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Abstract

Detecting anomalies using deep learning has become a
major challenge over the last years, and is becoming in-
creasingly promising in several fields. The introduction of
self-supervised learning has greatly helped many methods
including anomaly detection where simple geometric trans-
formation recognition tasks are used. However these meth-
ods do not perform well on fine-grained problems since they
lack finer features. By combining both high-scale shape fea-
tures and low-scale fine features in a multi-task framework,
our method greatly improves fine-grained anomaly detec-
tion. It outperforms state-of-the-art with up to 31% relative
error reduction measured with AUROC on various anomaly
detection problems including one-vs-all, out-of-distribution
detection and face presentation attack detection.

Detecting anomalies straying apart from a well-defined
normal situation has always been a major challenge in many
fields such as video surveillance [33, 43], intrusion detec-
tion [15], fraud detection [42], medical imaging [20] and
more recently adversarial attack detection [25]. Deep vi-
sual anomaly detection has been introduced to tackle this
problem and has proven to be more robust and reliable than
classical binary classification. Rather than directly try to
discriminate anomalies from normal samples, we only learn
the normal class boundary and deem as anomalous any ob-
servation outside.

Recently, the introduction of self-supervised learning has
greatly improved many one-class anomaly detection learn-
ing methods. It enables to discriminate anomalies from nor-
mal samples by learning to solve simple tasks such as geo-
metric transformation classification [10]. However, even if
this approach has greatly improved anomaly detection per-
formance, it still suffers from limitations on more challeng-
ing problems with local and fine-grained differences be-
tween anomalies and normal samples.

In this given context, our main contributions in this paper

are the following:

• We improve the detection of fine-grained anomalies by
independently solving in a multi-task self-supervised
fashion high-scale geometric task and low-scale jigsaw
puzzle task.

• We validate the efficiency of the proposed method
using an exhaustive protocol for anomaly detection
on one-vs-all, out-of-distribution detection and anti-
spoofing problems.

• The proposed method obtains better overall results
with up to 31% AUROC relative improvement from
state of the art methods.

1. Related work
1.1. Anomaly detection

The main goal in anomaly detection is to classify a sam-
ple as normal or anomalous. Formally, we predict P (x ∈
Xnorm) for an observation x and a normal (or positive) class
Xnorm. In practice, a proxy anomaly score function sa(x)
is usually estimated instead. The anomalous (or negative)
class is then defined implicitly as the complementary of the
normal class in image space. We can generally categorize
anomalies into three families:

1. Object anomaly: any object which is not included in
the positive class, e.g., a cat is an object anomaly in
regards to dogs.

2. Style anomaly: observations representing the same
object as the positive class but with a different style
or support, e.g., a realistic mask or a printed face rep-
resent faces but with a visible different style.

3. Local anomaly: observations representing and shar-
ing the same style as the positive class, however a lo-
calized part of the image is different. Most of the time,
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these anomalies are the superposition of two genera-
tive processes, e.g., a fake nose on a real face is a local
anomaly.

Usually, we assume in anomaly detection that only nor-
mal samples are available during training, meaning that
most methods are part of one-class learning scheme. The
first introduced methods simply used a pre-trained neural
network to extract features, on which a classical algorithm
such as One-Class SVM [31] (OCSVM) or Isolation Forest
[17] (IF) were trained.

There have been also semi-supervised anomaly detection
methods such as DeepSAD [27] or deviation networks [23]
where we assume some of the anomalies representing a few
modes are available. These methods can achieve better ac-
curacy on borderline cases given enough diverse anomalies,
which is often less manageable in practice. In particular,
these two methods directly learn representations by mini-
mizing the distance of normal sample features to an hyper-
sphere center, while maximizing the distance to the anoma-
lies. It follows the compactness principle, where we min-
imize the normal class representations variance and maxi-
mize the inter-class representations variance.

1.2. Self-supervised learning

Self Supervised Learning (SSL) is a part of representa-
tion learning, where we want to learn useful and general
representations from an unlabeled dataset X = {xi}N1 . We
can then use the learned features for a different task such as
classification.

We learn representations by solving from the data an
auxiliary task T , which is often unrelated to the final one.
Therefore SSL consists of two steps:

1. Generating a labeled datasetXT aligned with T , which
for classification is usually done by applying c trans-
formations Tj to our unlabeled samples

XT = {(Tj(xi), j)}i,j (1)

2. Training a classification or regression network on this
generated labeled set.

One of the final layers φT can thus be used as a feature
extractor. Some commonly used tasks are: 90° rotation pre-
diction [9], jigsaw puzzle [22], distortions [7], colorization
[41], image inpainting [24] or relative patches prediction
[6].

