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c Intelligent Vehicles Group, Delft University of Technology, Netherlands

frank.hafner@zf.com, amran.apece@gmail.com, j.f.p.kooij@tudelft.nl, eric.granger@etsmtl.ca

Abstract

Person re-identification is a key challenge for surveil-
lance across multiple sensors. Prompted by the advent of
powerful deep learning models for visual recognition, and
inexpensive RGBD cameras and sensor-rich mobile robotic
platforms, e.g. self-driving vehicles, we investigate the rel-
atively unexplored problem of cross-modal re-identification
of persons between RGB (color) and depth images. The
considerable divergence in data distributions across differ-
ent sensor modalities introduces additional challenges to
the typical difficulties like distinct viewpoints, occlusions,
and pose and illumination variation. While some work has
investigated re-identification across RGB and infrared, we
take inspiration from successes in transfer learning from
RGB to depth in object detection tasks. Our main contribu-
tion is a novel cross-modal distillation network for robust
person re-identification, which learns a shared feature rep-
resentation space of person’s appearance in both RGB and
depth images. The proposed network was compared to con-
ventional and deep learning approaches proposed for other
cross-domain re-identification tasks. Results obtained on
the public BIWI and RobotPKU datasets indicate that the
proposed method can significantly outperform the state-of-
the-art approaches by up to 10.5% mAP, demonstrating the
benefit of the proposed distillation paradigm.

1. Introduction
Person re-identification is an important function in many

monitoring and surveillance applications, such as multi-
camera target tracking, pedestrian tracking in autonomous
driving, access control in biometrics, search and retrieval in
video surveillance, and forensics [5, 8], and, as such, has
gained much attention in recent years. Given the query im-
age of an individual captured using a network of distributed
cameras, person re-identification seeks to recognize that
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Figure 1. Cross-modal re-identification creates a shared embed-
ding for multiple modalities, each with their own mapping func-
tion. Here, the embedding functions are defined as F (x) for RGB
and G(x) for depth, respectively.

same individual over time within a gallery of previously-
captured images [6]. This task remains a challenging prob-
lem in real world applications due to low resolution im-
ages, occlusions, miss-alignments, background clutter, mo-
tion blur, and variations in pose, scale and illumination.

This paper focuses on deep neural networks for cross-
modal person re-identification that allow sensing between
RGB and depth modalities. Although some methods have
been proposed for cross-modal re-identification between
RGB and infrared images [10, 11, 12, 13], almost no re-
search addressing RGB and depth images exists [16, 17].
However, sensing across RGB and depth modalities is im-
portant in many real-world scenarios. This is the case,
for example, with video surveillance systems that must
recognize individuals in poorly illuminated environments
[14]. Another use case are autonomous self-driving vehi-
cles, which require tracking pedestrians around their vicin-
ity, where some regions are covered by lidar sensors, and
others by RGB cameras. Besides these practical applica-
tions, research in cross-modal re-identification can also help
legal interpretation of depth-based images concerning pri-
vacy data protection (e.g. within GDPR). While it is clear
that person data from a RGB camera is highly sensible con-
cerning data privacy, it is still unclear how much private
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information can be extracted from depth images.
In this paper, a new cross-modal distillation network is

proposed for robust person re-identification across RGB and
depth sensors. The task is addressed by creating a common
embedding of images from both the depth and RGB modal-
ities, as visualized in Figure‘1. The proposed method ex-
ploits a two-step optimization process. In the first step a
network is optimized based on data from the first modality,
and then, in the second step, the embeddings and weights
of this first neural network provide guidance to optimize a
second network for the other modality. The optimization is
based on the final embedding layer of the networks to guar-
antee an embedding in a common feature space for both
modalities. The idea behind this approach is to enable a
transfer of learned structural representations from the depth
modality to the RGB modality, and, therefore, enforce sim-
ilar feature embeddings for the modalities.

