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Abstract 
 

This study examines the relationship between H.264 
video compression and the performance of an object 
detection network (YOLOv5). We curated a set of 50 
surveillance videos and annotated targets of interest 
(people, bikes, and vehicles). Videos were encoded at 5 
quality levels using Constant Rate Factor (CRF) values in 
the set {22,32,37,42,47}. YOLOv5 was applied to 
compressed videos and detection performance was 
analyzed at each CRF level. Test results indicate that the 
detection performance is generally robust to moderate 
levels of compression; using a CRF value of 37 instead of 
22 leads to significantly reduced bitrates/file sizes without 
adversely affecting detection performance. However, 
detection performance degrades appreciably at higher 
compression levels, especially in complex scenes with poor 
lighting and fast-moving targets. Finally, retraining 
YOLOv5 on compressed imagery gives up to a 1% 
improvement in F1 score when applied to highly 
compressed footage.  
 

1. Introduction 
The security industry is continuously pushing for 

enhanced surveillance systems capable of high-resolution 
monitoring. For such systems, lossy video compression is 
essential to reduce the massive quantities of raw data before 
transmission. At the same time, there is growing interest in 
the use of video analytics to automatically interpret the 
visual data. For surveillance systems that leverage video 
analytics, it is crucial that a suitable video compression rate 
is chosen such that the quality of the compressed video is 
sufficient for downstream analysis tasks. However, system 
configuration decisions are often made without considering 
specific task requirements, such as the quality needed for 
reliable object detection. 

While reducing the video resolution is another way to 
reduce bitrate, surveillance system operators will typically 
want to retain high-resolution videos for occasional visual 

inspection and archival purposes. For that reason, video 
compression using an effective codec is often the preferred 
way to control bitrates/file sizes. 

The effect of video compression on video quality is an 
important practical consideration that is often overlooked in 
the design of surveillance monitoring systems. This paper 
investigates the trade-off between video compression using 
the H.264 standard and the performance of a popular object 
detection network, namely, YOLOv5 [1]. The YOLOv5 
model is trained to detect three object categories: persons, 
bikes (includes bicycles and motorcycles) and vehicles.  

We show that the object detection network can tolerate 
high levels of compression in certain scenarios, however, 
detection performance starts to breakdown when dealing 
with highly compressed imagery from scenes that are 
characterized by challenging illumination conditions. 
Moreover, the detection of small, low-contrast, and fast-
moving objects is particularly hampered at higher 
compression levels.  

Finally, we investigate ways to improve the performance 
of object detection systems when applied to highly 
compressed imagery by retraining YOLOv5 with an 
additional corpus of corrupted images. Commonly, deep 
neural networks are trained on relatively good quality 
image datasets, yet in real-world settings, the input video 
footage has often been subjected to extensive compression 
and cannot be assumed to be of high quality. In an effort to 
boost detection performance when dealing with compressed 
videos, we created a training dataset of 22,571 degraded 
images via data augmentation (the source of the images is 
the MS COCO dataset [2]). These images feature realistic 
video compression artefacts and other characteristics of 
surveillance style imagery such as overlaid timestamps. 

1.1. Related work 
There are several works in the literature that examine the 

effects of lossy image compression on the performance of 
computer vision models. Poyser et al. [3] investigated the 
impact of H.264 compression on the performance of a 
human action recognition model and found that there was a 
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significant decrease in performance when using a CRF 
value above 40. They also investigated the impact of JPEG 
(Joint Photographic Experts Group) compression across 
four discrete tasks: human pose estimation, semantic 
segmentation, object detection, and monocular depth 
estimation. They found that models for each of these tasks 
could tolerate moderate levels of JPEG compression, 
however, there was a notable drop in performance when 
using a JPEG quality (quantization) level below 15%. 
Additionally, they found that retraining models on 
compressed imagery leads to a performance gain when 
models are applied to images that are similarly compressed. 
Likewise, Zanjani et al. [4] and Benbarrad et al. [5] found 
that employing compression-based data augmentation as 
part of the model training process is an effective strategy 
for improving the performance of classification models 
when applied to highly compressed imagery. 