1.3. SSL anomaly detection

Very recently, SSL has been adapted to the one-class
anomaly detection framework. First we learn to solve an
auxiliary task T in a SSL fashion to obtain a pre-trained

network φT . Then, to classify at inference time an obser-
vation x as anomalous or normal, we evaluate how well the
network can solve the task. Indeed, the main assumption is
that the network will perform relatively well on normal sam-
ples but will fail on anomalies. A task-independent metric
L is computed on the generated labeled samples to compute
the anomaly score function:

sa(x) = {L(φT (Ti(x)), i)|i ∈ J1, cK} (2)

Unlike SSL, we are not directly interested in the inter-
mediate features, but rather the final task outputs.

In GeoTrans [10], the auxiliary task is to classify which
geometrical transformation has been applied to the input.
A set of 72 transformations including identity is randomly
sampled over all possible compositions of translations, ro-
tations and symmetries. At the end of training, 72 Dirich-
let distributions respectively parameterized by α̃i are fitted
over the normal class softmax outputs y (Ti(x)) for each
transformation. The log-likelihood can then be used during
inference as the task-independent metric L:

sa(x) =

72∑
i=1

(α̃i − 1) · logy (Ti(x)) (3)

In MHRot [12], the task is to simultaneously clas-
sify three types of transformations, each modeled by a
softmax head: vertical translation, horizontal translations
and 90° rotations. Accordingly, we are trying to pre-
dict the three following variables: vertical translations
(0,−ty ,+ty), horizontal translations (0,−tx,+tx) and 90°
rotations (0°,90°,180°,270°).

During inference, we sum the three softmax of the
known transformations for each transformation combina-
tion:

sa(x) =
∑ ∑
r∈{0,90,180,270}
s∈{0,−tx,+tx}
t∈{0,−ty,+ty}

∑
y(Tr,s,t(x))r,s,t (4)

2. Method overview
2.1. Anomaly detection pretext task

We present here a general rule of thumb regarding the
choice of tasks for SSL anomaly detection. It is generally
more restrictive than for simple representation learning [2].

Let T be a task along its training loss LT . On the one
hand, if the task is too hard on normal samples, meaning
that the accuracy of our network remains close to random
predictor throughout training (or that ‖∇φLT ‖ is always
small and that the minimum of L is high), then no mean-
ingful representation will be reached at convergence. This
will also result in poor accuracy on anomalies (Fig.1.c) and
yield unpredictable results during anomaly detection. On
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Figure 1. Tasks accuracy during training on coarse object AD
(CIFAR-10 in plain line) and fine-grained AD (CaltechBirds in
dotted line): (a) vertical translations, (b) 90° rotation, (c) unsolv-
able task

the other hand, if the task is too easy on normal samples,
meaning that our model will converge to a perfect predictor
in the first epochs, then the task loss will be minimized by
many representations including trivial ones. Thus the net-
work is more likely to learn such representations which will
be unspecific to the normal class and encode very generic
visual features. Since many anomalies will share these fea-
tures, the task accuracy will be high on anomalies as well
(Fig.1.a).

To observe these effects, we train a network on several
isolated tasks as described in Section 1.3. By monitoring its
task classification accuracy on evaluation normal data and
anomalous data during the first epochs, we empirically mea-
sure how well-suited a pretext task is for anomaly detection
on a given dataset. We show that even though 90° rotation
is more adapted than translations on coarse anomaly detec-
tion, it ultimately fails on fine-grained anomaly detection
(Fig.1.b). This confirms that basic geometric transforma-
tion recognition tasks, such as 90° rotations or translations,
are only suited to simple object anomaly detection. Indeed,
since these tasks are solvable accurately by learning high
scale and shape features, it is unlikely the network will use
finer characteristics that allow discriminating normal sam-
ples from more subtle anomalies.