This paper presents the following contributions: (i) A
cross-modal deep neural network is adopted to transfer an
embedding representation from one modality to the other
by exploiting the intrinsic relation between depth and RGB.
(ii) We intuitively and experimentally show that an ideal
deep feature distillation for the task needs to take place from
depth to RGB. (iii) An extensive experimental validation is
conducted to show the performance of state-of-the-art meth-
ods on cross-modal person re-identification between RGB
and depth. On this basis the advantages of the proposed
method are shown on multiple RGB-D based benchmark
re-identification datasets.

2. Related Work
The area of person re-identification has received much

attention in recent years [8]. This section provides a sum-
mary of the state-of-the-art conventional, deep learning and
cross-modal techniques as they relate to our research.

Conventional Methods. Conventional approaches for
person re-identification from a single modality can be cate-
gorized into two main groups – direct methods with hand-
crafted descriptors or learned features and metric learning
based approach. Direct methods for re-identification are
mainly devoted to the search of the most discriminant fea-
tures to design a powerful descriptor (or signature) for each
individual regardless of the scene [20, 22, 21]. In contrast,
in metric learning methods, a dataset of different labeled
individuals is used to jointly learn the features and the met-
ric space to compare them, in order to guarantee a high re-
identification rate [22].

Deep Learning Methods. The idea of using a deep
learning architecture for person re-identification stems from
Siamese CNN with either two or three branches for pairwise
verification loss [25] or triplet loss [26, 27] respectively, by
proposing new layers [1] or by fusing features from differ-
ent body parts with a multi-scale CNN structure [2, 3]. An-

other trend of using deep learning architecture is transfer
learning [4, 25, 29], for when the distribution of the train-
ing data from the source domain is different from that of
the target domain. The most common deep transfer learning
strategy for re-identification [4] is to pre-train a base net-
work on a large scale or combination of different datasets
as source dataset, and transfer learned representation to the
target dataset. However, these transfer learning methods de-
pend on the assumption that the tasks are the same and in a
single modality and, hence unsuitable when the source and
target domains are heterogeneous.

Cross-Modal Methods. While the progress in re-
identifying persons in single modalities was significant,
only few works [10, 11, 12, 13, 15, 16] investigated the
task of cross-modal person re-identification. Recently, sev-
eral models have been proposed for cross-modal person re-
identification between RGB and infrared images [10, 11, 12,
13]. To embed the RGB and IR modalities in a common fea-
ture space, the authors in [10, 11, 12] analyze several neural
networks architectures: zero padding and one-stream net-
works [10], and two streams network [11, 12] with different
losses. Additionally, problem has been addressed in adver-
sarial way in [13]. There are a few works in the literature
that consider a multi-modal person re-identification sce-
nario [9, 15] by fusing the RGB and the depth information
in order to extract robust discriminative features. In [15], a
depth-shape descriptor called eigen-depth is proposed to ex-
tract describing features from the depth domain. [16] used
the same features to perform cross-modal re-identification
between depth and RGB. To the best of our knowledge this
is the only existing work on the topic of cross-modal person
re-identification between RGB and depth.

In contrast to the approaches described above for cross-
modal re-identification, we propose to employ the cross-
modal distillation idea by means of a deep transfer learning
technique. The idea of the method is inspired by the work
on supervision transfer of Gupta et al. [7]. However, super-
vision transfer [7] and our approach aim at different prob-
lems with different focuses of method design: supervision
transfer solves the problem of limited data availability for
object detection problems with a transfer scheme from RGB
to depth. Our method is using the distillation paradigm to
transfer knowledge from one modality to a second modality
to solve the re-identification task across the two modalities.
Therefore, contrary to Gupta et al. [7], the task has to be
solved across modalities in the same feature space and is not
considered a pre-training procedure as in [7]. Additionally,
in Gupta et al. the direction of transfer is defined as from
RGB to depth. In contrast, in this work the ideal direction
of transfer is investigated in detail and a transfer from depth
to RGB is shown to be superior for the application.
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Figure 2. Two step training scheme and inference for the proposed cross-modal distillation network. Step I involves training of a CNN
for single-modal re-identification. In step II, the knowledge from the first modality is transferred to the second one. During inference,
query and gallery images from different modalities are evaluated to produce feature embeddings and matching scores for cross-modal
re-identification. As an example, this figure shows a transfer from depth to RGB, and inference using RGB as query and depth as gallery.
The modalities can be interchanged in both cases.