Dodge and Karam [6] and Roy et al. [7] explored the 
impact of several types of quality distortions (blur, noise, 
contrast, JPEG compression etc.) on the performance of 
image classification models. They both showed that 
classification models are generally resilient to all but the 
most severe levels of JPEG compression, however, they are 
more susceptible to blur and noise. 

Gandor and Nalepa [8] considered the impact of image 
compression on the performance of nine off-the-shelf object 
detection models. They found that JPEG compression is 
generally friendly to object detectors, but unlike findings 
related to the influence of JPEG compression on image 
classification models, there was a more pronounced decline 
in detection performance with decreasing JPEG quality.  

Klare and Burge [9] analyzed the impact of H.264 video 
compression on face recognition performance. They report 
a non-linear relationship between recognition performance 
and bitrate. Videos could be compressed down to 128kb/s 
before a notable drop in recognition performance occurred. 

1.2. Contribution 
Our test video dataset specifically targets surveillance 

applications. It contains a rich collection of real-world 
surveillance videos and covers a broad range of situations 
such as day/night scenes, indoor/outdoor scenes, different 
weather conditions, different types of footage (e.g., CCTV, 
dashcam, body-worn) etc. The comprehensive and diverse 
nature of our test dataset means that we can, at a more 
granular level, identify scenarios where the use of heavily 
compressed video leads to particularly poor detection 
performance. Moreover, while previous studies rely on off-
the-shelf models that are intended for general-purpose 
applications and are trained to detect many non-relevant 
classes such as bananas, elephants, toothbrushes etc., we 
use a model tailored to surveillance applications that detects 
objects of core interest (i.e. persons, bikes, and vehicles). 
These factors increase the relevance and validity of our 
findings when applied to surveillance applications, and this 
represents an important practical contribution as having 
knowledge of the relationship between input compression 
and output detection performance can inform design 
decisions regarding future video devices and infrastructure. 

In addition, this paper examines the relationship between 
input video quality, as measured using a variety of metrics, 
with the detection performance at each compression level. 
We also report on the extent to which performance 
degradation can be recovered when networks are applied to 
highly compressed surveillance footage by incorporating 
compressed images in the training dataset. 

2. Methodology 
The key steps in this study are highlighted in Figure 1. 

The first step involves sourcing and annotating the 
surveillance videos and is detailed in Section 2.1. This is 
followed by steps 2 and 3 which deal with systematically 

Figure 1: Key stages involved in the design and implementation of this study. 



compressing the videos and computing video quality 
metrics, as discussed in Section 2.2. Step 4 concerns the 
process of generating the test datasets at each compression 
level, which is outlined in Section 2.3. Steps 5 and 6 relate 
to training the YOLOv5 model and evaluating detection 
performance, details of which are provided in Section 2.4. 
Step 7 looks at boosting detection performance by 
retraining the model with an additional corpus of 
compressed training data, as is described in Section 2.5. The 
final step consists of proposing recommendations based on 
the outcome of this study and this is done in Section 4. 

2.1. Test dataset curation 
The test dataset consists of 50 surveillance videos that 

were carefully selected such that they cover a wide range of 
illumination and weather conditions, as well as featuring 
day/night-time scenes, different video resolutions (mostly 
360p, 480p, 720p, and 1080p), and various types of 
surveillance footage (e.g., CCTV, dashcam, and body-worn 
footage etc.). This diversity was necessary so that we could 
pinpoint scenarios where the use of high compression rates 
had a particularly adverse impact on detection performance. 

A total of 5,790 frames were extracted from these test 
videos and objects of interest were labelled. There were 
13,924, 1,633, and 18,695 bounding box annotations 
extracted for person, bike and vehicle classes, respectively.  

2.2 Video compression and video quality metrics 
Each of the test videos was encoded using the H.264 

codec at 5 different Constant Rate Factor (CRF) levels 
(CRF = 22, 32, 37, 42, 47), which gave rise to 5 output 
videos for each test video. An example of two test videos 
encoded at each CRF level is shown is Figure 2. H.264 was 
chosen as it is a widely used codec in the CCTV industry. 
We have used the x264 implementation of the H.264 codec.  