2.2. Method overview

Finding a single task satisfying all the previous condi-
tions is difficult, and must be highly dataset dependent.
Therefore we resort to ensemble methods [5] by allowing
the network to learn N tasks and merge their decision at
inference. We learn richer features via multi-task learning
[3], by sharing a common representation across all tasks.
Our model is accordingly composed of a main feature ex-
tractor network φ and N dense layers fT1

, · · · , fTN
, where

fTi
(φ(x)) is the output for the ith task.
During inference, we aggregate the anomaly scores of

all tasks into the final anomaly detection score. The whole

training and inference scheme is summarized in Figure 2.
For each classification task Ti, the task-independent metric
LTi

chosen is the softmax score corresponding to the true
known class and we sum up these scores using the mean:

sa(x) =
1

N

N∑
i=1

s(Ti)
a (x) (5)

where s(Ti)
a is the anomaly score of the ith task:

s(Ti)
a (x) =

∑
j

softmax(φ ◦ fTi(T
(i)
j (x)))j (6)

We note that there is a caveat using the mean as anomaly
score: adding new tasks can have a negative impact on
the model performance. In practice if the task is not well
suited to the normal class, it will add significant noise to the
anomaly score and ultimately harm the anomaly detection
accuracy.

To prevent our multi-task from being too easy on fine-
grained problems, we introduce more challenging tasks. We
choose here a simplified version of the jigsaw puzzle task.
The jigsaw puzzle task consists in splitting an image into a
grid of nh×nw patches, then randomly shuffling the differ-
ent patches. The task is then to predict the original order of
each patch. This task has proven in representation learning
to provide a great challenge for extracting more local and
finer features [22]. To avoid trivial solutions and force our
model to understand pieces neighborhood, we are careful
to add a margin between each patch with a random small
offset.

Since we chose the softmax truth as the task-independent
metric, we need to re-frame it into a classification problem
by considering each permutation as a single class. This
would greatly increase our model complexity, effectively
adding (nw · nh)! classes. Therefore, we only consider
k < (nw · nh)! randomly chosen permutations including
the identity permutation. This quantity k becomes an addi-
tional parameter controlling the task difficulty.

The complete training loss for a single sample x be-
comes

L(x) =
∑3
i=1 LCE(φ ◦ fv(T

(v)
i (x)), i)+∑3

i=1 LCE(φ ◦ fh(T
(h)
i (x)), i)+∑4

i=1 LCE(φ ◦ frot(T
(rot)
i (x)), i)+∑k

i=1 LCE(φ ◦ fpuzz(T
(puzz)
i (x)), i) (7)

where LCE is the cross-entropy and fv, fh, frot, fpuzz are
respectively the dense layers for the vertical translations,
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Figure 2. Multi-task self-supervised anomaly detection. In dotted line are additional steps during inference
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Figure 3. Example of simplified jigsaw puzzle task for k = 3

horizontal translations, rotations and puzzle tasks. Com-
pared to the MHRot anomaly score in Equation 4 we eval-
uate each task independently, which allows us to greatly re-
duce the required amount of network forward pass to com-
pute the anomaly score during inference. As a consequence,
our method inference step is roughly 10 times faster.

By combining the base geometrical transformation
recognition task with the jigsaw task, we allow the model to
learn high-scale shape features more suited toward object
anomaly detection as well as low-scale fine features more
suited toward style anomaly and local anomaly detection.

3. Implementation details

The geometrical transformation task is composed as in
[12] of horizontal translations, vertical translations and 90°
rotations. As for the jigsaw puzzle task, we found best re-
sults with nw = nh = 3 and k = 3.

Regarding network architecture, we use a 16-4 WideRes-
Net [40] (≈ 10M parameters with a depth of 16) for the
feature extractor network φ, along with two dense softmax
layers respectively of size 10 for the geometrical transfor-
mation task and size 3 for the jigsaw puzzle task. Each of
these dense layers have a dropout rate of 0.3 [32]. Training
is performed under SGD optimizer with nesterov momen-
tum [34], using a batch size of 32.

4. Results

4.1. Evaluation protocol

Until now, most of the anomaly detection literature have
adopted the one-vs-all protocol to evaluate their method. In
the one-vs-all protocol, we consider one class of a multi-
class dataset, originally created for object recognition, as
the normal class. All the other classes are then considered as
anomalous, and we can in a leave-one-out cross-validation
fashion evaluate the model on each possible normal class.
The final reported result is the mean of each run.

Even though such datasets are easier to acquire and re-
sult in a highly multi-modal anomaly class, these might not
be enough to fully evaluate anomaly detection methods. In-
deed, these only cover coarse object anomalies which are
now becoming too easy for state-of-the-art methods, and do
not reflect realistic anomaly detection challenges.

Dataset
Anomaly type

Object Style Local

Obj.classif


MNIST 3 7 7

F-MNIST 3 7 7

CIFAR-100 3 7 7

Fine-grained

{
Caltech-Birds 3 3 7

FounderType 7 3 7

Anti-spoofing
{

SiW-M 3 3 3

Table 1. Summary of evaluation datasets.