3. Deep Cross-Modal Neural Networks
In this section successful deep neural networks and ob-

jective functions for single-modal person re-identification
are presented. Based on these key ingredients the new
cross-modal distillation network is introduced.

3.1. Methods for Single-Modal Re-Identification: The
task of single-modal re-identification is the standard prob-
lem within re-identification. For this work a selection of
successful feature extraction networks and loss functions
will be employed. For feature extraction, our work uses
residual neural networks with 50 layers (ResNet50) [24]
which are pre-trained on ImageNet. The ResNet archi-
tecture was shown to be effective for several person re-
identification applications [28, 27]. Furthermore, we con-
sider two possible loss functions, triplet loss and softmax
loss, which both have been successfully applied in single-
modal person re-identification [26, 8]. We will now shortly
discuss both losses in more detail.

Using the triplet loss results in a metric learning ap-
proach which directly optimizes an embedding layer in eu-
clidean space. During training, this loss compares the rel-
ative distances of three training samples, namely an anchor
image xa, a positive image sample xp from the same in-
dividual as xa, and a negative sample xn from a different
individual. Given an anchor image xa, this loss assures that
the embedding of an image taken from the same class xp

is closer to the anchor’s embedding than that of a negative
image belonging to another class yn by at least a margin
m in distance metric d. In the following, F (x) denotes the

mapping to the embedded space, which is in our case a deep
neural network. The triplet loss is therefore defined as:

Ltri =

T∑
i=1

[
d(F (xa(i)), F (xp(i)))− d(F (xa(i)), F (xn(i))) +m

]
.

(1)

where indices a(i), p(i) and n(i) stand for anchor, positive
and negative, of the i-th triplet, and T for the number of
triplets used per batch.

For the second considered loss, the softmax loss,
the embedding is learned indirectly by first treating re-
identification on the training set as a classification problem,
where all individuals in the training set are considered a dif-
ferent class. Afterwards, the layer of the neural network
prior to the softmax loss is used as the embedding. This
enables that the network can be applied on test data, which
can contain new individuals not present in the training data.
Therefore, the softmax loss to optimize the embedding can
be expressed as:

Lsoft = −
1

N

N∑
i=1

log

(
eW(yi)

F (xi)+b∑C
j=1 e

W(j)F (xi)+b

)
, (2)

where N is the batch size, W(j) are the weights leading to
the j-th node of the ultimate softmax layer of the network,
b is a bias. The amount of classes is defined as C.

3.2 A Cross-Modal Distillation Network: This section
explains our novel cross-modal training and inference. The
training of the network is divided into two steps to exploit
the relationship between depth and RGB and visualized in
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Figure 2. In step I of the training of the cross-modal dis-
tillation network, a neural network F is trained for sensing
in a first modality. In this work the training will be done
with Resnet50 and triplet and softmax loss as presented in
section 3.1. The networks are optimized by means of an
early-stopping criteria based on the mAP in the validation
set. Afterwards, the network is frozen as Ffr, with corre-
sponding weights WF,fr..

The obtained neural network feature extractor for the
first modality is deployed as the baseline network for the
training of a feature extractor for the second modality. For
training step 2, a network with the same architecture as
the corresponding network in step I is initialized. Simi-
larly to [7], the weights of the converged model from step I,
WF,fr., are copied to network G which is dedicated to the
second modality. Additionally, the weights of the network
are frozen from a mid-level convolutional layer up to the
final feature embedding. This retains the high-level map-
ping from the first network. At the same time, the target
embedding can still learn meaningful low-level features for
the task in the target modality. With this approach, we re-
strict the learning in the second modality and, hence, force
the network to learn to extract similar features in the second
modality as in the first modality.