The bitrate and various video quality metrics were 
computed for each video. The quality metrics were PSNR 
(Peak Signal-to-Noise Ratio), SSIM (Structural Similarity 
Index) [10], and VMAF (Video Multi-Method Assessment 
Fusion) [11-12]. VMAF differs from the PSNR and SSIM 
scores insofar as it is a perceptual video quality metric that 
aims to approximate human perception of video quality. 
VMAF estimates the perceived quality score by computing 
scores from several quality assessment algorithms and 
fusing them using support vector machines (SVMs). VMAF 
scores range from 0 to 100, with 0 indicating the lowest 
quality, and 100 the highest. The goal of computing metrics 
was to see if they correlate with detection performance.  

2.3 Extracting frames from compressed videos 
Frames in the compressed videos that correspond with 

annotated frames in the original test videos were extracted, 

Figure 2: Sample videos from our test dataset. Left to Right: Frames from videos encoded with CRF values of 22,32,37,42,47. Top to 
bottom: (a) night-time street scene with close-up views of a stationary vehicle and persons. The vehicle holds up well under increasing 

compression, however, the persons become more ambiguous, and (b) a near-Infrared (nIR) scene with moving vehicle and persons. 



along with the corresponding PSNR, SSIM, and VMAF 
scores at each frame time. 

2.4 Details of the YOLOv5 network 
The object detection network was a custom YOLOv5 

model that was designed to detect 3 object categories, 
namely: persons, bikes, and vehicles. The model was 
trained on a dataset of 229,489 images that is a combination 
of several open-source datasets as well as our own in-house 
dataset featuring surveillance style footage. The input 
image size into the network was 544x544 pixels.  

YOLOv5 was applied to the extracted frames at each 
CRF level, and an in-depth analysis was subsequently 
carried out, which is presented in Section 3. 

2.5 Retraining YOLOv5 with compressed imagery 
Representative training data is the bedrock for creating 

reliable and effective deep neural networks. The vast 
majority of imagery in open-source datasets is not 
representative of surveillance style footage. This is 
particularly pertinent when dealing with highly compressed 
video streams containing prominent compression and 
motion artefacts, which may mislead deep learning methods 
that were trained on good quality, minimally compressed 
images. To address this, we retrain YOLOv5 using an 
additional corpus of compressed training images that mimic 
the compression artefacts seen on compressed surveillance 
video data. 

3. Results 
The performance of the YOLOv5 network for each 

object category is shown in the Precision-Recall (PR) 
curves in Figure 3. It may be observed that the detection 
performance is consistent for the three lowest compression 
levels (CRF = 22,32,37). The F1 scores for each object 
category differ by less than 3% when a using a CRF value 

of 22 versus a CRF value of 37. At higher compression rates 
(CRF = 42), we begin to see a notable drop in the detection 
performance, which is further exacerbated at the highest 
compression setting (CRF = 47), with the bike class 
suffering the greatest performance degradation. One 
possible explanation for this is that bikes appear as fine-
structured objects and these slender bodies can be easily 
destroyed during the compression process. In contrast, 
vehicles typically appear as larger and more substantive 
bodies and can retain their general shape even when 
subjected to extensive compression, as seen in Figure 2(a). 

3.1. Effect of object size on detection success 
The size and detection status of objects are illustrated in 

Figure 4. It may be noted that larger objects tend to be 
successfully detected in both minimally compressed (CRF 
= 22) and highly compressed (CRF = 47) cases. However, 
smaller objects are more susceptible to the effects of video 
compression as many of these objects that are detectable at 
CRF = 22 are not detectable at CRF = 47. We can see this 
clearly in the case of the person class. With reference to 
Figure 4, at CRF = 22, 90% of undetected persons are 
encircled by a curve with radius of 112 pixels (after the 
image has been resized to the input image size of the 
YOLOv5 network which is 544x544). At CRF = 47, 90% 
of undetected persons are enclosed by a curve with a radius 
of 166 pixels, indicating that as compression increases, the 
minimum object size that we can reliable detect also rises. 