Thus we propose to use fine-grained classification
datasets in the same one-vs-all protocol. Since discrimi-
nation between theses classes is mostly based on local and
fine patterns, we can have a good coverage of style anoma-
lies and local anomalies. Also we note that because of the
increased shift in object recognition toward fined-grain clas-
sification, such datasets have become readily available. For
one-vs-all datasets, we used MNIST [16], Fashion MNIST



Model CIFAR-100 MNIST F-MNIST Caltech-Birds 200 Fonts SiW-M

Semi-
Supervised


Deep-SAD (75%) [27] 88.7 99.9 98.1 73.6 99.8 85.4
Deep-SAD (25%) 87.9 98.5 95.4 70.9 99.4 76.0
Deep-SAD (10%) 89.1 96.5 88.2 66.1 98.0 80.6

One-class



ADGAN [4] 54.7 94.7 88.4 - - -
GANomaly [1] 56.5 92.8 80.9 - - -
ARNet [8] 78.8 98.3 93.9 - - -
OCSVM [31] - 84.7 74.2 76.3 - -
IF [17] - 87.1 84.0 74.2 - -
PIAD [36] 78.8 98.1 94.3 63.5 - 81.2
GeoTrans [10] 84.7 96.9 92.6 66.6 92.3 81.1
MHRot [12] 83.6 95.2 92.5 77.6 96.7 83.1
Ours 85.8 96.0 92.8 83.2 96.9 88.4

Table 2. Comparison with the state-of-the-art AUROC over several datasets, underline indicates best result, bold indicates best one-class
learning result. We re-implemented all the methods except the three one-class methods in the first block (results are from original papers [4, 8]).

Model Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Avg
VAE [13] 70.0 38.6 67.9 53.5 74.8 52.3 68.7 49.3 69.6 38.6 58.3
OCSVM [31] 63.0 44.0 64.9 48.7 73.5 50.0 72.5 53.3 64.9 50.8 58.5
AnoGAN [30] 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8
PixelCNN [37] 53.1 99.5 47.6 51.7 73.9 54.2 59.2 78.9 34.0 66.2 61.8
Deep-SVDD [28] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8
OCGAN [26] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.6
Puzzle-AE [29] 78.9 78.0 69.9 54.8 75.4 66.0 74.7 73.3 83.3 69.9 72.4
DROCC [11] 81.7 76.7 66.7 67.1 73.6 74.4 74.4 71.4 80.0 76.2 74.2
GeoTrans [10] 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0
Ours 75.1 96.3 84.8 74.2 91.1 89.9 88.7 95.5 94.7 91.9 88.2

Table 3. Detailed comparison with one-class state-of-the-art AUROC on CIFAR-10 dataset.

[39], CIFAR-100 [14]. For the fine-grained dataset, we
chose the Caltech-Birds 200 database [38].

We also put forward datasets from real anomaly de-
tection problems over different fields. First, we use font
recognition challenges as they provide shape-focused style
anomaly detection. Indeed two different fonts represent the
same characters albeit with a distinctive style. Even though
these images lie on a low dimensional manifold compared
to natural images, they still provide insight into how well
the model can capture small shape hints. In particular, we
use FounderType-200 [18] introduced for novelty detec-
tion and containing 6700 images per font. Furthermore, we
choose a dataset from face anti-spoofing, where the goal
is to discriminate real faces from fake representations of
someone’s face. Due to the richness and high variability of
such frauds, this problem effectively encompasses all three
types of anomalies. We use here the Spoof in the Wild
Multiple (SiW-M) [19] database which contains more than

1600 short videos of real faces and presentation attacks.
There are 493 real identities along with several types of at-
tacks: paper print, screen replay, masks and partial attacks
where only a localized area of the face is fake. The masks
are composed of half-masks, paper masks, silicone mask
and transparent masks. All evaluation datasets are summa-
rized in Table 1.

We additionally evaluate our anomaly detection model
on out-of-distribution (OOD) protocol. OOD detection,
which is broader than anomaly detection, aims at discrim-
inating the training dataset from other data distributions.
The ”normal” distribution in OOD is therefore usually more
diverse and highly multi-modal. We also have a greater
overlap in term of class between the in-distribution samples
and out-of-distribution samples compared to anomaly de-
tection. Nevertheless it gives us great insight into the multi-
modality limits of our model. The most common evaluation
setup is to discriminate one training multi-class dataset from



other datasets. Here we choose to learn on CIFAR-10 and
discriminate CIFAR-100 and the easier Street View House
Numbers (SVHN) dataset [21].