For the actual transfer of knowledge we make use of
paired images Xm1 from modality 1 and Xm2 from modal-
ity 2. The aim is to optimize G in such a way that the em-
beddings of images from the second modality Xm2 with
label y are close to the embeddings of images from the first
modality Xm1 with the same label y. This is realized by ex-
ploiting image pairs xm1,i and xm2,i from the two modali-
ties, which are considered coupled as they are taken at the
exactly same time step. Hence, the embedding of xm1,i

is obtained with a forward propagation through the frozen
network Ffr. and is taken as the groundtruth for the embed-
ding of xm2,i with the, at this stage, trainable network G.
Since during inference mode the embeddings will be com-
pared based on Euclidean distance, we aim to minimize this
metric between the two embeddings. Hence, we make use
of the mean squared error (MSE) loss between the embed-
dings of paired images Ffr.(xm1,i) and G(xm2,i):

LMSE =
1

N

N∑
i=1

‖Ffr.(xm1,i)−G(xm2,i)‖2 (3)

where N is the batch size for training. Early-stopping cri-
teria for network training is the loss in validation data.

During inference, the two resulting networks, Ffr. and
Gfr., are evaluated in the corresponding modalities to pro-
vide feature embeddings for input images. Similarity be-
tween these representations is measured using Euclidean
distance. No coupled images are needed for inference.

4. Experimental Methodology
In this section we present the experimental methodol-

ogy used to validate the proposed approach. Therefore, two
RGB-D person re-identification datasets will be presented.
As these datasets were originally not designed for cross-
modal person re-identification it is important to discuss their
intrinsic properties.

The considered datasets are BIWI RGBD-ID [18] and
RobotPKU [19] datasets. These datasets were selected
because they provide high-resolution depth and RGB im-
ages, a decent amount of instances and a large amount
of images per instance in different poses. Both datasets
were recorded with a Microsoft Kinect camera. The BIWI
RGBD-ID dataset targets long-term people re-identification
from RGB-D cameras [18]. As in [16] same person with
different clothing is considered as a separate instance. Over-
all, it is comprised of 78 individuals with 22,038 images
in depth and RGB. RGB and depth images are provided
coupled with no visible difference in capturing time. The
dataset consists of 90 persons with 16,512 images in total.
The images are provided in a coupled manner. Neverthe-
less, by visual inspection it is apparent, that there is a slight
time difference, in the order of a fraction of a second, be-
tween the images captured in depth and RGB. For training
and inference images of both datasets in both modalities are
resized to 256× 128.

For the performance evaluation with the BIWI dataset,
the same partitions into training, validation and testing sub-
sets were adopted as in [16], which means 32 individuals
were chosen for training, 8 instances for validation and 38
individuals for testing. For the RobotPKU dataset, the divi-
sion will be videos from 40 individuals for training, 10 for
validation, and 40 for testing. This follows the division of
[19]. For quantitative evaluation, the average rank 1, 5 and
10 accuracy performance measure is reported along with
the mean average precision (mAP). For the reporting of the
rank accuracy, a single-gallery shot setting is used, where
a random selection of the gallery (G) images is repeated 10
times. For evaluation the exactly same corresponding image
in the parallel modality is excluded. To obtain statistically
reliable results a 3-fold cross-validation process is used.

5. Results and Discussion
An extensive series of experiments has been considered

to validate the proposed cross-modal distillation network.
In this section, the results for optimization with the single
modalities (i.e., step I. in Fig 2) are first shown to estab-
lish a baseline for the individual modalities. Hence, we first
investigate how different choices for losses affect the per-
formance on single-modal re-identification, and compare
the relative difficulty of the modalities and dataset. Then,
the distillation step (step II.) of the proposed method is per-
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Table 1. Average test set accuracy of the proposed method (Step I)
for different modalities on BIWI dataset.