3.2. Variation in F1 performance in various scenes 
The spread of F1 scores for each unique scene (i.e., each 

of 50 test videos) at every compression level is shown in the 
boxplot in Figure 5. The F1 scores here refer to the weighted 
average F1 value, which is calculated based on the F1 scores 
for each object category weighted by the number of samples 
in each category, as per Equation 1. 𝐹𝐹1� (𝑙𝑙, 𝑣𝑣) is the weighted 
average F1 score at a given CRF level, l, for a given video, 

Figure 3: Precision-Recall Curves for YOLOv5 when applied to footage encoded at multiple CRF values. Left to right: PR curves for 
Person, Bike and Vehicle classes. We can see that YOLOv5 performs consistently at the low-moderate compression levels (CRF = 22, 

32, 37), however, performance declines markedly at higher compression levels (CRF = 43,47), particularly for the bike class. 



v. The F1 score for each individual object category, c, at a 
given CRF level and for a given video, 𝐹𝐹1(𝑙𝑙, 𝑣𝑣, 𝑐𝑐), are 
weighted by the number of true observations for a given 
class in a particular video, 𝑁𝑁𝑣𝑣,𝑐𝑐, divided by the total number 
of objects in that video 𝑁𝑁𝑣𝑣. 

𝐹𝐹1� (𝑙𝑙, 𝑣𝑣) = �
𝐹𝐹1(𝑙𝑙, 𝑣𝑣, 𝑐𝑐) × 𝑁𝑁𝑣𝑣,𝑐𝑐

𝑁𝑁𝑣𝑣𝑐𝑐

 (1) 

 

 
Figure 5: Boxplot showing the variation in F1 scores for test 

videos at each compression level. 

It may be observed that, at lower compression settings 
(CRF = 22,32,37), the F1 scores are consistent, whereas at 
the highest compression level (CRF = 47), the F1 scores 
deviate markedly, with some scenes maintaining decent 
detection performance while other scenes give rise to poor 
detection results, such as the scenes shown in Figure 6 

 
Figure 6: (a) Objects are successfully detected in minimally 

compressed scenes (CRF = 22), while in (b) there were missed 
detections in the corresponding compressed scenes (CRF = 47). 

Figure 4: The effect of object size on detection success. Top row (a) shows the variation in detection success with respect to object 
size for each category at the lowest compression level (CRF = 22). Bottom row (b) shows the same at the highest compression level 
(CRF = 47). Images are resized (using letterbox method) to match the input size to the YOLOv5 network (544x544 pixels). We can 

see that YOLOv5 struggles to detect smaller objects, and this is especially evident when the level of compression is high. The curved 
dashed lines enclose 90% of undetected objects. Larger objects tend to be more resilient to increased levels of compression. 



A closer examination of the scenes that produce bad 
detection results at high compression settings reveals some 
interesting insights. Scenes that are characterized by 
complex lighting conditions, such as dark nighttime scenes 
and unevenly illuminated scenes, such as the scenes shown 
in Figure 6, are particularly impacted by the level of 
compression. The detection of fast-moving objects, such as 
vehicles, also suffers at high compression levels.  

3.3. Relationship between detection performance 
and video quality metrics 

The average detection performance at each CRF level 
versus the corresponding average bitrates and weighted 
average video quality metrics (PSNR, SSIM, and VMAF 
scores) are summarized in Table 1 and plotted in Figure 7. 

Each video quality metric produces one score per video 
frame. The weighted average scores at each CRF level are 
computed by averaging the per-frame scores. Computation 
of the average VMAF score, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉��������(𝑙𝑙), at CRF level is 
presented in Equation 2: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉��������(𝑙𝑙) =
1
𝑉𝑉
��

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑙𝑙, 𝑣𝑣, 𝑖𝑖)
𝐼𝐼𝑣𝑣𝑖𝑖𝑣𝑣

 (2) 

where V is the total number of test videos (V = 50), and 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉��������(𝑙𝑙, 𝑣𝑣, 𝑖𝑖) is the VMAF score at CRF level l, for the ith 
extracted frame from the vth video in the test set. Iv is the 
total frames extracted from the vth video. Weighted average 
scores for other metrics were calculated in the same fashion. 