For all of the evaluations, the metric used is the area un-
der the ROC curve (AUROC), averaged over all possible
normal classes in the case of one-vs-all datasets.

4.2. Ablation study

We evaluate in Table 4 how combining the two tasks of
geometric transformation recognition and jigsaw puzzle im-
proves the anomaly detection. We drastically improve per-
formances with a relative error reduction regarding AUROC
of 13% on CIFAR-100, 25% on Caltech-Birds 200 and 31%
on SIW-M. This validates our statement in Section 2: the
finer the differences between anomaly and normal class, the
greater the improvement is by adding the jigsaw task.

Auxiliary Task CIFAR-100 Caltech-Birds SiW-M
Geometric (G) 83.6 77.6 83.1
Jigsaw (J) 80.1 78.5 76.3
Ours (G+J) 85.8 83.2 88.4

Table 4. AUROC for different tasks, best result is in bold.

4.3. Comparison to the state-of-the-art

We compare our method with different one-class learn-
ing state-of-the-art approaches to anomaly detection: re-
construction error generative models with the PIAD model
[36], self-supervised methods with GeoTrans [10] and
MHRot [12]. As an addition, we include a semi-supervised
learning anomaly detection method DeepSAD [27], which
has access to a portion of the anomalies during training. As
such, we train it with the same normal samples but three
different ratio of the anomaly subclasses: 10%, 25% and
75%.

For the sake of fair comparison in the same condi-
tions, we take the existing implementations or re-implement
each method and evaluate each, except for the ADGAN,
GANomaly and ARNet which we reference results from
their original papers [4, 1, 8].

The results are gathered in Table 2 and 3. First of all,
we can see our method generally maintains among the best
accuracies on simple object anomaly detection, and even
improves it on more challenging datasets such as CIFAR-
100. Moreover, it greatly improves fine-grained anomaly
detection and outperforms state-of-the-art methods which
could not be realistically be used for this problem. We
also show that our method, without further tuning, improves
anti-spoofing detection performances on SiW-M. Finally,
we notice our one-class learning model generally reduces
the gap with semi-supervised method, and even outperforms

these on Caltech-Birds 200 and SiW-M, even though these
take advantage of a significant amount of additional anoma-
lous data.

Metrics AUROC EER
APCER

(5%BPCER)
MHRot [12] 83.0 21.6 77.5
Ours 88.4 18.7 39.1

Table 5. AUROC, EER and APCER at 5% BPCER of MHRot and
our model with jigsaw task on SiW-M dataset, best result is in
bold.

We compare in Table 5 our method with the second best
self-supervised method MHRot on SiW-M. We use met-
rics more adapted to face presentation attack detection with
equal error rate (EER) and the false acceptance rate for
the rate of false reject fixed at 5% (APCER@5%BPCER).
Our comparison does not include other face anti-spoofing
methods since we only use real faces training images while
these all use a set of presentation attacks during training.
Using our method, the APCER@5%BPCER drops from
77.5 to 39.1 thus also showing promising usage of anomaly
detection methods in fraud detection.

OOD SVHN CIFAR-100 Avg
VAE [13] 2.4 52.8 27.6
Deep-SVDD [28] 14.5 52.1 33.3
PixelCNN [37] 15.8 52.4 34.1
RotNet [9] 97.9 81.2 89.5
Ours 98.8 83.4 91.1
CSI [35] 99.8 89.2 94.5

Table 6. Comparison with state-of-the-art on the Out-Of-
Distribution detection protocol with CIFAR-10 as in-distribution,
best result is underlined, best pretext task driven method is in bold.

Lastly, we compare our model with state-of-the-art on
OOD detection in Table 6. Although not designed specif-
ically for such complex normal class, we obtain better de-
tection rates than other self-supervised anomaly detection
methods with pretext tasks.

5. Conclusion and Future Work
In this paper, we investigate the power of multi-task self

supervision for anomaly detection and show the limits of
simple geometric tasks. In more details, we combine two
complementary tasks of jigsaw puzzle and geometric trans-
formation recognition. Through an ablation study, we show
that this enables it to learn much complex and finer features
and therefore better detect anomalies. Finally, we provide
a more comprehensive evaluation protocol than previously



used datasets in the anomaly detection literature. It presents
more challenging datasets and covers object, style and lo-
cal anomalies. Our method outperforms state-of-the-art,
including a semi-supervised method, on most of the fine-
grained datasets.

For future work we could explore the combination of
more tasks, including generative tasks (in contrast to dis-
criminative tasks used here). Such tasks could range from
re-colorization to image in-painting.
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