Modality Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)
RGB Triplet 92.14 ± 1.86 99.71 ± 0.24 99.95 ± 0.08 93.44 ± 1.46

Softmax 94.75 ± 0.74 99.75 ± 0.19 99.96 ± 0.03 95.68 ± 0.60
Depth Triplet 54.23 ± 1.75 91.48 ± 0.56 99.15 ± 0.18 55.31 ± 1.71

Softmax 59.84 ± 0.66 90.54 ± 0.81 97.80 ± 0.19 61.44 ± 0.54

Table 2. Average test set accuracy of the proposed method (Step I)
for different modalities on RobotPKU dataset.

Modality Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)
RGB Triplet 89.04 ± 3.91 99.17 ± 0.33 99.46 ± 0.10 90.63 ± 3.41

Softmax 84.52 ± 0.24 97.91 ± 0.35 99.12 ± 0.23 87.11 ± 0.22
Depth Triplet n/a n/a n/a n/a

Softmax 44.50 ± 1.02 75.83 ± 1.29 87.56 ± 0.87 44.50 ± 1.02

formed and evaluated (section 5.2). Here, the ideal direction
of transfer is investigated. Finally, the state-of-the-art of the
cross-modal person re-identification task between RGB and
depth is defined (section 5.3).

5.1. Single-Modal Re-identification Performance: For
performance evaluation with individual modalities (RGB
and depth separately), the single-modal case, results have
been obtained on BIWI and RobotPKU datasets. The rep-
resentative feature extractor Resnet50 has been optimized
with triplet loss, equation (1), and softmax loss, equa-
tion (2). For triplet loss an embedding size of 128 and a
training batch of 64 with 16 instances á 4 images was used.
Batch hard mining was chosen for triplet choice. These
parameters were proposed by [26]. To enable a fair com-
parison also for softmax loss a embedding size of 128 will
be chosen. The neural networks trained with softmax were
optimized with stochastic gradient descent with Nesterov
momentum. Those trained with triplet loss were optimized
with the ADAM optimizer. The margin for triplet loss (see
formula 1) was set to 0.5.

Table 1 shows the average accuracy of the networks
for single-modal re-identification for individual (RGB and
depth) modalities on BIWI data. Results show that the net-
works optimized using RGB modality alone, can reach a
high level of accuracy. The best model, optimized with
softmax loss provides an average mAP of 95.68%. The per-
formance of networks optimized with triplet loss and soft-
max loss lead to comparable performance. As expected,
the overall accuracy for the networks optimized using depth
modality alone is much lower compared to the accuracy
achieved for the same task with RGB. The highest accuracy
(mAP = 61.44%) is achieved when optimized with triplet
loss.

Table 2 shows the average accuracy for single-modal re-
identification for individual (RGB and depth) modalities
on RobotPKU data. Again, the RGB modality allows to
achieve high level of accuracy. For instance, the network
trained with triplet loss yields the highest level of accu-
racy (mAP of 90.63%). In the depth modality, the net-
work trained with softmax loss achieves an average mAP
of 44.50%. Due to the inherent complexity of the re-
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Softmax

G: RGB, Q: D
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Figure 3. Average mAP accuracy of various cross-modal distilla-
tion networks on the BIWI dataset. For all combinations we report
varying query (Q) and gallery (G) modalities. The first column in-
dicates the direction of the transfer for the cross-modal distillation.

identification task in the depth images, the network trained
with triplet loss did not converge to produce meaningful em-
bedding layers. The effect can be explained by the higher
level of noise in RobotPKU images in contrast to the BIWI
dataset.