It may be observed from Figure 7 that there is only a slight 
drop in the average detection performance when videos are 
moderately compressed (CRF = 37) compared to when 
videos undergo the least compression (CRF = 22). When 

CRF = 37, the average F1 score is 0.887, while at CRF = 22, 
the average F1 score is 0.894. While there is negligible 
difference in terms of the detection performance rates at 
CRF values of 22 and 37, there is, crucially, a significant 
reduction in the bitrates (2.32 Mb/s vs 0.34 Mb/s). The 
absolute value of the average bitrates at each CRF level are 
not overly meaningful since the bitrates are affected by 
scene activity and resolution, however, the general trend is 
revealing (i.e., how the bitrates decrease with increasing 
CRF level). This shows that we can achieve similar rates of 
detection success using lower bitrate videos, which has 
important storage and transmission implications.  

However, this only holds true up to a point. It may be 
observed in Figure 7 that the performance of YOLOv5 
declines markedly at the higher CRF values. When the CRF 
= 42, the average F1 score is less than 95% of the peak F1 
score, and when the CRF = 47, the detection performance 
drops to 85% of the peak F1 score. This underscores the 
value of knowing how detection performance varies with 
respect to the level of compression so that a suitable cut-off 
CRF value can be established, beyond which the detection 
performance becomes unacceptable. 

Closer inspection of Table 1 reveals that the best average 
F1 score is achieved when CRF = 32 (average F1 score = 
0.90) rather than at the lowest compression level when CRF 
= 22 (average F1 score = 0.89). A possible reason for this 
could be due to the noise-attenuation properties of lossy 
compression methods such as H.264 which aim to remove 
unnecessary components of the video, whilst retaining the 
underlying signal. Removal of such redundant components 
may have a positive effect on detection performance. 

Video quality is appraised at each CRF level using several 
video quality metrics (PSNR, SSIM, and VMAF). It may be 

Figure 7: Plot of weighted average F1 scores versus weighted average bitrate, PSNR, SSIM, and VMAF scores. 

Table 1: Average bitrate, video quality scores and object detection performance at each compression level. 
CRF 
level 

Weighted Average 
Bitrate (Mb/s) 

Weighted Average 
PSNR (dB) 

Weighted Average 
SSIM (dB) 

Weighted Average 
VMAF 

Weighted Average 
F1 

22 2.32 44.86 26.78 96.58 0.89 
32 0.63 38.16 19.24 88.19 0.90 
37 0.34 35.06 15.96 79.38 0.89 
42 0.19 32.06 12.92 67.49 0.84 
47 0.12 29.05 9.95 53.16 0.76 

 



observed in Figure 7 that in the case of the VMAF score, 
the three CRF levels that all provide similarly good 
detection performances (CRF = 22,32,37) are clustered 
quite closely together. This is in contrast with the PSNR and 
SSIM scores where there is greater spread amongst these 
CRF levels despite there being minimal difference in 
detection performance. This suggests that VMAF could be 
used as a criterion for better encoding decisions and 
predicting if a video is overly compressed to the point that 
it will have an appreciably adverse effect on detection 
performance. For example, based on our experiments, we 
could stipulate that a compressed video with a VMAF score 
above 80 would be unlikely to suffer any significant drop in 
detection performance, although more works needs to be 
carried out in this direction. 

3.4. Retraining YOLO with compressed data 
In an effort to boost the performance of the object 

detection system when applied to highly compressed 
imagery, we retrained the YOLOv5 model with an 
additional corpus of 22,571 training images that contained 
realistic video compression artefacts. These images were 
sourced from a sub-set of MS-COCO [4] images. Video 
compression artefacts were introduced by: i) converting 
images into short segment videos, ii) simulating motion by 
dynamically applying local spatial warping deformations, 
iii) compressing the video segment using a randomly 
chosen codec, and iv) extracting the frame from the 
compressed video segment that will be used as a training 
image. Examples of some original input images and 
corresponding corrupted images are shown in Figure 8. 

 
Figure 8: Left column: sample input images, and Right column: 
degraded images that feature video compression artefacts and 

other characteristics of surveillance style footage such as 
timestamps. Inclusion of these degraded images in the training 

dataset resulted in the YOLOv5 object detector performing 
slightly better when applied to heavily compressed footage. 

