the representative frames of a movie and

eliminating redundancy, we run inference on each key

frame to get top 3 tags. Subsequently, we find the strength

of each tag by the following rule,

Wi =
ni

N

N∑

j=0

Pij (5)

where Wi represents the strength of ith tag, ni denotes the

number of occurrences of ith tag, N is the total number of

extracted tags, and pij is the probability of jth occurrence

of ith tag.

We further normalize the tags strength in [0, 1] to calculate



Figure 2: Overall technique of movies tags extraction

Hardware/Software Specifications
CPU Intel Xeon(R) E5430,

2.66GHz x 8

RAM 8GB

GPU GeForce GTX 1050 Ti,

768 cores, 4GB GDDR5

DL framework Tensorflow 0.12, com-

piled with GPU support

Operating System Ubuntu 16.04 (64-bit)

Programming languages Python 2.7, OpenCV 3.0

Table 3: Experimental setup

the relative strength Ri of each tag by the following rule,

Ri =
Wi −Wmin

Wmax −Wmin
(6)

where Wmax and Wmin represent the maximum and mini-

mum tags strengths in the set of all the extracted tags. We

filter out the tags having strengths less than a certain thresh-

old to get a fewer key tags which best describe the movie.

The overall approach is depicted in Figure 2.

5. Experimental Setup and Results

The hardware/software details of our experimental setup

are specified in Table 3.

With this experimental setup, the overall average time

to process a frame is 50 milliseconds (20 FPS) for a 720p

movie. Due to the unavailability of a ground truth, we opt to

test the performance of the proposed technique with a sub-

jective evaluation. We perform three different experiments

in Fraunhofer IIS digital cinema with different sets of 10

volunteers each. The evaluation is performed on a number

of movie trailers of diverse categories, as a movie trailer is

a precise representation of a movie’s contents. This is also

helpful to complete the experiments in a reasonable time.

In the first experiment, the participants are shown a num-

ber of movie trailers. At the end of each trailer, the set of

the extracted key tags is revealed to the participants and they

are asked to rate it between 0 to 10 based on its relevancy

Figure 3: Extracted tags and their relative strengths for the

movie trailer Alien Covenant (2017)2

and completeness. At the end of the experiment, we cal-

culate the Mean Opinion Score (MOS) from the feedback

received from the participants which is found to be 84.3%.

In the second experiment conducted with a different set

of participants, we ask the participants to rate the extracted

tags of each movie trailer not only taking into account their

relevancy, but also their relative strengths presented to them

in the form of a visual chart as depicted in Figure 3. The

MOS for this experiment is 78%.

In the third experiment, the participants are provided the

tag vocabulary and are asked to suggest the relevant tags

from the vocabulary after watching each trailer. Using the

participants’ feedback as ground truth in this experiment,

we calculate the mean average precision P , mean average

recall R and F1-score by the following formulas,

P =
1

(MN)2

N∑

i

M∑

j

TP (i, j)

TP (i, j) + FP (i, j)
(7a)

R =
1

(MN)2

N∑

i

M∑

j

TP (i, j)

TP (i, j) + FN (i, j)
(7b)

F1 = 2(
P ×R

P +R
) (7c)

where TP (i, j), FP (i, j) and FN (i, j) represent the number

of true positive, false positive and false negative, respec-

tively, for the ith movie trailer and jth participant. The no-

tations N and M represent the number of participants and

the number of movie trailers, respectively. The mean av-

erage precision and recall of this experiment are 76% and

74.22%, respectively, which give a F1-score of 0.75.

2https://www.youtube.com/watch?v=H0VW6sg50Pk



6. Conclusion
In this paper, we proposed a deep learning based movies

tags extraction technique. The proposed technique is pri-

marily focused on retrieving higher level semantics from a

movie and representing it in a set of few key tags which best

describes the movie. The proposed technique is flexible to

increase the size of tag vocabulary while maintaining the

performance. The subjective evaluation results of our pro-

posed technique demonstrate its efficacy to retrieve the key

tags of a movie with a good accuracy.

In future, we aim to extend the tag vocabulary for more

tags and utilize the extracted tags for a number of tasks, in-

cluding query based scene retrieval, movies classification

for efficient archiving and search, and extracting the most

relevant key frames for movie summarization (to name a

few).
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