The difference in performance for sensing in RGB and
depth in both datasets provides insight into the complexity
of the individual tasks. Given results for both datasets, it
is comparably easy to solely sense in RGB as visual cues
like color features can be effectively exploited for the re-
identification. In depth, color features are not present and
the features based on a persons shape are less descriptive
and lead to a lower accuracy. Nevertheless, it was also
shown that in depth descriptive features can be extracted.

5.2. Performance for Cross-Modal Distillation: In this
section the experiments with the cross-modal distillation
method as presented in section 3 will be introduced. As
baseline or step I the results from section 5 will be con-
sidered. In this section experiments are presented to gain
insight on step II (distillation), and, in particular, on the ad-
vantages of transferring knowledge based on the depth or
RGB modality.

Figure 3 presents the average mAP accuracy of the cross-
modal distillation networks trained on the BIWI dataset in
the cross-modal tasks with varying population of query and
gallery between RGB and depth. The top two networks train
the baseline network in depth (step I.), and then transfer to
RGB (step II.). The bottom two networks train the baseline
network in RGB (step I.), and then transfer to depth (step
II.). The different colors indicate results with triplet (blue)
and softmax (green) loss functions.

Results indicate that the accuracy obtained for when
transferring from RGB to depth are significantly lower than
from depth to RGB. Using depth images to populate a ref-
erence gallery, and RGB images as query achieves an mAP
accuracy of about 31% using networks optimized with soft-
max loss. The best mAP accuracy for the same task and
transferring from RGB to depth is about 13%. An expla-
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Figure 4. Average mAP accuracy of various cross-modal distil-
lation networks on the RobotPKU dataset. For all combinations
we report varying query (Q) and gallery (G) modalities. The first
column indicates the direction of the transfer for the cross-modal
distillation. As no baseline for depth with triplet was successfully
trained (see table 2), no results reported.

nation for this behavior is that the general shape informa-
tion of a person that is captured in depth data can, to a cer-
tain degree, be recovered in the RGB images. In contrast,
the additional descriptive information which is inherent in
RGB, like color information cannot be found in depth im-
ages. This will be further analyzed in section 5.

The performance obtained for models trained with the
two losses is only slightly differing (see Table 1). The over-
all best performance is obtained with a baseline in networks
trained with softmax loss with an average mAP of 30.1%
with RGB as gallery (G) and depth (D) as query and 27.1%
for depth as gallery and RGB as query.

Another finding is the significant difference in perfor-
mance when alternating the modality used as gallery and
query between RGB and depth. Our results suggest that a
higher level of performance can be achieved in all networks
when the gallery consists of RGB images. This is due to the
fact, that if RGB images are in the gallery the probability
of meaningful embeddings for the images is higher than for
depth in gallery (see table 1 and 2). As the performance in-
dicators are more influenced by meaningful embeddings in
the gallery, we see this effect.

Figure 5 shows an example of results for the cross-modal
distillation network on BIWI dataset, where the query im-
age is RGB and the gallery image is depth. This figure high-
lights the complexity of the task, which is very difficult to
solve for humans.

Figure 4 presents the average mAP accuracy of the
cross-modal distillation networks trained on the RobotPKU
dataset in the cross-modal tasks. The results on RobotPKU
data mirror the findings from the BIWI dataset. Again, the
transfer from depth to RGB significantly outperforms the
transfer from RGB to depth. The difference of the best net-
works in mAP is 11%/7.5% for varying query and gallery
population. The best overall network is Resnet50 trained
with softmax and a transfer from depth to RGB.

In summary, to obtain the better results with the cross-
modal distillation network, the transfer of knowledge
should occur from depth to RGB. As shown in section 5

Internal

Query rank-1 rank-2 rank-3 rank-4 rank-5

Figure 5. Example of qualitative results for the proposed architec-
ture on BIWI dataset. The green box denotes the correct match.
Gallery (G) and Query (Q) varied for the modalities.