 Additionally, we observed that the baseline object 
detection network could not reliably detect objects when a 
timestamp (or some other text) was overlaid on top of the 
object of interest. For this reason, we introduced a new 
custom augmentation that randomly inserted text over 
images. The text consisted of random dates and addresses. 
The text was designed to mimic the style of text that is often 
present in CCTV footage. Various properties of the text are 
randomized such as the text size, position, font, and color. 

The performance of the baseline YOLOv5 model (Model 
A) and the YOLOv5 model trained on the additional 
corrupted dataset (Model B) when applied to most heavily 
compressed test dataset (CRF = 47) is shown in Figure 9. 

 
Figure 9: Precision-Recall curves for the baseline YOLOv5 

model (Model A) and the YOLOv5 model that was trained with 
an additional corpus of 22,571 training images that contained 

realistic video compression artefacts (Model B). The models are 
applied to the highest compressed test dataset (CRF=47). The 

inclusion of compressed training images led to a marginal 
improvement in the F1 score for each class. 

 
The model trained with the additional corrupted training 
images demonstrated a marginal improvement, (~1% 
improvement in the F1 scores for each class).  

4. Discussion and conclusion 
It is important for automated surveillance monitoring 

systems to be able to reliably detect objects and events, even 
when contending with complex scenes. Designing robust 
monitoring systems necessitates making informed 
decisions around the right choice of hardware, system 
configuration parameters, and algorithms. The video 



compression rate is a key configuration parameter that is 
often overlooked in the design of these systems. 

In this study, we look at how video compression affects 
the performance of an object detection network. We train a 
YOLOv5 model to detect three object categories, namely: 
persons, bikes, and vehicles. The detection performance is 
generally robust to moderate levels of compression; we 
found that there is a negligible difference in the detection 
performance when videos are minimally compressed (CRF 
= 22) versus when they are moderately compressed (CRF = 
37). This is noteworthy as we can realize significant bitrate 
savings without incurring any penalty in terms of detection 
performance – the average bitrate for videos encoded at 
CRF = 22 was 2.32 Mb/s, while it was almost 7 times lower 
for videos encoded at CRF = 37, at 0.34 Mb/s. 

We point out situations where parsimonious bitrates are 
not recommended. This includes cases where fast moving 
objects travel through dark scenes or scenes with uneven 
illumination (i.e., scenes with both over-exposed and poorly 
lit regions). In these complex scenes, videos that are heavily 
compressed start to breakdown and have low visual quality. 

In practical terms, the best measure of video quality is the 
success rate of computer vision algorithms such as object 
detection models. As part of this study, we examined how 
the detection performances correlate with established video 
quality metrics including PSNR and SSIM at a given CRF 
rate. In recent years, emphasis has been put on developing 
various methods and techniques for evaluating the 
perceived quality of video content by human observers. A 
popular perceptual metric that has emerged is VMAF. 
While VMAF has principally been geared towards 
evaluating media for the entertainment sector as opposed to 
for CCTV tasks, we found that it may be a good proxy for 
predicting if a video is overly compressed to the point that 
it appreciably harms detection performance. Human 
observers typically interpret videos with a VMAF score of 
70 as a vote between “good” and “fair”. We found that, on 
average, videos with a VMAF score above 70 achieved 
good detection performances (as measured by F1 score). 
More work needs to be carried to this end to establish if 
there is a solid basis for linking VMAF score and detection 
success. A potentially promising future research direction 
involves quantifying the video quality degradations using a 
video quality metric such as VMAF so that we can control 
the quality of the video data, and consequently, ensure 
detection success is not hampered by low-quality, 
excessively compressed input video data. 

Most available open-source datasets contain images that 
are not representative of surveillance style footage, 
especially heavily compressed surveillance style footage. 
Training deep neural networks using these images alone 
will likely produce a model that is not well-suited for 
processing real-world surveillance footage. In order to 
address this, we trained a new YOLOv5 model using an 

additional 22,571 images containing realistic video 
compression artefacts and characteristics of CCTV footage. 
This led to a 1% improvement in F1 score for most classes 
when applied to the highest compressed imagery (CRF = 
47). Although this is only a slight improvement, there is 
scope to train with more corrupted images and adopt more 
sophisticated augmentation operations to improve detection 
success. This is left as another possible research direction. 
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