(tables 1 and 2) in the single-modal task a much higher per-
formance was obtained in the RGB modality. Hence, the
performance in the single-modal task of the baseline net-
work is not critical to performance for cross-modal distilla-
tion. Results suggest that the success of the distillation step
is more dependent on the features learned from the modali-
ties. Hence, the features learned in the depth modality were
transferable to the RGB modality, while features learned
in the RGB modality where not transferable to the depth
modality. This gives an indication on the relation between
the depth and RGB modality where depth can, to a certain
degree, be considered a subset of RGB. Despite the indirect
and direct nature of the loss functions, the results indicate
that networks with a baseline trained with softmax loss and
networks with a baseline network in triplet loss obtain sim-
ilar results. This shows the robustness of the method itself.

5.3. Comparison with State-of-the-Art Methods: In
this section the results from section 5 are taken into a
broader scope and are compared to existing methods for
cross-modal person re-identification. As deep learning
based methods, one-stream network and zero-padding net-
work as of [10] are analyzed. As conventional approaches
the WHOS feature extractor [30] and the LOMO feature ex-
tractor [22] will be investigated. The same features will be
extracted for both modalities and are are compared on ba-
sis of Euclidean distance and the additional metric learning
step Cross-view Quadratic Discriminant Analysis (XQDA).
Additionally, the matching of Eigen-depth and HOG/SLTP
features as reported by [16] is included in Table 3 for the
BIWI dataset.

Table 3 presents the average accuracy of state-of-the-art
and proposed networks for different scenarios on the BIWI
dataset. The deep learning based one-stream architecture is
outperforming all methods based on hand-crafted features
by at least 4%/7% for varying query and gallery in mAP ac-
curacy with a Resnet50 structure. The cross-modal distilla-
tion network enables an additional improvement compared
to the one-stream network by 11%/7%.

In table 4 the results for the RobotPKU dataset are
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Table 3. Average accuracy of state-of-the-art and proposed networks for different scenarios on the BIWI dataset. For results from [16] no
detailed information on the evaluation procedure was given.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB
rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

WHOS, Euclidean[30] 3.2 16.6 31.5 3.7 5.1 18.7 32.6 5.6
WHOS, XQDA[30] 8.4 31.7 50.2 7.9 11.6 34.1 51.4 12.1
LOMO, Euclidean[22] 2.8 16.4 32.5 4.8 3.3 15.6 29.8 5.6
LOMO, XQDA[22] 13.7 43.2 61.7 12.9 16.3 44.8 62.8 15.9
Eigen-depth HOG/SLTP, CCA [16] 8.4 26.3 41.6 - 6.6 27.6 45.0 -
Eigen-depth HOG/SLTP, LSSCDL [16] 9.5 27.1 46.1 - 7.4 29.5 50.3 -
Eigen-depth HOG/SLTP, Corr. Dict. [16] 12.1 28.4 44.5 - 11.3 30.3 48.2 -
Zero-padding network[10] 5.86 ± 2.18 25.85 ± 6.35 47.13 ± 8.06 7.28 ± 4.03 10.34 ± 2.68 38.91 ± 6.45 62.84 ± 11.48 9.77 ± 3.80
One-stream network[10] 15.68 ± 0.77 50.29 ± 1.18 75.65 ± 0.46 16.86 ± 0.87 19.82 ± 0.33 55.74 ± 0.83 78.92 ± 1.07 23.75 ± 0.30
Cross-modal distillation network (ours) 26.85 ± 1.75 65.88 ± 2.32 84.13 ± 3.14 27.34 ± 1.66 29.23 ± 2.31 70.50 ± 2.29 88.13 ± 0.91 30.48 ± 1.99

Table 4. Average accuracy of state-of-the-art and proposed architecture for different scenarios on the RobotPKU dataset.
Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB

rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)
WHOS, Euclidean[30] 3.8 16.3 29.5 3.9 3.5 16.1 31.2 5.4
WHOS, XQDA[30] 10.0 31.8 49.8 8.2 9.8 31.0 48.0 9.8
LOMO, Euclidean[22] 3.6 15.0 28.0 3.9 3.7 15.3 28.7 4.9
LOMO, XQDA[22] 12.9 36.4 56.1 10.1 12.3 37.4 56.1 12.3
Zero-padding network[10] 7.76 ± 0.85 29.04 ± 2.57 47.79 ± 3.34 7.67 ± 0.59 6.57 ± 0.64 26.80 ± 2.14 45.62 ± 2.78 8.31 ± 0.56
One-stream network[10] 11.92 ± 0.63 38.13 ± 1.01 57.34 ± 2.14 11.42 ± 0.52 12.48 ± 1.01 38.51 ± 1.51 56.77 ± 0.85 14.19 ± 1.37
Cross-modal distillation network (ours) 17.50 ± 2.23 51.92 ± 3.62 72.73 ± 3.21 17.10 ± 1.85 19.45 ± 2.01 54.28 ± 3.08 74.44 ± 2.27 19.82 ± 2.10

shown. The one-stream network with Resnet50 structure
again outperforms the conventional feature extractors in av-
erage mAP. The performance increase of the cross-modal
distillation network above that of the one-stream network
in mAP is at 5%/5%. Overall results show that the cross-
modal distillation network can significantly improve accu-
racy compared to state-of-the art methods for both BIWI
and RobotPKU datasets.

5.4. Analysis of Neural Network Activations: In this
section an explanation of the superior performance of the
distillation network will be given, by analyzing deconvo-
lution images of relevant deep learning methods. Figure 6
shows deconvolution images for different networks on two
images from RGB (a. and c.) and depth (b. and d.) from the
BIWI RGBD-ID dataset. The guided backpropagation al-
gorithm was used for visualization of the activations for the
networks [23]. The architectures which are shown are sepa-
rate training for the single-modality task (as in section 3.1),
the one-stream network, as the second in the state-of-the-art
table [10], and our cross-modal distillation method.

The images show that the activations for the different
networks are varying considerably. When optimized for the
single modalities, the networks in the RGB modality are ac-
tivated by features inside the torso region of a person, like
the color of the same. The network sensing in the depth
modality is activated by the outer structure of the torso. For
the one-stream network in the RGB modality the network is
mostly activated by colors of torso and upper legs, while in
the depth modality a cluttered outer structure of the torso is
captured. For the RGB modality in the cross-modal distilla-
tion network a very different activation map can be observed
(images (a) and (c)). Instead of being activated by color fea-
tures, we see that the network is mostly activated the struc-

Internal

a.)

b.)

c.)

d.)

Figure 6. Comparison of deconvolution images for different net-
works on BIWI data. Visualization is performed with guided back-
propagation [23]. Activation maps of cross-modal distillation net-
work in RGB highly differing to the other techniques.

ture of the torso for those images. Therefore, the knowl-
edge from depth, which is a descriptiveness of the problem
with structural details, was transferred to the RGB modal-
ity. This finding underlines that the transfer of knowledge
between the modalities was successful. As the describing
features for the images are similar, the task of embedding
to a common feature space is facilitated. This explains the
better performance in cross-modal person re-identification
as found in section 5.3.
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6. Conclusions

In this paper, a new deep neural networks is proposed
for cross-modal person re-identification that allow sensing
between RGB and depth modalities. Its two-step approach
enables the network to exploit the relation between these
two relevant modalities, and thereby provide a high level
of performance. Experimental results on two benchmark
public datasets indicate that our proposed network can out-
perform related state-of-the-art methods for cross-modal re-
identification by up to 10.5% in mAP. Results also show
that features which are descriptive in the depth modality can
successfully be extracted in the RGB modality for person
re-identification. This implies that information captured in
depth is to some extent retrievable in the RGB modality.
Following this, we were able to show that the depth modal-
ity can be seen as subset of the RGB modality.
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